一种日盲紫外单光子崩探测器

阅读:842发布:2020-05-16

专利汇可以提供一种日盲紫外单光子崩探测器专利检索,专利查询,专利分析的服务。并且本 发明 公开了一种日盲紫外单 光子 雪 崩探测器,包括雪崩光电探测器和多根 纳米线 ;所述雪崩光电探测器为工作在盖革模式下的日盲紫外 铝 镓氮雪崩光电探测器;所述纳米线为负光电导效应的氮化镓纳米线;所述多根纳米线设于雪崩光电探测器的光敏面上;所述多根纳米线的正极端并联后连接到 电压 源的正极;所述多根纳米线的负极端并联后连接到雪崩光电探测器的负 电极 ;所述雪崩光电探测器的正电极连接电压源的负极。本发明利用纳米线的负光电导效应来工作,使得雪崩探测器中的雪崩 电流 在 雪崩击穿 后得到及时的淬灭,保护 二极管 ,无需传统的淬灭 电路 ,规避了淬灭电路占用面积大、不便集成、非常耗成本的缺点。,下面是一种日盲紫外单光子崩探测器专利的具体信息内容。

1.一种日盲紫外单光子崩探测器,其特征在于:包括雪崩光电探测器和多根纳米线
所述雪崩光电探测器为工作在盖革模式下的日盲紫外镓氮雪崩光电探测器;所述纳米线为负光电导效应的氮化镓纳米线;所述多根纳米线设于雪崩光电探测器的光敏面上;所述多根纳米线的正极端并联后连接到电压源的正极;所述多根纳米线的负极端并联后连接到雪崩光电探测器的负电极;所述雪崩光电探测器的正电极连接电压源的负极。
2.根据权利要求1所述的一种日盲紫外单光子雪崩探测器,其特征在于:所述雪崩光电探测器自下而上依次包括衬底层、n型层、i型吸收层、n型分离层、i型雪崩层和p型层;所述n型层和p型层上分别设有n型欧姆接触电极和p型欧姆接触电极;所述n型欧姆接触电极和p型欧姆接触电极分别为雪崩光电探测器的负电极和正电极;所述衬底层的底面为雪崩光电探测器的光敏面。
3.根据权利要求2所述的一种日盲紫外单光子雪崩探测器,其特征在于:所述雪崩光电探测器呈圆台形状,包括大圆柱部分和小圆柱部分;所述衬底层和n型层构成大圆柱部分;
所述i型吸收层、n型分离层、i型雪崩层和p型层构成小圆柱部分。
4.根据权利要求1所述的一种日盲紫外单光子雪崩探测器,其特征在于:所述纳米线包括核层、壳层、源极电极和漏极电极;所述核层设于壳层内部;所述源极电极和漏极电极分别设置于壳层两端表面的边缘处;所述源极电极和漏极电极分别为纳米线的负极端和正极端。
5.根据权利要求1所述的一种日盲紫外单光子雪崩探测器,其特征在于:所述纳米线的根数与电路中的器件能承受的最大电流相匹配。
6.根据权利要求1所述的一种日盲紫外单光子雪崩探测器,其特征在于:所述电压源采用外置偏压电路。
7.根据权利要求1所述的一种日盲紫外单光子雪崩探测器,其特征在于:所述雪崩光电探测器的制备方法包括以下步骤:
步骤1:在p型AlGaN欧姆接触层上旋涂一层光刻胶,采用配有雪崩光电二极管图形的光刻板对所述光刻胶进行光刻显影后,暴露出需要刻蚀的AlGaN层部分,而其余未显影的光刻胶层作为一次掩膜;
步骤2:使用干法刻蚀技术来刻蚀暴露的外延结构,刻蚀至n型AlGaN欧姆接触层处,形成台型结构;
步骤3:对干法刻蚀后的光电二极管探测器在纯氮气氛围保护下进行快速热退火处理及湿法处理,以恢复干法刻蚀在所刻蚀的AlGaN处外延结构表面上造成的损伤;
步骤4:采用光刻、真空技术将n型欧姆接触电极的金属层组合沉积在n型AlGaN欧姆接触层的上表面的台型边缘处,并通过剥离工艺去除n型欧姆接触电极图形之外的沉积金属层;对芯片进行有机清洗、去离子清洗,采用高纯氮气吹干后,在纯氮气氛围保护下的快速退火进行合金化处理;
步骤5:采用光刻、真空蒸镀技术将p型欧姆接触电极沉积在p型AlGaN欧姆接触层的上表面的边缘处;对芯片进行有机清洗、去离子水清洗,采用高纯氮气吹干后,在纯氮气氛围保护下的快速退火进行合金化处理;
步骤6:利用有机溶液、去离子水清洗光电二极管探测器的表面,再采用等离子增强化学气相沉积法在光电二极管探测器的表面镀制氮化物钝化薄膜,以保护除所述欧姆接触电极以外的光电二极管探测器表面。
8.根据权利要求1所述的一种日盲紫外单光子雪崩探测器,其特征在于:所述纳米线的制备方法包括以下步骤:
步骤1:通过MOCVD,在雪崩光电探测器的光敏面上外延生长厚度为300nm的AlN薄膜;
步骤2:通过PECVD,在上述AlN薄膜上沉积厚度为100nm的SiO2介质层,并采用光刻和湿法腐蚀方法把SiO2介质层制备成开孔直径为3μm圆形的图形化掩膜;
步骤3:把上述带有图形化掩膜的外延片放入MOCVD反应室内,选择区域生长出GaN六金字塔微结构,高度约为5μm,顶面直径小于200nm,确保核层和壳层的直径比例约为1∶15;
步骤4:把上述带有GaN六角金字塔微结构的外延片置于质量浓度为30%,温度为50℃的NaOH溶液中腐蚀30分钟,最终制备成高度约为5μm,顶面直径小于200nm的GaN纳米线,并采用光刻、真空蒸镀技术分别将源极电极和漏极电极沉积在纳米线壳层两端表面的边缘处。

说明书全文

一种日盲紫外单光子崩探测器

技术领域

[0001] 本发明涉及雪崩探测器,特别涉及一种集成纳米线保护电路的日盲紫外单光子雪崩探测器。

背景技术

[0002] 近年来,半导体纳米线的研究工作取得了很大进展,其应用领域包括集成电路、晶体管、激光器、发光二极管、单光子器件以及太阳能电池等。其中,在众多的半导体材料中,GaN基半导体材料具有较宽的直接带隙,以其优异的物理、化学稳定性,高饱和电子漂移速度,高击穿场强等性能广泛应用于高频、高温、高功率电子器件以及光电子器件等领域,已经成为继第一代锗、半导体材料和第二代砷化镓、磷化铟化合物半导体材料之后的第三代半导体材料。因此,GaN纳米线的制备成为人们研究的热点。
[0003] 雪崩光电二极管(APD)是一种在PN结上进行重掺杂而形成的光电探测器件,通常工作在强反偏压模式下,基于碰撞电离和雪崩倍增的物理机制对光电流进行放大。在强反偏压模式下,APD的耗尽层存在强电场,光子入射后激发的自由载流子扩散进耗尽层后受到强电场的作用而进行高速的漂移运动,因而具有极高的概率能与晶格发生碰撞。所谓碰撞电离,就是指载流子将原子从晶格中撞出从而造成新的电子空穴对的过程。强电场作用下,新生的电子空穴对继续碰撞晶格,使得上述的碰撞电离继续发生,而新的电子空穴对也不断产生,PN结内的自由载流子越聚越多,反向电流急剧增大,这种作用即雪崩倍增。
[0004] 单光子雪崩二极管就是利用APD的雪崩效应使光电流得到倍增的高灵敏度的光子检测器。理论上,当APD的反向偏压无限接近其雪崩阈值电压时,认为电流增益接近无穷大;实际上,当APD的反向偏压不超过雪崩电压时,电流增益增长到一定量就会饱和,该饱和值无法确保APD一定能够检测到单光子信号。因此,通常使APD两端的偏置电压高于其雪崩电压,确保当有光子信号到达时,APD会被迅速触发而产生雪崩,这种偏置方式称为盖革模式。
由于APD只有工作在盖革模式下才具备单光子探测能,所以通常直接用单光子雪崩二极管(SPAD)来表示。
[0005] 单光子雪崩二极管在产生雪崩效应后,如果不进行遏制,二极管长时间处于大电流状态,容易烧毁器件,并且无法进行下一次探测。因此,需要额外的电路将这个大电流抑制下去,这就是淬灭电路的作用。但是传统的淬灭电路设计相对复杂,受限于SPAD的电学寄生参数,盖革模式下光考虑APD静态参数会使得结果不准确,但动态参数变化快,需要设计更精确的SPAD等效电路模型。有时淬灭电路会以被动淬灭为基础,搭配主动充电回路来改进,虽然能够提高探测效率,但也占用了更多的面积,不便于集成,导致探测器的占空比难以提高。工作时淬灭复位的时间较长,增加功耗,降低二极管的探测性能,可靠性和稳定性也会降低,且非常耗成本。相比之下,GaN纳米线体积小,成本低,室温下有约105的高电导增益以及0.12ns的快速响应时间,工艺纯熟,内部晶格质量良好,且带宽的限制比淬灭电路的要小好几倍,能够更好地代替淬灭电路。在光照条件下,GaN纳米线的光生电子迁移至纳米线“壳”层并被俘获而光生空穴留在纳米线“核”内,光生空穴将和纳米线中原有的自由电子复合,降低自由电子浓度。此外,“壳”层被俘获的电子可产生电场进一步抑制沟道电导,“壳”层越大,负光电导效应也越强。并且电导率随入射光功率增加下降的快慢和纳米线的直径相关,直径越小,电导率下降越不明显。纳米线的核层的迁移率比壳层高。光照使核层电导快速下降、壳层电导缓慢上升。直径越大的纳米线,核层的作用越明显,但当直径过大的时候,表面态对其没有影响导致负光电导效应不明显,所以制备纳米线时核层和壳层的直径比例有个预定的最优值。在此情况下纳米线电导率随入射光功率的增加下降快。所以在实际制备纳米线时就可以根据电路中器件能承受的最大电流来设置纳米线的直径以及根数,灵活性强,有效的发挥SPAD的性能。

发明内容

[0006] 本发明的目的是提供一种集成纳米线保护电路的日盲紫外单光子雪崩探测器,,使得单光子雪崩光电探测器在盖革模式下工作时经过大功率的光脉冲冲击之后,仍然不受到损伤。
[0007] 实现本发明目的的技术方案是:一种日盲紫外单光子雪崩探测器,包括雪崩光电探测器和多根纳米线;所述雪崩光电探测器为工作在盖革模式下的日盲紫外镓氮雪崩光电探测器;所述纳米线为负光电导效应的氮化镓纳米线;所述多根纳米线设于雪崩光电探测器的光敏面上;所述多根纳米线的正极端并联后连接到电压源的正极;所述多根纳米线的负极端并联后连接到雪崩光电探测器的负电极;所述雪崩光电探测器的正电极连接电压源的负极。
[0008] 所述雪崩光电探测器自下而上依次包括衬底层、n型层、i型吸收层、n型分离层、i型雪崩层和p型层;所述n型层和p型层上分别设有n型欧姆接触电极和p型欧姆接触电极;所述n型欧姆接触电极和p型欧姆接触电极分别为雪崩光电探测器的负电极和正电极;所述衬底层的底面为雪崩光电探测器的光敏面。
[0009] 所述雪崩光电探测器呈圆台形状,包括大圆柱部分和小圆柱部分;所述衬底层和n型层构成大圆柱部分;所述i型吸收层、n型分离层、i型雪崩层和p型层构成小圆柱部分。
[0010] 所述纳米线包括核层、壳层、源极电极和漏极电极;所述核层设于壳层内部;所述源极电极和漏极电极分别设置于壳层两端表面的边缘处;所述源极电极和漏极电极分别为纳米线的负极端和正极端。
[0011] 所述纳米线的根数与电路中的器件能承受的最大电流相匹配。
[0012] 所述电压源采用外置偏压电路。
[0013] 所述雪崩光电探测器的制备方法包括以下步骤:
[0014] 步骤1:在p型AlGaN欧姆接触层上旋涂一层光刻胶,采用配有雪崩光电二极管图形的光刻板对所述光刻胶进行光刻显影后,暴露出需要刻蚀的AlGaN层部分,而其余未显影的光刻胶层作为一次掩膜;
[0015] 步骤2:使用干法刻蚀技术来刻蚀暴露的外延结构,刻蚀至n型AlGaN欧姆接触层处,形成台型结构;
[0016] 步骤3:对干法刻蚀后的光电二极管探测器在纯氮气氛围保护下进行快速热退火处理及湿法处理,以恢复干法刻蚀在所刻蚀的AlGaN处外延结构表面上造成的损伤;
[0017] 步骤4:采用光刻、真空技术将n型欧姆接触电极的金属层组合沉积在n型AlGaN欧姆接触层的上表面的台型边缘处,并通过剥离工艺去除n型欧姆接触电极图形之外的沉积金属层;对芯片进行有机清洗、去离子清洗,采用高纯氮气吹干后,在纯氮气氛围保护下的快速退火进行合金化处理;
[0018] 步骤5:采用光刻、真空蒸镀技术将p型欧姆接触电极沉积在p型AlGaN欧姆接触层的上表面的边缘处;对芯片进行有机清洗、去离子水清洗,采用高纯氮气吹干后,在纯氮气氛围保护下的快速退火进行合金化处理;
[0019] 步骤6:利用有机溶液、去离子水清洗光电二极管探测器的表面,再采用等离子增强化学气相沉积法在光电二极管探测器的表面镀制氮化物钝化薄膜,以保护除所述欧姆接触电极以外的光电二极管探测器表面。
[0020] 所述纳米线的制备方法包括以下步骤:
[0021] 步骤1:通过MOCVD,在雪崩光电探测器的光敏面上外延生长厚度为300nm的AlN薄膜;
[0022] 步骤2:通过PECVD,在上述AlN薄膜上沉积厚度为100nm的SiO2介质层,并采用光刻和湿法腐蚀方法把SiO2介质层制备成开孔直径为3μm圆形的图形化掩膜;
[0023] 步骤3:把上述带有图形化掩膜的外延片放入MOCVD反应室内,选择区域生长出GaN六金字塔微结构,高度约为5μm,顶面直径小于200nm,确保核层和壳层的直径比例约为1∶15;
[0024] 步骤4:把上述带有GaN六角金字塔微结构的外延片置于质量浓度为30%,温度为50℃的NaOH溶液中腐蚀30分钟,最终制备成高度约为5μm,顶面直径小于200nm的GaN纳米线,并采用光刻、真空蒸镀技术分别将源极电极和漏极电极沉积在纳米线壳层两端表面的边缘处。
[0025] 采用了上述技术方案,本发明具有以下的有益效果:(1)本发明利用纳米线的负光电导效应来工作,使得雪崩探测器中的雪崩电流在雪崩击穿后得到及时的淬灭,保护二极管,无需传统的淬灭电路,规避了淬灭电路占用面积大、不便集成、非常耗成本的缺点。
[0026] (2)本发明利用GaN材料制备纳米线,AlGaN材料制备日盲紫外单光子雪崩探测器,有利于工艺上更好的制备及集成,并有利于降低器件封装成本。
[0027] (3)本发明利用纳米线在确定核层和壳层直径比最优值的情况下,直径越小,电导率下降越不明显,可供工艺上根据电路中的器件能承受的最大电流进行匹配优化来选择并联的纳米线的根数,调节负光电导效应的强弱,具有很大的灵活性。
[0028] (4)本发明结构简单,工艺成熟,制作成本低,不需要占用面积大、不便集成、耗成本的的淬灭电路,不需要困难且昂贵的键合工艺,可显著降低器件制作成本。附图说明
[0029] 为了使本发明的内容更容易被清楚地理解,下面根据具体实施例并结合附图,对本发明作进一步详细的说明,其中
[0030] 图1为本发明的结构示意图。
[0031] 图2为本发明的雪崩光电探测器的结构示意图。
[0032] 附图中的标号为:
[0033] 电压源1、雪崩光电探测器2、衬底层21、n型层22、i型吸收层23、n型分离层24、i型雪崩层25、p型层26、n型欧姆接触电极27、p型欧姆接触电极28、多根纳米线3。

具体实施方式

[0034] (实施例1)
[0035] 见图1,本实施例的日盲紫外单光子雪崩探测器,包括电压源1、雪崩光电探测器2和多根纳米线3。
[0036] 雪崩光电探测器2为工作在盖革模式下的日盲紫外铝镓氮雪崩光电探测器。见图2,雪崩光电探测器2自下而上依次包括衬底层21、n型层22、i型吸收层23、n型分离层24、i型雪崩层25和p型层26。n型层22和p型层26上分别设有n型欧姆接触电极27和p型欧姆接触电极28。n型欧姆接触电极27和p型欧姆接触电极28分别为雪崩光电探测器2的负电极和正电极。衬底层21的底面为雪崩光电探测器2的光敏面。
[0037] 雪崩光电探测器2呈圆台形状,包括大圆柱部分和小圆柱部分。衬底层21和n型层22构成大圆柱部分。i型吸收层23、n型分离层24、i型雪崩层25和p型层26构成小圆柱部分。
衬底层21采样宝石衬底。
[0038] 雪崩光电探测器2的制备方法包括以下步骤:
[0039] 步骤1:在p型AlGaN欧姆接触层上旋涂一层光刻胶,采用配有雪崩光电二极管图形的光刻板对所述光刻胶进行光刻显影后,暴露出需要刻蚀的AlGaN层部分,而其余未显影的光刻胶层作为一次掩膜;
[0040] 步骤2:使用干法刻蚀技术来刻蚀暴露的外延结构,刻蚀至n型AlGaN欧姆接触层处,形成台型结构;
[0041] 步骤3:对干法刻蚀后的光电二极管探测器在纯氮气氛围保护下进行快速热退火处理及湿法处理,以恢复干法刻蚀在所刻蚀的AlGaN处外延结构表面上造成的损伤;
[0042] 步骤4:采用光刻、真空蒸镀技术将n型欧姆接触电极的金属层组合沉积在n型AlGaN欧姆接触层的上表面的台型边缘处,并通过剥离工艺去除n型欧姆接触电极图形之外的沉积金属层;对芯片进行有机清洗、去离子水清洗,采用高纯氮气吹干后,在纯氮气氛围保护下的快速退火进行合金化处理;
[0043] 步骤5:采用光刻、真空蒸镀技术将p型欧姆接触电极沉积在p型AlGaN欧姆接触层的上表面的边缘处;对芯片进行有机清洗、去离子水清洗,采用高纯氮气吹干后,在纯氮气氛围保护下的快速退火进行合金化处理;
[0044] 步骤6:利用有机溶液、去离子水清洗光电二极管探测器的表面,再采用等离子增强化学气相沉积法在光电二极管探测器的表面镀制氮化物钝化薄膜,以保护除所述欧姆接触电极以外的光电二极管探测器表面。
[0045] 纳米线3为负光电导效应的氮化镓纳米线。纳米线3包括核层、壳层、源极电极和漏极电极。核层设于壳层内部。源极电极和漏极电极分别设置于壳层两端表面的边缘处。源极电极和漏极电极分别为纳米线3的负极端和正极端。
[0046] 纳米线3的制备方法包括以下步骤:
[0047] 步骤1:通过MOCVD,在雪崩光电探测器2的光敏面上外延生长厚度为300nm的AlN薄膜;
[0048] 步骤2:通过PECVD,在上述AlN薄膜上沉积厚度为100nm的SiO2介质层,并采用光刻和湿法腐蚀方法把SiO2介质层制备成开孔直径为3μm圆形的图形化掩膜;
[0049] 步骤3:把上述带有图形化掩膜的外延片放入MOCVD反应室内,选择区域生长出GaN六角金字塔微结构,高度约为5μm,顶面直径小于200nm,确保核层和壳层的直径比例约为1∶15;
[0050] 步骤4:把上述带有GaN六角金字塔微结构的外延片置于质量浓度为30%,温度为50℃的NaOH溶液中腐蚀30分钟,最终制备成高度约为5μm,顶面直径小于200nm的GaN纳米线,并采用光刻、真空蒸镀技术分别将源极电极和漏极电极沉积在纳米线壳层两端表面的边缘处。
[0051] 上述纳米线3材料用GaN和雪崩光电探测器2材料用AlGaN的原因是GaN纳米线从制备过程看工艺简单,从负光电导效应来看,激发光的能量需要比纳米线的带隙大。
[0052] 雪崩光电探测器2材料为Ⅲ-Ⅴ族半导体材料AlGaN,与GaN材料为一个系列,方便探测器和纳米线的工艺集成。
[0053] 纳米线3是根据负光电导效应来工作的,所谓纳米线的负光电导效应是二维空穴气的浓度和迁移率同时下降的结果,载流子浓度和迁移率其中一个数值上升、另外一个数值下降也有可能造成负光电导。光照时光电流远小于暗电流,光导增益可达-105。
[0054] 纳米线3的核层和壳层贡献了总的电导率,壳层有高于导带的电子缺陷能级,但核层中的电子进入该能级需要越过一定高度的势垒,所以只有当入射光子的能量高于一定值时才可能出现负光电导。
[0055] 多根纳米线3设于雪崩光电探测器2的光敏面上。多根纳米线3的正极端并联后连接到电压源1的正极,多根纳米线3的负极端并联后连接到雪崩光电探测器2的负电极,雪崩光电探测器2的正电极连接电压源1的负极,从而组成一个探测回路。纳米线的根数与电路中的器件能承受的最大电流相匹配。电压源1采用外置偏压电路。
[0056] 本实施例的日盲紫外单光子雪崩探测器的工作原理是:电路连好后打上光照4,使雪崩光电探测器2处于背照射模式,如图1所示。对比正照射的情况,雪崩光电探测器2中金属正电极和p型AlGaN会吸收部分的紫外光,将会降低量子效率和紫外光抑制比,增大器件内部噪音,实用性能不如背照射,因为背照射下发生倍增的载流子主要是碰撞离化系数较大的空穴,且电子注入时器件的过剩噪声大于空穴,所以综合考虑采用了背照射模式的光照。实际上,从背部照射,雪崩光电探测器2的衬底层21为蓝宝石,蓝宝石本身不具有导电性能,因此制备纳米线3时不需要再加隔离层。氮化镓纳米线集成在雪崩光电探测器2的光敏面上,要保证光照射在纳米线3的同时也能照射到光敏面,否则纳米线3就起不到实时保护的作用。在探测回路里,多根并联的纳米线3和雪崩光电探测器2串联,因为该纳米线3有负光电导效应,电导率会随着光功率增大而减小。
[0057] 在光照4为弱光照射时,弱光转换成的电流较小,纳米线3电阻很小,接近于导线,多根纳米线3并联后的两端的电压近似相等,则整个探测回路就近似成雪崩光电探测器2和电压源1串联,雪崩光电探测器2可以正常工作,探测光子。
[0058] 在光照4为强光照射时,强光转换成的电流较大,氮化镓纳米线电导率会减小5个量级,单根纳米线3阻值达到很大,但是多根纳米线3并联,并联后的两端之间的系统阻值就会变小,但还是处于较高阻值,多根纳米线3并联后的两端具有电压差,整个探测回路就近似成雪崩光电探测器2和具有较高阻值的电阻(多根纳米线3并联)以及一个电压源1串联,整个回路阻值变高,这样就可以减小回路的串联电流,保护雪崩光电探测器2不被过大的电流所击穿,使其继续正常工作,增大探测的稳定性和可靠性。
[0059] 以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈