首页 / 专利库 / 电子零件及设备 / 偏压 / 一种流道沟槽和脊表面为异种涂层的金属双极板及其制备方法

一种流道沟槽和脊表面为异种涂层的金属双极板及其制备方法

阅读:679发布:2020-05-08

专利汇可以提供一种流道沟槽和脊表面为异种涂层的金属双极板及其制备方法专利检索,专利查询,专利分析的服务。并且本 发明 涉及一种流道沟槽和脊表面为异种涂层的金属双极板,具体来说是用于 质子交换膜 燃料 电池 的金属双极板,其流道沟槽内表面为亲 水 涂层,脊表面为贵金属涂层,金属双极板流道沟槽内表面涂层能够显著的提高 燃料电池 工作过程中生成水在流道内表面的自发扩散能 力 ,有效避免液滴堵塞流道,而脊部与 碳 纸 接触 部分的贵金属涂层能够起到降低双极板与膜 电极 接触 电阻 和提高双极板耐 腐蚀 性的双重效果。,下面是一种流道沟槽和脊表面为异种涂层的金属双极板及其制备方法专利的具体信息内容。

1.一种流道沟槽和脊表面为异种涂层的金属双极板,其特征在于:所述的金属双极板流道内表面为聚多巴胺亲涂层,脊表面为贵金属涂层。
2.如权利要求1所述的一种流道沟槽和脊表面为异种涂层的金属双极板,其特征在于:
所述的聚多巴胺亲水涂层厚度为5nm-5000nm,所述的贵金属涂层厚度为5nm-5000nm。
3.如权利要求1所述的一种流道沟槽和脊表面为异种涂层的金属双极板,其特征在于:
所述的亲水涂层表面具有小于60°的接触
4.如权利要求1所述的一种流道沟槽和脊表面为异种涂层的金属双极板的制备方法,其特征在于,包括如下步骤:
步骤一、将冲压成型后并清洗干净的不锈双极板装入非平衡磁控溅射离子炉腔中,然后抽真空至炉腔真空度低于3.0×10-3Pa,炉腔温度保持在20℃-200℃,随后以50ml/min-500ml/min的速率向炉腔内通入氩气,使炉腔内真空度保持在0.1Pa-2Pa;离子源电压加载至100V-1000V,占空比为10%-100%,基体偏压加载至-1000V至-100V,占空比为10%-
100%;高能氩离子轰击时间为1min-60min;进而可以去除不锈钢双极板表面的钝化层,处理完成后将不锈钢双极板取出;
步骤二、将处理后的不锈钢双极板放入PH为8-10.5的多巴胺溶液中,在20-30℃条件下处理2-48h,然后将不锈钢双极板取出,并用去离子水淋洗,然后在80-100℃条件下,干燥
0.5-3h,得到表面具有聚多巴胺涂层的不锈钢双极板;
步骤三、利用点胶机将胶点入双极板流道内,流道内硅胶上表面低于脊表面0.05mm-
0.2mm,在室温下,静止放置2-24小时,待流道内硅胶固化
步骤四、将不锈钢双极板放入浓度为1%-10%的氯金酸或是氯铂酸水溶液中,超声混合1-12h,在此过程中双极板脊表面的聚多巴胺将氯金酸或是氯铂酸水溶液中的贵金属离子还原出来并沉积于不锈钢双极板脊表面,然后取出用去离子水淋洗1-10min,即得到脊表面具有贵金属粒子层的双极板;并将不锈钢双极板流道内固化后的硅胶取下,即得到流道沟槽内表面为聚多巴胺涂层,脊表面为贵金属涂层的双极板。
5.如权利要求1所述的一种流道沟槽和脊表面为异种涂层的金属双极板的制备方法,其特征在于:所述硅胶为市售的双组份室温硫化有机硅模具硅胶。

说明书全文

一种流道沟槽和脊表面为异种涂层的金属双极板及其制备

方法

技术领域

背景技术

[0002] 双极板是燃料电池堆中关键组成部分,它的质量、体积和成本在很大程度上决定了电堆的总质量、总体积和总成本。双极板在燃料电池堆中起着导出电流,在每个单体电池中均匀地分配燃料和化剂,分隔每个单体电池和促进单电池的管理等重要作用。
[0003] 为了实现这些功能,许多种材料都曾用来制作双极板。早期使用无孔石墨板作为双极板材料,因为石墨有着很高的电导率,在燃料电池这种比较特殊的条件下也有很好的化学稳定性,但其缺点是易碎,缺乏机械强度,此外流道的加工成本很高也限制了石墨双极板的大规模制作。作为纯石墨的替代使用聚合物与石墨粉的混合物可用来制作复合双极板,使用工业上成型的热塑性塑料的喷射模塑法或热固塑料的BMC法可以大规模的制作。这种石墨基体的复合双极板可以用聚丙烯,硫化聚亚苯,酚树脂和乙烯基酯树脂作掺杂物。聚合物的掺杂使双极板有了一定的柔韧性,增强了双极板的机械强度,而且对双极板的化学稳定性也没有太严重的影响。
[0004] 但是,由于聚合物为绝缘体,它的掺杂在一定程度上加大了双极板的电阻。因此,有必要设计保证机械性能同时又不牺牲电传导性的复合双极板。尽管复合双极板有着重量小,产量高和化学性能稳定的优点,但就整体性能来说,与金属双极板相比,复合双极板较低的机械强度和导电性差两个缺点尤为明显。考虑到燃料电池在交通工具上的应用,冲击和振动可能会导致燃料电池破裂和反应物泄露,在这方面上,金属双极板有着更好的稳定性。一些研究数据表明金属双极板的导电性是复合双极板的一千多倍,此外加工成本较低使金属双极板在燃料电池市场上更有竞争。但是,在PEM燃料电池的酸性且湿润的条件下,金属双极板表面容易被腐蚀,从而降低双极板的性能,这是金属双极板推广面临的巨大障碍。燃料电池工作温度在80℃左右,pH值为2-4,在这种条件下金属表面会分解,而溶解的离子会毒害膜电极降低燃料电池的输出功率,而且双极板表面钝化降低了它的导电性。因此,表面氧化物的生成增大了双极板的接触电阻,依然对燃料电池的转换效率产生不利影响。
[0005] 上述的问题可以通过在金属双极板表面涂的办法克服或适当减小影响。再有,大多数类型的燃料电池需要具有特定的相对湿度。在该燃料电池的操作过程中,由于被潮湿化的反应物气体或由于在阴极处生成的水,因此水分可能进入阳极流动通道和阴极流动通道。随着水滴尺寸的增大,将该流动通道封闭,反应物气体转向其它的流动通道,这是因为所述通道在共用的入口和出口歧管之间以通常平行的方向流动,因为反应物气体可以不流过被水堵塞的通道,因此该反应物气体不能将水推出该通道。随着越来越多的流动通道被水堵塞,该燃料电池产生的电力随之降低。因为燃料电池是串联电连接的,因此如果一个燃料电池停止工作,那么整个燃料电池堆也可能停止工作。通常可以通过定期以更高的流速强制反应物气体通过流道来吹扫流道中积聚的水。但是,这会增加空气压缩机的寄生效率,从而降低了总的系统效率。
[0006] 因此,在双极板表面施涂一种有利于提高双极板耐腐蚀性以及有利于排水的涂层显得尤为重要,例如:一、在公开号为CN 101792899 A的专利公开了一种具有耐用导体和亲水涂层的燃料电池组件,该组件上具有包含元素周期表Ⅳb和Ⅴb族元素的的二元和三元氮化物物和氧氮化物涂层,该涂层包含TiZrN、NbTiN和TaZrN以及包含NbTiOxNy、TiZrOxNy和TaZrOxNy的氧氮化物,其中0.001≤x≤1和0.1≤y≤2;二、在公开号为CN 101375442A的专利中公开了一种具有亲水涂层的燃料电池双极板,该涂层包括纳米颗粒(SiO2、HfO2、ZrO2、Al2O3、SnO2、Ta2O5、Nb2O5、MoO2、IrO2、RuO2),该涂层还包括亲水侧链(基、磺酸根、硫酸根、亚硫酸根、磺酰胺、亚砜、羧酸根、多元醇、聚醚、磷酸根),该涂层还包括导电材料(Au、Ag、Ru、Rh、Pb、Re、Os、Ir、Pt、聚合或石墨);三、在公开号为CN 101499533 A的专利中公开了一种具有可变表面性质的燃料电池双极板,其中一种实施方案包括第一燃料电池元件(双极板),其包括第一面、置于该第一面的至少第一部分(气体流道)上方的第一亲水涂层、和置于该第一面的至少第二部分(极板平台)上方的不亲水的涂层。亲水涂层为金属氧化物(SiO2、HfO2、ZrO2、Al2O3、SnO2、Ta2O5、Nb2O5、MoO2、IrO2、RuO2)涂层,不亲水涂层主要为PTFE。上述技术方案可以降低双极板流道内水的累积,但是均存在制备过程繁琐的缺陷

发明内容

[0007] 本发明的目的是提供一种流道沟槽和脊表面为异种涂层的金属双极板,具体来说是用于质子交换膜燃料电池的金属双极板,其流道沟槽内表面为亲水涂层,脊表面为贵金属涂层,金属双极板流道沟槽内表面涂层能够显著的提高燃料电池工作过程中生成水在流道内表面的自发扩散能力,有效避免液滴堵塞流道,而脊部与碳纸接触部分的贵金属涂层能够起到降低双极板与膜电极接触电阻和提高双极板耐腐蚀性的双重效果。
[0008] 本发明的目的通过如下技术方案实现:
[0009] 一种流道沟槽和脊表面为异种涂层的金属双极板,所述的金属双极板流道内表面为聚多巴胺亲水涂层,脊表面为贵金属涂层。
[0010] 作为本发明更优的技术方案,所述的聚多巴胺亲水涂层厚度为5nm-5000nm,所述的贵金属涂层厚度为5nm-5000nm。
[0011] 作为本发明更优的技术方案,所述的亲水涂层表面具有小于60°的接触
[0012] 作为本发明更优的技术方案,所述的贵金属为铂、金。
[0013] 本发明还提供一种流道沟槽和脊表面为异种涂层的金属双极板的制备方法,包括如下步骤:
[0014] 步骤一、将冲压成型后并清洗干净的不锈双极板装入非平衡磁控溅射离子镀炉腔中,然后抽真空至炉腔真空度低于3.0×10-3Pa,炉腔温度保持在20℃-200℃,随后以50ml/min-500ml/min的速率向炉腔内通入氩气,使炉腔内真空度保持在0.1Pa-2Pa;离子源电压加载至100V-1000V,占空比为10%-100%,基体偏压加载至-1000V至-100V,占空比为
10%-100%;高能氩离子轰击时间为1min-60min;进而可以去除不锈钢双极板表面的钝化层,处理完成后将不锈钢双极板取出;
[0015] 步骤二、将处理后的不锈钢双极板放入PH为8-10.5的多巴胺溶液中,在20-30℃条件下处理2-48h,然后将不锈钢双极板取出,并用去离子水淋洗,然后在80-100℃条件下,干燥0.5-3h,得到表面具有聚多巴胺涂层的不锈钢双极板;
[0016] 步骤三、利用点胶机将胶点入双极板流道内,流道内硅胶上表面低于脊表面0.05mm-0.2mm,在室温下,静止放置2-24小时,待流道内硅胶固化
[0017] 步骤四、将不锈钢双极板放入浓度为1%-10%的氯金酸或是氯铂酸水溶液中,超声混合1-12h,在此过程中双极板脊表面的聚多巴胺将氯金酸或是氯铂酸水溶液中的贵金属离子还原出来并沉积于不锈钢双极板脊表面,然后取出用去离子水淋洗1-10min,即得到脊表面具有贵金属粒子层的双极板;并将不锈钢双极板流道内固化后的硅胶取下,即得到流道沟槽内表面为聚多巴胺涂层,脊表面为贵金属涂层的双极板。
[0018] 作为本发明更优的技术方案,所述硅胶为市售的双组份室温硫化有机硅模具硅胶。
[0019] 本发明有益效果如下:
[0020] 通过在双极板流道内表面涂覆耐腐蚀亲水涂层,可以使反应生成水能够自发的在流道内表面扩散,并以薄膜的形式存在,有效避免液滴堵塞流道,而脊部与碳纸接触部分的贵金属涂层同时起到降低双极板与膜电极的接触电阻与提高双极板耐腐蚀性的双重作用。
[0021] 亲水涂层选用的是聚多巴胺,多巴胺分子中存在儿茶酚基团与胺基,极易被氧化成醌式结构,从而可与金属基体表面结合,可在金属表面构筑亲水生物相容性表面以及耐腐蚀表面。同时,聚多巴胺分子结构中的氮、酚基团对金属离子的吸附作用,可在无还原剂、稳定剂的情况下,原位还原得到聚多巴胺功能化的金属纳米粒子。因此,可以通过涂覆于金属双极板脊表面的聚多巴胺原位还原贵金属,进而在脊表面形成贵金属涂层。附图说明
[0022] 图1为本发明的金属双极板表面涂覆完聚多巴胺涂层的示意图;
[0023] 图2为本发明的脊表面形成贵金属涂层时流道内填充有硅胶的示意图(硅胶的充填防止流道沟槽内表面的聚多巴胺涂层被还原);
[0024] 图3为本发明的流道内表面为聚多巴胺涂层,脊表面为贵金属涂层的双极板示意图;
[0025] 其中1为阳极板,2为阴极板,3为贵金属涂层,4为聚多巴胺涂层,5为冷却水流道,6为硅胶。

具体实施方式

[0026] 下面对本发明的实施例做详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
[0027] 如图1-3所示,本发明提供一种流道沟槽和脊表面为异种涂层的金属双极板,所述的金属双极板流道内表面为聚多巴胺亲水涂层,脊表面为贵金属涂层。所述的聚多巴胺亲水涂层厚度为5nm-5000nm,所述的贵金属涂层厚度为5nm-5000nm。所述的亲水涂层表面具有小于60°的接触角。
[0028] 实施例1
[0029] 本实施例通过以下步骤实现:
[0030] 第一步、将冲压成型后并清洗干净的不锈钢双极板装入非平衡磁控溅射离子镀炉腔中,然后抽真空至炉腔真空度低于3.0×10-3Pa,炉腔温度为室温,随后以70ml/min的速率向炉腔内通入氩气,使炉腔内真空度保持在0.5Pa。离子源电压加载至500V,占空比为50%,基体偏压加载至-600V,占空比为50%。高能氩离子轰击时间为10min。进而可以去除不锈钢双极板表面的钝化层,处理完成后将不锈钢双极板取出。
[0031] 第二步、将处理后的不锈钢双极板放入PH为8.5的多巴胺溶液中,并完全浸没,在20℃条件下处理3h,然后将不锈钢双极板取出,并用去离子水淋洗,然后在80℃条件下,干燥0.5h,得到表面具有聚多巴胺涂层的不锈钢双极板。
[0032] 第三步、利用点胶机将硅胶点入双极板流道内,点胶机可以根据事先输入进电脑的流道轨迹进行自动点胶,点较量可控,有助于大批量重复操作,流道内硅胶上表面低于脊表面0.05mm,在室温下,静止放置12小时,待流道内硅胶固化。流道内点入硅胶可有效防止进行第四步过程中流道沟槽内表面的聚多巴胺层被还原成贵金属。所述硅胶为市售的双组份室温硫化有机硅模具硅胶。
[0033] 第四步、将不锈钢双极板放入浓度为5%的氯金酸水溶液中,超声混合2h,在此过程中双极板脊表面的聚多巴胺将氯金酸水溶液中的金离子还原出来并沉积于不锈钢双极板脊表面,然后取出用去离子水淋洗2min,即得到脊表面具有金纳米粒子层的双极板。并将不锈钢钢双极板流道内固化后的硅胶取下,即得到流道内为聚多巴胺涂层,脊为纳米金涂层的双极板。
[0034] 实施例2
[0035] 本实施例通过以下步骤实现:
[0036] 第一步、将冲压成型后并清洗干净的不锈钢双极板装入非平衡磁控溅射离子镀炉腔中,然后抽真空至炉腔真空度低于3.0×10-3Pa,炉腔温度保持在100℃,随后以100ml/min的速率向炉腔内通入氩气,使炉腔内真空度保持在0.8Pa。离子源电压加载至800V,占空比为60%,基体偏压加载至-600V,占空比为60%。高能氩离子轰击时间为5min。进而可以去除不锈钢双极板表面的钝化层,处理完成后将不锈钢双极板取出。
[0037] 第二步、将处理后的不锈钢双极板放入PH为9的多巴胺溶液中,并完全浸没,在25℃条件下处理12h,然后将不锈钢双极板取出,并用去离子水淋洗,然后在100℃条件下,干燥1h,得到表面具有聚多巴胺涂层的不锈钢双极板。
[0038] 第三步、利用点胶机将硅胶注入双极板流道内,点胶机可以根据事先输入进电脑的流道轨迹进行自动点胶,点较量可控,有助于大批量重复操作,流道内硅胶上表面低于脊表面0.1mm,在室温下,静止放置12小时,待流道内硅胶固化。流道内点入硅胶可有效防止进行第四步过程中流道沟槽内表面的聚多巴胺层被还原成贵金属。所述硅胶为市售的双组份室温硫化有机硅模具硅胶。
[0039] 第四步、将不锈钢双极板放入浓度为7%的氯金酸水溶液中,超声混合4h,在此过程中双极板脊表面的聚多巴胺将氯金酸水溶液中的金离子还原出来并沉积于不锈钢双极板脊表面,然后取出用去离子水淋洗3min,即得到脊表面具有金纳米粒子层的双极板。并将不锈钢钢双极板流道内固化后的硅胶取下,即得到流道内为聚多巴胺涂层,脊为纳米金涂层的双极板。
[0040] 实施例3
[0041] 本实施例通过以下步骤实现:
[0042] 第一步、将冲压成型后并清洗干净的不锈钢双极板装入非平衡磁控溅射离子镀炉腔中,然后抽真空至炉腔真空度低于3.0×10-3Pa,炉腔温度保持在150℃,随后以200ml/min的速率向炉腔内通入氩气,使炉腔内真空度保持在1Pa。离子源电压加载至800V,占空比为50%,基体偏压加载至-800V,占空比为50%。高能氩离子轰击时间为10min。进而可以去除不锈钢双极板表面的钝化层,处理完成后将不锈钢双极板取出。
[0043] 第二步、将处理后的不锈钢双极板放入PH为9.5多巴胺溶液中,并完全浸没,在25℃条件下处理24h,然后将不锈钢双极板取出,并用去离子水淋洗,然后在90℃条件下,干燥1h,得到表面具有聚多巴胺涂层的不锈钢双极板。
[0044] 第三步、利用点胶机将硅胶注入双极板流道内,点胶机可以根据事先输入进电脑的流道轨迹进行自动点胶,点较量可控,有助于大批量重复操作,流道内硅胶上表面低于脊表面0.15mm,在室温下,静止放置12小时,待流道内硅胶固化。流道内点入硅胶可有效防止进行第四步过程中流道沟槽内表面的聚多巴胺层被还原成贵金属。所述硅胶为市售的双组份室温硫化有机硅模具硅胶。
[0045] 第四步、将不锈钢双极板放入浓度为9%的氯铂酸水溶液中,超声混合3h,在此过程中双极板脊表面的聚多巴胺将氯铂酸水溶液中的铂离子还原出来并沉积于不锈钢双极板脊表面,然后取出用去离子水淋洗5min,即得到脊表面具有铂纳米粒子层的双极板。并将不锈钢钢双极板流道内固化后的硅胶取下,即得到流道沟槽内表面内为聚多巴胺涂层,脊表面为纳米铂涂层的双极板。
[0046] 实施例4
[0047] 本实施例通过以下步骤实现:
[0048] 第一步、将冲压成型后并清洗干净的不锈钢双极板装入非平衡磁控溅射离子镀炉腔中,然后抽真空至炉腔真空度低于3.0×10-3Pa,炉腔温度保持在150℃,随后以300ml/min的速率向炉腔内通入氩气,使炉腔内真空度保持在1.5Pa。离子源电压加载至900V,占空比为50%,基体偏压加载至-900V,占空比为50%。高能氩离子轰击时间为5min。进而可以去除不锈钢双极板表面的钝化层,处理完成后将不锈钢双极板取出。
[0049] 第二步、将处理后的不锈钢双极板放入PH为8.5的多巴胺溶液中,并完全浸没,在25℃条件下处理36h,然后将不锈钢双极板取出,并用去离子水淋洗,然后在80~100℃条件下,干燥0.5~3h,得到表面具有聚多巴胺涂层的不锈钢双极板。
[0050] 第三步、利用点胶机将硅胶注入双极板流道内,点胶机可以根据事先输入进电脑的流道轨迹进行自动点胶,点较量可控,有助于大批量重复操作,流道内硅胶上表面低于脊表面0.05mm~0.2mm,在室温下,静止放置2~24小时,待流道内硅胶固化。流道内点入硅胶可有效防止进行第四步过程中流道沟槽内表面的聚多巴胺层被还原成贵金属。所述硅胶为市售的双组份室温硫化有机硅模具硅胶。
[0051] 第四步、将不锈钢双极板放入浓度为1%~10%的氯铂酸水溶液中,超声混合1~12h,在此过程中双极板脊表面的聚多巴胺将氯铂酸水溶液中的铂离子还原出来并沉积于不锈钢双极板脊表面,然后取出用去离子水淋洗1~10min,即得到脊表面具有铂纳米粒子层的双极板。并将不锈钢钢双极板流道内固化后的硅胶取下,即得到流道内为聚多巴胺涂层,脊为纳米铂涂层的双极板。
[0052] 实施例5
[0053] 本实施例通过以下步骤实现:
[0054] 第一步、将冲压成型后并清洗干净的不锈钢双极板装入非平衡磁控溅射离子镀炉腔中,然后抽真空至炉腔真空度低于3.0×10-3Pa,炉腔温度保持在20℃,随后以500ml/min的速率向炉腔内通入氩气,使炉腔内真空度保持在0.1Pa。离子源电压加载至100V,占空比为10%,基体偏压加载至-1000V,占空比为10%。高能氩离子轰击时间为5min。进而可以去除不锈钢双极板表面的钝化层,处理完成后将不锈钢双极板取出。
[0055] 第二步、将处理后的不锈钢双极板放入PH为8的多巴胺溶液中,并完全浸没,在25℃条件下处理2h,然后将不锈钢双极板取出,并用去离子水淋洗,然后在80~100℃条件下,干燥0.5~3h,得到表面具有聚多巴胺涂层的不锈钢双极板。
[0056] 第三步、利用点胶机将硅胶注入双极板流道内,点胶机可以根据事先输入进电脑的流道轨迹进行自动点胶,点较量可控,有助于大批量重复操作,流道内硅胶上表面低于脊表面0.05mm~0.2mm,在室温下,静止放置2~24小时,待流道内硅胶固化。流道内点入硅胶可有效防止进行第四步过程中流道沟槽内表面的聚多巴胺层被还原成贵金属。所述硅胶为市售的双组份室温硫化有机硅模具硅胶。
[0057] 第四步、将不锈钢双极板放入浓度为1%的氯铂酸水溶液中,超声混合2h,在此过程中双极板脊表面的聚多巴胺将氯铂酸水溶液中的铂离子还原出来并沉积于不锈钢双极板脊表面,然后取出用去离子水淋洗1min,即得到脊表面具有铂纳米粒子层的双极板。并将不锈钢钢双极板流道内固化后的硅胶取下,即得到流道内为聚多巴胺涂层,脊为纳米铂涂层的双极板。
[0058] 实施例6
[0059] 本实施例通过以下步骤实现:
[0060] 第一步、将冲压成型后并清洗干净的不锈钢双极板装入非平衡磁控溅射离子镀炉腔中,然后抽真空至炉腔真空度低于3.0×10-3Pa,炉腔温度保持在200℃,随后以50ml/min的速率向炉腔内通入氩气,使炉腔内真空度保持在2Pa。离子源电压加载至1000V,占空比为100%,基体偏压加载至-100V,占空比为100%。高能氩离子轰击时间为60min。进而可以去除不锈钢双极板表面的钝化层,处理完成后将不锈钢双极板取出。
[0061] 第二步、将处理后的不锈钢双极板放入PH为10.5的多巴胺溶液中,并完全浸没,在30℃条件下处理48h,然后将不锈钢双极板取出,并用去离子水淋洗,然后在100℃条件下,干燥3h,得到表面具有聚多巴胺涂层的不锈钢双极板。
[0062] 第三步、利用点胶机将硅胶注入双极板流道内,点胶机可以根据事先输入进电脑的流道轨迹进行自动点胶,点较量可控,有助于大批量重复操作,流道内硅胶上表面低于脊表面0.2mm,在室温下,静止放置24小时,待流道内硅胶固化。流道内点入硅胶可有效防止进行第四步过程中流道沟槽内表面的聚多巴胺层被还原成贵金属。所述硅胶为市售的双组份室温硫化有机硅模具硅胶。
[0063] 第四步、将不锈钢双极板放入浓度为10%的氯铂酸水溶液中,超声混合12h,在此过程中双极板脊表面的聚多巴胺将氯铂酸水溶液中的铂离子还原出来并沉积于不锈钢双极板脊表面,然后取出用去离子水淋洗10min,即得到脊表面具有铂纳米粒子层的双极板。并将不锈钢钢双极板流道内固化后的硅胶取下,即得到流道内为聚多巴胺涂层,脊为纳米铂涂层的双极板。
[0064] 本发明提供的上述实施例中的具有涂层的双极板在典型燃料电池压力条件下,与碳纸接触电阻均小于10mΩ·cm2,聚多巴胺内表面涂层能够显著的提高燃料电池工作过程中生成水在流道内表面的自发扩散能力,有效避免液滴堵塞流道。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈