首页 / 专利库 / 电缆,导体和接线 / 导电胶条 / 一种基于碳基纳米材料快速充电聚合物锂离子电池

一种基于纳米材料快速充电聚合物锂离子电池

阅读:2发布:2021-01-15

专利汇可以提供一种基于纳米材料快速充电聚合物锂离子电池专利检索,专利查询,专利分析的服务。并且本 发明 公开了一种基于 碳 基 纳米材料 快速充电 聚合物 锂离子 电池 ,所述电池正极片由正极活性物质、碳基纳米材料 石墨 烯/碳 纳米管 复合导电剂、导电石墨、PVDF按一定 质量 比混合,以NMP为 溶剂 ,在带有锆珠的砂磨机和 真空 高速 搅拌机 制浆而后涂覆于 铝 箔上制得;负极片由负极活性物质、碳基纳米材料 石墨烯 / 碳纳米管 复合导电剂、 纳米级 导电 炭黑 、CMC、SBR按一定质量比,以去离子 水 为溶剂,制浆后涂覆于 铜 箔集 流体 上制得;将正极片、负极片与隔膜卷绕,封装,注液,高温夹具 化成 ,抽气,分容等制得。本发明电池体积 能量 密度 460Wh/L以上,10min充满电池容量60%以上,具有优异3C充电1C放电快充循环和1C充放电循环性能。,下面是一种基于纳米材料快速充电聚合物锂离子电池专利的具体信息内容。

1.一种基于纳米材料快速充电聚合物锂离子电池,其特征在于,其制备包括如下步骤:
(1)正极片的制备:
正极各组分固态质量百分比为正极活性物质:碳基纳米材料石墨烯/碳纳米管复合导电剂:KS-6(导电石墨):PVDF(聚偏氟乙烯)= 95.2:1.1:1.2:2.5   96.7:0.7:0.8:1.8,具~
体如下:
A、将聚偏氟乙烯与N-甲基吡咯烷按照0.05:0.95加入高速剪切分散机中,真空高速搅拌120 180min,制得粘结剂胶液;
~
B、将石墨烯/碳纳米管复合导电液、微米级导电石墨KS-6加入带有锆珠的砂磨机中进行研磨超细分散1.0 1.5h,转速2600 3000转/min,化锆研磨珠大小为1.1mm,研磨过程中~ ~
开启冷却循环降温,得到含有微米级导电石墨的石墨烯/碳纳米管复合导电液;
C、将上述加入含有微米级导电石墨的石墨烯/碳纳米管复合导电液加入粘结剂胶液中,真空高速搅拌60 90min,得到纳米微米复合导电胶液;
~
D、将正极活性物质总量的60%加入到纳米微米复合导电胶液中,真空高速搅拌60-
80min;
E、将正极活性物质总量的剩余40%、按照总浆料固含量55% 60%的比例计算剩余的N-甲~
基吡咯烷酮溶剂加入到步骤D浆料中,真空高速搅拌120 150min,得到正极浆料;
~
F、将正极浆料涂覆于箔集流体上,经过烘干、辊压、分条后制得正极片;
(2)负极片的制备:
负极各组分固态质量百分比为石墨(负极活性物质):碳基纳米材料石墨烯/碳纳米管复合导电剂:SP(导电炭黑):CMC(羧甲基纤维素钠):SBR(丁苯橡胶)= 94.3:0.5:0.8:1.7:
3.0   95.2: 0.3:0.5:1.5:2.5,具体如下:
~
A、将羧甲基纤维素钠CMC与去离子水按照2.0:98.0加入到高速分散剪切机中,真空高速搅拌60 80min,制得CMC胶液,待用;
~
B、将石墨烯/碳纳米管复合导电液、导电炭黑SP加入带有锆珠的砂磨机中进行研磨超细分散1.0 1.5h,转速2600 3000转/min,氧化锆研磨珠大小为1.1mm,研磨过程中开启冷却~ ~
循环水降温,得到含有导电炭黑的石墨烯/碳纳米管复合导电液;
C、加入步骤A所制得的CMC胶液总量的45%到步骤B的含有导电炭黑的石墨烯/碳纳米管复合导电液中,真空高速搅拌60 90min;
~
D、加入步骤A所制得剩余的CMC胶液总量的55%和按照总浆料固含量43% 48%的比例计~
算剩余的去离子水溶剂到步骤C浆料中,真空高速搅拌120 180min;
~
E、将丁苯橡胶SBR加入到步骤D所制得的浆料中,真空高速搅拌50 70min,制得负极浆~
料;
F、将制得的负极浆料涂覆于箔集流体上,经过烘干、辊压、分条后制得负极片;
(3)电池的制备:
将步骤(1)与步骤(2)所制得的正极片、负极片与隔膜经过卷绕方式制备出卷芯,然后经过封装、注液(注入电解液)、高温夹具化成、抽气、整形、分容工序制得基于碳基纳米材料快速充电聚合物锂离子电池
2.根据权利要求1所述的一种基于碳基纳米材料快速充电聚合物锂离子电池,其特征在于,步骤(1)和(2)中所述真空高速搅拌参数为:真空度-0.09MPa,公转速度为55rpm,自转速度为2800 rpm。
3.根据权利要求1所述的一种基于碳基纳米材料快速充电聚合物锂离子电池,其特征在于,所述碳基纳米材料石墨烯/碳纳米管复合导电剂是以含有N-甲基吡咯烷酮溶剂和分散剂的石墨烯/碳纳米管复合导电液形式存在。
4.根据权利要求1所述的一种基于碳基纳米材料快速充电聚合物锂离子电池,其特征在于,步骤(1)中所述正极活性物质为钴酸锂正极材料
5.根据权利要求1所述的一种基于碳基纳米材料快速充电聚合物锂离子电池,其特征在于,步骤(2)中所述负极活性物质为二次颗粒人造石墨。
6.根据权利要求1所述的一种基于碳基纳米材料快速充电聚合物锂离子电池,其特征在于,步骤(3)中所述电解液的锂盐为16%wt LiPF6,0.3% wt LiBF4, 0.4% wt LiPO2F2,有机溶剂为27% wt EC(碳酸乙烯酯)、53% wt DEC(碳酸二乙酯),添加剂0.5% wt VC(碳酸亚乙烯酯)、0.5% wt VEC(碳酸乙烯亚乙酯)、2.3% wt PS(1,3-丙磺内酯)。
7.根据权利要求1所述的一种基于碳基纳米材料快速充电聚合物锂离子电池,其特征在于,步骤(3)中所述的隔膜为一面涂有PVDF、另一面涂有纳米Al2O3陶瓷的PE隔膜。
8.根据权利要求1所述的一种基于碳基纳米材料快速充电聚合物锂离子电池,其特征在于,步骤(3)中所述的高温压化成参数为:温度70℃,气压为0.35 MPa。

说明书全文

一种基于纳米材料快速充电聚合物锂离子电池

技术领域

[0001] 本发明属于聚合物锂离子电池制造技术领域,具体涉及到一种基于碳基纳米材料快速充电聚合物锂离子电池。

背景技术

[0002] 锂离子电池自上世纪九十年代初实现产业化以来,由于其具有能量密度高、工作电压大、循环寿命长、充电速度快、放电功率高、自放电率小、无记忆效应和绿色环保等突出优势,得到了迅速的发展。二零零零年以后,锂离子电池在手机电池领域逐步占据主导地位,直至基本垄断手机电池领域,同时在笔记本电脑数码相机、电动工具等领域也得到了广泛应用,并逐步向新能源汽车等领域拓展。
[0003] 目前快速充电锂离子电池的研究主要集中在锂离子动电池类,这类电池体积能量密度往往在400Wh/L以下。由于锂离子动力电池往往需要较高的倍率放电性能,因此电池常采用很低的正负极极片面密度、较厚的箔集流体和较厚的隔离膜及铝塑包装膜,而正极材料常采用磷酸锂、镍钴锰酸锂三元材料、镍钴铝酸锂三元材料等,负极采用石墨酸锂等。
[0004] 在便携式电子产品智能手机、平板电脑、移动电源、无人机、电动平衡车等用高能量密度聚合物锂离子电池(体积能量密度大于400Wh/L)上,快速充电相关的研究目前鲜见报道。随着快速充电高能量密度聚合物锂离子电池的发展和应用将越来越多,其相关的研究开发越来越凸显重要,因此,有必要发明一种快速充电高能量密度聚合物锂离子电池。

发明内容

[0005] 本发明的目的在于提供了一种体积能量密度460Wh/L以上基于碳基纳米材料(石墨烯和碳纳米管纳米材料)快速充电聚合物锂离子电池,为了实现上述发明目的,本发明采取了以下技术方案:一种基于碳基纳米材料快速充电聚合物锂离子电池,其制备包括如下步骤:
(1)正极片的制备:
正极各组分固态质量百分比为正极活性物质:碳基纳米材料石墨烯/碳纳米管复合导电剂:KS-6(导电石墨):PVDF(聚偏氟乙烯)= 95.2:1.1:1.2:2.5   96.7:0.7:0.8:1.8,具~
体如下:
A、将聚偏氟乙烯与N-甲基吡咯烷按照0.05:0.95加入高速剪切分散机中,真空高速搅拌120 180min,制得粘结剂胶液;
~
B、将石墨烯/碳纳米管复合导电液、微米级导电石墨KS-6加入带有锆珠的砂磨机中进行研磨超细分散1.0 1.5h,转速2600 3000转/min,化锆研磨珠大小为1.1mm,研磨过程中~ ~
开启冷却循环降温,得到含有微米级导电石墨的石墨烯/碳纳米管复合导电液;
C、将上述加入含有微米级导电石墨的石墨烯/碳纳米管复合导电液加入粘结剂胶液中,真空高速搅拌60 90min,得到纳米微米复合导电胶液;
~
D、将正极活性物质总量的60%加入到纳米微米复合导电胶液中,真空高速搅拌60-
80min;
E、将正极活性物质总量的剩余40%、按照总浆料固含量55% 60%的比例计算剩余的N-甲~
基吡咯烷酮溶剂加入到步骤D浆料中,真空高速搅拌120 150min,得到正极浆料;
~
F、将正极浆料涂覆于铝箔集流体上,经过烘干、辊压、分条后制得正极片;
(2)负极片的制备:
负极各组分固态质量百分比为石墨(负极活性物质):碳基纳米材料石墨烯/碳纳米管复合导电剂:SP(导电炭黑):CMC(羧甲基纤维素钠):SBR(丁苯橡胶)= 94.3:0.5:0.8:1.7:
3.0   95.2: 0.3:0.5:1.5:2.5,具体如下:
~
A、将羧甲基纤维素钠CMC与去离子水按照2.0:98.0加入到高速分散剪切机中,真空高速搅拌60 80min,制得CMC胶液,待用;
~
B、将石墨烯/碳纳米管复合导电液、导电炭黑SP加入带有锆珠的砂磨机中进行研磨超细分散1.0 1.5h,转速2600 3000转/min,氧化锆研磨珠大小为1.1mm,研磨过程中开启冷却~ ~
循环水降温,得到含有导电炭黑的石墨烯/碳纳米管复合导电液;
C、加入步骤A所制得的CMC胶液总量的45%到步骤B的含有导电炭黑的石墨烯/碳纳米管复合导电液中,真空高速搅拌60 90min;
~
D、加入步骤A所制得剩余的CMC胶液总量的55%和按照总浆料固含量43% 48%的比例计~
算剩余的去离子水溶剂到步骤C浆料中,真空高速搅拌120 180min;
~
E、将丁苯橡胶SBR加入到步骤D所制得的浆料中,真空高速搅拌50 70min,制得负极浆~
料;
F、将制得的负极浆料涂覆于铜箔集流体上,经过烘干、辊压、分条后制得负极片;
(3)电池的制备:
将步骤(1)与步骤(2)所制得的正极片、负极片与隔膜经过卷绕方式制备出卷芯,然后经过封装、注液(注入电解液)、高温夹具化成、抽气、整形、分容工序制得基于碳基纳米材料快速充电聚合物锂离子电池。
[0006] 作为优选的,步骤(1)和(2)中所述真空高速搅拌参数为:真空度-0.09MPa,公转速度为55rpm,自转速度为2800 rpm。
[0007] 作为优选的,所述石墨烯/碳纳米管复合导电剂是以含有N-甲基吡咯烷酮溶剂和分散剂的石墨烯/碳纳米管复合导电液形式存在。
[0008] 作为优选的,步骤(1)中所述正极活性物质为钴酸锂正极材料。
[0009] 作为优选的,步骤(2)中所述负极活性物质为二次颗粒人造石墨。
[0010] 作为优选的,步骤(3)中所述电解液的锂盐为16%wt LiPF6,0.3% wt LiBF4, 0.4% wt LiPO2F2,有机溶剂为27% wt EC(碳酸乙烯酯)、53% wt DEC(碳酸二乙酯),添加剂0.5% wt VC(碳酸亚乙烯酯)、0.5% wt VEC(碳酸乙烯亚乙酯)、2.3% wt PS(1,3-丙磺内酯)。
[0011] 作为优选的,步骤(3)中所述的隔膜为一面涂有PVDF、另一面涂有纳米Al2O3陶瓷的PE隔膜。
[0012] 作为优选的,步骤(3)中所述的高温压力化成参数为:温度70℃,气压为0.35 MPa。
[0013] 本发明的有益效果在于:(1)正极采用石墨烯/碳纳米管复合导电液和微米级导电石墨KS-6,负极采用石墨烯/碳纳米管复合导电液和导电炭黑SP在砂磨机中进行研磨超细分散,能快速有效地将碳基纳米材料导电剂和微米级导电石墨或者纳米级导电炭黑混合均匀,缩短配料时间,降低生产成本;
(2)正极采用石墨烯/碳纳米管复合导电剂、微米级导电石墨KS-6混合,负极采用石墨烯/碳纳米管复合导电剂和导电炭黑SP混合得到点线面三维纳米微米复合导电剂,在极片内部形成良好的三维导电网络,使锂离子能够快速自由进入,提高电池材料的导电性能,从而提高电池的快速充电和循环性能。微米级导电石墨KS-6能够增加正极片的柔软性,减少断片现象,减少极片不良率。
附图说明
[0014] 图1为本发明实施例2与比较例制得的聚合物锂离子电池3C充电1C放电300次循环曲线图。
[0015] 图2为本发明实施例2制得的快速充电聚合物锂离子电池的1C充放电600次循环曲线图。

具体实施方式

[0016] 为了使本发明能够清楚、明白,下面通过具体实施方式对本发明作进一步说明:实施例1
本实施例的一种基于碳基纳米材料快速充电聚合物锂离子电池,其制备包括如下步骤:
(1)正极片的制备:
正极各组分固态质量百分比为钴酸锂:石墨烯/碳纳米管复合导电剂:KS-6:PVDF= 
95.2:1.1:1.2:2.5,具体如下:
A、将聚偏氟乙烯与N-甲基吡咯烷酮按照0.05:0.95加入高速剪切分散机中,真空高速搅拌120min,制得粘结剂胶液;
B、将石墨烯/碳纳米管复合导电液、微米级导电石墨KS-6加入带有锆珠的砂磨机中进行研磨超细分散1.0h,转速2600转/min,氧化锆研磨珠大小为1.1mm,研磨过程中开启冷却循环水降温,得到含有微米级导电石墨的石墨烯/碳纳米管复合导电液;
C、将上述加入含有微米级导电石墨的石墨烯/碳纳米管复合导电液加入粘结剂胶液中,真空高速搅拌60min,得到纳米微米复合导电胶液;
D、将钴酸锂总量的60%加入到纳米微米复合导电胶液中,真空高速搅拌60min;
E、将钴酸锂总量的剩余40%、按照总浆料固含量55%的比例计算剩余的N-甲基吡咯烷酮溶剂加入到步骤D浆料中,真空高速搅拌120min,得到正极浆料;
F、将正极浆料涂覆于铝箔集流体上,经过烘干、辊压、分条后制得正极片;
(2)负极片的制备:
负极各组分固态质量百分比为石墨:石墨烯/碳纳米管复合导电剂:SP:CMC:SBR = 
94.3:0.5:0.8:1.7:3.0,具体如下:
A、将羧甲基纤维素钠CMC与去离子水按照2.0:98.0加入到高速分散剪切机中,真空高速搅拌60min,制得CMC胶液,待用;
B、将石墨烯/碳纳米管复合导电液、导电炭黑SP加入带有锆珠的砂磨机中进行研磨超细分散1.0h,转速2600转/min,氧化锆研磨珠大小为1.1mm,研磨过程中开启冷却循环水降温,得到含有导电炭黑的石墨烯/碳纳米管复合导电液;
C、加入步骤A所制得的CMC胶液总量的45%到步骤B的含有导电炭黑的石墨烯/碳纳米管复合导电液中,真空高速搅拌60min;
D、加入步骤A所制得剩余的CMC胶液总量的55%和按照总浆料固含量43%的比例计算剩余的去离子水溶剂到步骤C浆料中,真空高速搅拌120min;
E、将丁苯橡胶SBR加入到步骤D所制得的浆料中,真空高速搅拌50min,制得负极浆料;
F、将制得的负极浆料涂覆于铜箔集流体上,经过烘干、辊压、分条后制得负极片;
(3)电池的制备:
将步骤(1)与步骤(2)所制得的正极片、负极片与隔膜经过卷绕方式制备出卷芯,然后经过封装、注液(注入电解液)、高温夹具化成、抽气、整形、分容工序制得基于碳基纳米材料快速充电聚合物锂离子电池。
[0017] 步骤(1)和(2)中所述真空高速搅拌参数为:真空度-0.09MPa,公转速度为55rpm,自转速度为2800 rpm。
[0018] 所述石墨烯/碳纳米管复合导电剂是以含有N-甲基吡咯烷酮溶剂和分散剂的石墨烯/碳纳米管复合导电液形式存在。
[0019] 步骤(2)中所述石墨为二次颗粒人造石墨。
[0020] 步骤(3)中所述电解液的锂盐为16%wt LiPF6,0.3% wt LiBF4, 0.4% wt LiPO2F2,有机溶剂为27% wt EC(碳酸乙烯酯)、53% wt DEC(碳酸二乙酯),添加剂0.5% wt VC(碳酸亚乙烯酯)、0.5% wt VEC(碳酸乙烯亚乙酯)、2.3% wt PS(1,3-丙磺内酯)。
[0021] 步骤(3)中所述的隔膜为一面涂有PVDF、另一面涂有纳米Al2O3陶瓷的PE隔膜。
[0022] 步骤(3)中所述的高温压力化成参数为:温度70℃,气压为0.35 MPa。
[0023] 实施例2本实施例的一种基于碳基纳米材料快速充电聚合物锂离子电池,其制备包括如下步骤:
(1)正极片的制备:
正极各组分固态质量百分比为钴酸锂:石墨烯/碳纳米管复合导电剂:KS-6:PVDF= 
96.0:0.9:1.0:2.1,具体如下:
A、将聚偏氟乙烯与N-甲基吡咯烷酮按照0.05:0.95加入高速剪切分散机中,真空高速搅拌150min,制得粘结剂胶液;
B、将石墨烯/碳纳米管复合导电液、微米级导电石墨KS-6加入带有锆珠的砂磨机中进行研磨超细分散1.2h,转速2800转/min,氧化锆研磨珠大小为1.1mm,研磨过程中开启冷却循环水降温,得到含有微米级导电石墨的石墨烯/碳纳米管复合导电液;
C、将上述加入含有微米级导电石墨的石墨烯/碳纳米管复合导电液加入粘结剂胶液中,真空高速搅拌75min,得到纳米微米复合导电胶液;
D、将钴酸锂总量的60%加入到纳米微米复合导电胶液中,真空高速搅拌70min;
E、将钴酸锂总量的剩余40%、按照总浆料固含量58%的比例计算剩余的N-甲基吡咯烷酮溶剂加入到步骤D浆料中,真空高速搅拌135min,得到正极浆料;
F、将正极浆料涂覆于铝箔集流体上,经过烘干、辊压、分条后制得正极片;
(2)负极片的制备:
负极各组分固态质量百分比为石墨:石墨烯/碳纳米管复合导电剂:SP:CMC:SBR = 
94.7:0.4:0.6:1.6:2.7,具体如下:
A、将羧甲基纤维素钠CMC与去离子水按照2.0:98.0加入到高速分散剪切机中,真空高速搅拌70min,制得CMC胶液,待用;
B、将石墨烯/碳纳米管复合导电液、导电炭黑SP加入带有锆珠的砂磨机中进行研磨超细分散1.2h,转速2800转/min,氧化锆研磨珠大小为1.1mm,研磨过程中开启冷却循环水降温,得到含有导电炭黑的石墨烯/碳纳米管复合导电液;
C、加入步骤A所制得的CMC胶液总量的45%到步骤B的含有导电炭黑的石墨烯/碳纳米管复合导电液中,真空高速搅拌75min;
D、加入步骤A所制得剩余的CMC胶液总量的55%和按照总浆料固含量45%的比例计算剩余的去离子水溶剂到步骤C浆料中,真空高速搅拌150min;
E、将丁苯橡胶SBR加入到步骤D所制得的浆料中,真空高速搅拌60min,制得负极浆料;
F、将制得的负极浆料涂覆于铜箔集流体上,经过烘干、辊压、分条后制得负极片;
(3)电池的制备:
将步骤(1)与步骤(2)所制得的正极片、负极片与隔膜经过卷绕方式制备出卷芯,然后经过封装、注液(注入电解液)、高温夹具化成、抽气、整形、分容工序制得基于碳基纳米材料快速充电聚合物锂离子电池。
[0024] 步骤(1)和(2)中所述真空高速搅拌参数为:真空度-0.09MPa,公转速度为55rpm,自转速度为2800 rpm。
[0025] 所述石墨烯/碳纳米管复合导电剂是以含有N-甲基吡咯烷酮溶剂和分散剂的石墨烯/碳纳米管复合导电液形式存在。
[0026] 步骤(2)中所述石墨为二次颗粒人造石墨。
[0027] 步骤(3)中所述电解液的锂盐为16%wt LiPF6,0.3% wt LiBF4, 0.4% wt LiPO2F2,有机溶剂为27% wt EC(碳酸乙烯酯)、53% wt DEC(碳酸二乙酯),添加剂0.5% wt VC(碳酸亚乙烯酯)、0.5% wt VEC(碳酸乙烯亚乙酯)、2.3% wt PS(1,3-丙磺内酯)。
[0028] 步骤(3)中所述的隔膜为一面涂有PVDF、另一面涂有纳米Al2O3陶瓷的PE隔膜。
[0029] 步骤(3)中所述的高温压力化成参数为:温度70℃,气压为0.35 MPa。
[0030] 实施例3本实施例的一种基于碳基纳米材料快速充电聚合物锂离子电池,其制备包括如下步骤:
(1)正极片的制备:
正极各组分固态质量百分比为钴酸锂:石墨烯/碳纳米管复合导电剂:KS-6:PVDF= 
96.7:0.7:0.8:1.8,具体如下:
A、将聚偏氟乙烯与N-甲基吡咯烷酮按照0.05:0.95加入高速剪切分散机中,真空高速搅拌180min,制得粘结剂胶液;
B、将石墨烯/碳纳米管复合导电液、微米级导电石墨KS-6加入带有锆珠的砂磨机中进行研磨超细分散1.5h,转速3000转/min,氧化锆研磨珠大小为1.1mm,研磨过程中开启冷却循环水降温,得到含有微米级导电石墨的石墨烯/碳纳米管复合导电液;
C、将上述加入含有微米级导电石墨的石墨烯/碳纳米管复合导电液加入粘结剂胶液中,真空高速搅拌90min,得到纳米微米复合导电胶液;
D、将钴酸锂总量的60%加入到纳米微米复合导电胶液中,真空高速搅拌80min;
E、将钴酸锂总量的剩余40%、按照总浆料固含量60%的比例计算剩余的N-甲基吡咯烷酮溶剂加入到步骤D浆料中,真空高速搅拌150min,得到正极浆料;
F、将正极浆料涂覆于铝箔集流体上,经过烘干、辊压、分条后制得正极片;
(2)负极片的制备:
负极各组分固态质量百分比为石墨:石墨烯/碳纳米管复合导电剂:SP:CMC:SBR = 
95.2: 0.3:0.5:1.5:2.5,具体如下:
A、将羧甲基纤维素钠CMC与去离子水按照2.0:98.0加入到高速分散剪切机中,真空高速搅拌80min,制得CMC胶液,待用;
B、将石墨烯/碳纳米管复合导电液、导电炭黑SP加入带有锆珠的砂磨机中进行研磨超细分散1.5h,转速3000转/min,氧化锆研磨珠大小为1.1mm,研磨过程中开启冷却循环水降温,得到含有导电炭黑的石墨烯/碳纳米管复合导电液;
C、加入步骤A所制得的CMC胶液总量的45%到步骤B的含有导电炭黑的石墨烯/碳纳米管复合导电液中,真空高速搅拌90min;
D、加入步骤A所制得剩余的CMC胶液总量的55%和按照总浆料固含量48%的比例计算剩余的去离子水溶剂到步骤C浆料中,真空高速搅拌180min;
E、将丁苯橡胶SBR加入到步骤D所制得的浆料中,真空高速搅拌70min,制得负极浆料;
F、将制得的负极浆料涂覆于铜箔集流体上,经过烘干、辊压、分条后制得负极片;
(3)电池的制备:
将步骤(1)与步骤(2)所制得的正极片、负极片与隔膜经过卷绕方式制备出卷芯,然后经过封装、注液(注入电解液)、高温夹具化成、抽气、整形、分容工序制得基于碳基纳米材料快速充电聚合物锂离子电池。
[0031] 步骤(1)和(2)中所述真空高速搅拌参数为:真空度-0.09MPa,公转速度为55rpm,自转速度为2800 rpm。
[0032] 所述石墨烯/碳纳米管复合导电剂是以含有N-甲基吡咯烷酮溶剂和分散剂的石墨烯/碳纳米管复合导电液形式存在。
[0033] 步骤(2)中所述石墨为二次颗粒人造石墨。
[0034] 步骤(3)中所述电解液的锂盐为16%wt LiPF6,0.3% wt LiBF4, 0.4% wt LiPO2F2,有机溶剂为27% wt EC(碳酸乙烯酯)、53% wt DEC(碳酸二乙酯),添加剂0.5% wt VC(碳酸亚乙烯酯)、0.5% wt VEC(碳酸乙烯亚乙酯)、2.3% wt PS(1,3-丙磺内酯)。
[0035] 步骤(3)中所述的隔膜为一面涂有PVDF、另一面涂有纳米Al2O3陶瓷的PE隔膜。
[0036] 步骤(3)中所述的高温压力化成参数为:温度70℃,气压为0.35 MPa。
[0037] 比较例本比较例的聚合物锂离子电池由以下方式制得:
(1)正极片的制备:
正极各组分质量百分比为96.0(钴酸锂):2.0(SP):2.0(聚偏氟乙烯)。具体如下:
A、与N-甲基吡咯烷酮按照0.05:0.95加入普通分散机中,真空度为-0.08MPa,公转
35rmp,自转1500rmp,搅拌210min,制得粘结剂胶液;
B、将SP加入胶液中,真空度为-0.08MPa,公转35rmp,自转1500rmp,搅拌120min,得到导电剂胶液;
C、将钴酸锂总量的50%加入到导电剂胶液,真空度为-0.08MPa,公转35rmp,自转
1500rmp,搅拌60min;
D、将剩余钴酸锂总量的50%,按照总干粉固含为62%的量加入N-甲基吡咯烷酮溶剂,真空度为-0.08MPa,公转35rmp,自转1500rmp ,搅拌210min,得到正极浆料;
E、将正极浆料涂覆于铝箔集流体上,经过烘干、辊压、分条后制得正极片;
(2)负极片的制备:
负极各组分质量百分比为95.0(石墨):1.0(SP):1.5(CMC):2.5(SBR)具体如下:
A、将CMC:去离子水=1.5:98.5加入至常规搅拌机,自转1200rmp,搅拌120min,制得胶液;
B、加入负极总量的50%到CMC胶液中,公转30rmp,自转1500rmp,搅拌60min;
C、加入负极总量的剩余50%到步骤B中,按照总干粉固含45%的量加入去离子水溶,真空-0.08MPa,公转30rmp,自转1500rmp,搅拌300min;
D、加入SBR到步骤C中,真空-0.08MPa,公转30rmp,自转1000rmp,搅拌60min,制得负极浆料;
E、将制得的负极浆料涂覆于铜箔集流体上,经过烘干、辊压、分条后制得负极片;
(3)电池制备:
将步骤(1)与步骤(2)所制得的正极片、负极片与隔膜经过卷绕方式制备出卷芯,然后经过封装、注液(注入电解液)、化成、抽气、整形、分容工序制得基于聚合物锂离子电池。
[0038] 步骤(2)中所述石墨为二次颗粒人造石墨。
[0039] 步骤(3)中所述电解液为1.0mol/L LiPF6+ EC/DEC/EMC(V/V/V=30/30/40) +1.0%VC +2.5%PS。
[0040] 步骤(3)中所述的隔膜为PE隔膜。
[0041] 将上述各实施例与比较例均按照型号为3766125标称容量4000mAh的工艺要求制成聚合物锂离子电池。
[0042] 本发明实施例与比较例制作的聚合物锂离子电池性能对比如表1所示。
[0043] 表1:本发明实施例与比较例制作的聚合物锂离子电池性能比较从图1、图2和表1综合可以看出,本发明三个实施例制得的基于碳基纳米材料快速充电聚合物锂离子电池相对于比较例的电池容量和体积能量密度相当,体积能量密度均≥
460Wh/L,但本发明三个实施例的电池均具有优异的快充性能-10min充满电池容量的60%以上、3C充电1C放电快充循环性能-3C充电1C放电循环300次容量保持率在80%以上和1C充放电循环性能-1C充放电循环600次容量保持率在80%以上。
[0044] 以上内容仅仅是对本发明的构思所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离发明的构思或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈