首页 / 专利库 / 纳米技术 / 纳米材料 / 一种可逆自修复的热塑性聚合物纳米纤维膜或气凝胶材料及其制备方法

一种可逆自修复的热塑性聚合物纳米纤维膜或气凝胶材料及其制备方法

阅读:616发布:2024-02-16

专利汇可以提供一种可逆自修复的热塑性聚合物纳米纤维膜或气凝胶材料及其制备方法专利检索,专利查询,专利分析的服务。并且本 发明 公开了一种可逆自修复的热塑性 聚合物 纳米 纤维 膜或气凝胶材料及其制备方法,是将热塑性聚合物纳米纤维与自主合成的2-(3-(6-甲基- 氧 -1,4-二氢嘧啶-2-基)脲基)六亚甲基异氰酸酯化学改性剂共混分散在 溶剂 中得悬浮液,再将悬浮液涂覆于基体上,然后常温干燥或 冷冻干燥 后将纳米纤维材料与基体分离或不分离得到可逆自修复的热塑性聚合物纳米纤维膜或气凝胶材料。本发明的制备过程具有工艺简单、易操作的特点,且热塑性聚合物纳米纤维膜或气凝胶材料在三维空间上均匀分布、结构稳定,在外 力 作用下破裂后可实现裂纹的自行修复,因此在过滤分离、 生物 医药等方面具有广阔的应用前景。,下面是一种可逆自修复的热塑性聚合物纳米纤维膜或气凝胶材料及其制备方法专利的具体信息内容。

1.一种可逆自修复的热塑性聚合物纳米纤维膜或气凝胶材料,其特征在于,由质量百分数为90%~99.5%的热塑性聚合物纳米纤维与0.5%~10%的化学改性剂在三维空间中通过多重氢键作用相互缠结制备而成。
2.根据权利要求1所述的一种可逆自修复的热塑性聚合物纳米纤维膜或气凝胶材料,其特征在于,所述化学改性剂为2-(3-(6-甲基--1,4-二氢嘧啶-2-基)脲基)六亚甲基异氰酸酯。
3.根据权利要求1所述的一种可逆自修复的热塑性聚合物纳米纤维膜或气凝胶材料,其特征在于,所述热塑性聚合物纳米纤维由质量分数为5~40%的热塑性聚合物、60~95%的醋酸丁酸纤维素经熔融共混相分离法制备而成。
4.根据权利要求3所述的一种可逆自修复的热塑性聚合物纳米纤维膜或气凝胶材料,其特征在于,所述热塑性聚合物为聚酰胺、乙烯-乙烯醇共聚物中的一种。
5.一种可逆自修复的热塑性聚合物纳米纤维膜或气凝胶材料的制备方法,其特征在于,包括如下步骤:
S1、制备化学改性剂:将胺基嘧啶和六甲基二异氰酸酯溶于甲苯,以二月桂酸二丁基为催化剂,在惰性气体保护下反应,得到2-(3-(6-甲基-氧-1,4-二氢嘧啶-2-基)脲基)六亚甲基异氰酸酯;
S2、通过熔融共混相分离法制备热塑性聚合物纳米纤维;
S3、制备悬浮液:将上述步骤制备得到的所述热塑性聚合物纳米纤维及化学改性剂按照所述质量百分比分散于醇混合溶剂中形成均匀的悬浮液;
S4、制备膜材料或气凝胶材料:取步骤S3制备得到的悬浮液涂覆于基体表面并在20~
50℃下保温1~120min,继续干燥制备得到可逆自修复的膜材料或气凝胶材料。
6.根据权利要求5所述的一种可逆自修复的热塑性聚合物纳米纤维膜或气凝胶材料的制备方法,其特征在于,步骤S1中,所述反应条件为60-100℃反应8-20h。
7.根据权利要求5所述的一种可逆自修复的热塑性聚合物纳米纤维膜或气凝胶材料的制备方法,其特征在于,步骤S3中,所述热塑性聚合物纳米纤维与化学改性剂的总质量与所述醇水混合溶剂的质量比为(0.005~0.1):1。
8.根据权利要求5所述的一种可逆自修复的热塑性聚合物纳米纤维膜或气凝胶材料的制备方法,其特征在于,步骤S3中,所述醇水混合溶剂为水与醇类有机溶剂按照体积比(1.2~10):1配制而成。
9.根据权利要求5所述的一种可逆自修复的热塑性聚合物纳米纤维膜或气凝胶材料的制备方法,其特征在于,步骤S4中,所述干燥为常温干燥或冷冻干燥;所述常温干燥温度
10~40℃,干燥时间为1~60min;所述冷冻干燥温度为﹣80~﹣10℃,冷冻时间为4~6h,干燥时间为24~72h。
10.根据权利要求1所述的一种可逆自修复的热塑性聚合物纳米纤维膜或气凝胶材料在气体/液体污染物吸附、传感、催化或过滤方面中的应用。

说明书全文

一种可逆自修复的热塑性聚合物纳米纤维膜或气凝胶材料及

其制备方法

技术领域

[0001] 本发明涉及纳米纤维功能材料,属于纺织材料技术领域,具体地涉及一种可逆自修复的热塑性聚合物纳米纤维膜或气凝胶材料及其制备方法

背景技术

[0002] 纳米纤维具有比表面积大、长径比大且易于成膜的特点,同时将纳米纤维制备成凝胶材料,可以赋予纳米纤维材料以三维贯穿网络结构,进一步提高纳米纤维材料的比表面积及性能。因此被广泛应用在人体防护、生物医药、能源信息及工业净化等领域,尤其是作为空气净化和处理的膜过滤材料。然而,纳米纤维聚合物材料的模量和硬度相比无机材料都要低很多,因而在使用过程中很容易遭受外界的损伤。受损的聚合物材料会丧失原有的功能导致无法继续使用并会对我们的生产生活造成严重的影响。研究表明,赋予纳米纤维聚合物材料自修复功能是延长材料使用寿命、提高材料安全性和稳定性最有效的方法之一。
[0003] 目前所采用的自修复方法主要包括外援型自修复(纳米粒子自修复、微胶囊自修复、空心纤维自身修复、微脉管自修复等)和本征型自修复(可逆共价键自修复(化学型)、可逆非共价键自修复(物理型))。其中,外援型自修复方法简单、修复效率也较高,但存在的问题是修复次数少,一旦固化剂用完,材料便不再具有自修复能,因此无法实现聚合物材料的“可逆”自修复。可逆共价键自修复是通过在体系中引入酰腙键、双硫键、N-O键、Diea1Alder可逆反应等实现的,这类自修复方法的热力学平衡过程相对较慢,且需外部能量和刺激如机械力、光、热、pH值变化等实现共价键的断开和重新形成。因此,这种修复材料的修复条件较为苛刻,从而大大限制了它的应用领域。可逆非共价键自修复是借助于体系中的氢键作用、疏水作用、静电作用、离子作用、大分子扩散作用、金属配体作用等机理实现的。这些作用力的强度相对较弱而且通常处在动态平衡状态下,因此它们稳定性易受热以及溶剂的影响。
[0004] 虽然借助于材料内部存在的可逆作用力,具有自修复性质的聚合物材料已经被广泛的研制出来。但是,制备具有自修复性能的功能型聚合物膜材料仍然存在以下问题:(1)功能型聚合物膜材料的制备方法繁琐复杂、成本较高、且耗时周期较长;(2)材料自身结构不稳定、强度较低、且自修复能力不足;(3)聚合物功能膜材料均需要在特定环境下应用。因此,仍亟待提供一种可逆自修复的热塑性聚合物纳米纤维膜或气凝胶材料及其制备方法使得处于特殊工作环境中的自修复功能膜材料可以在自身工作条件下原位修复损伤,同时保证自修复功能材料在相应的工作环境下具有良好的稳定性。

发明内容

[0005] 本发明的目的在于针对现有技术中存在的不足,提供一种可逆自修复的热塑性聚合物纳米纤维膜或气凝胶材料及其制备方法。是通过自主合成2-(3-(6-甲基--1,4-二氢嘧啶-2-基)脲基)六亚甲基异氰酸酯化学改性剂,并与通过共混熔融纺丝技术制备而成的热塑性聚合物纳米纤维共混分散在溶剂中,然后通过常温干燥或冷冻干燥后制得可逆自修复的热塑性聚合物纳米纤维膜或气凝胶材料。本发明纳米纤维膜材料和气凝胶材料中纳米纤维在三维空间上均匀分布、结构稳定,在外力作用下破裂后可实现裂纹的自行修复且修复后仍具备较高的强度。
[0006] 为实现上述目的,本发明所采用的技术方案是:
[0007] 一种可逆自修复的热塑性聚合物纳米纤维膜或气凝胶材料,由质量百分数为90%~99.5%的热塑性聚合物纳米纤维与0.5%~10%的化学改性剂在三维空间中通过氢键或多重氢键作用力相互缠结制备而成。
[0008] 优选的,所述化学改性剂为2-(3-(6-甲基-氧-1,4-二氢嘧啶-2-基)脲基)六亚甲基异氰酸酯,其化学结构式如下:
[0009]
[0010] 其中,所述化学改性剂2-(3-(6-甲基-氧-1,4-二氢嘧啶-2-基)脲基)六亚甲基异氰酸酯由胺基嘧啶与六甲基二异氰酸酯制备而成,其反应流程图如图1所示:
[0011]
[0012] 优选的,所述热塑性聚合物纳米纤维为热塑性聚合物经熔融共混相分离法制备得到纤维直径为50~500nm的纳米纤维。
[0013] 进一步优选的,所述热塑性聚合物纳米纤维由质量分数为5~40%的热塑性聚合物、60~95%的醋酸丁酸纤维素经熔融共混相分离法制备而成。
[0014] 优选的,所述热塑性聚合物为聚酰胺、乙烯-乙烯醇共聚物中的一种。
[0015] 本发明还提供上述热塑性聚合物纳米纤维的制备方法,包括如下步骤:
[0016] a)将所述质量百分比的热塑性聚合物材料与醋酸丁酸纤维素混合均匀,在加工温度为140~240℃的双螺杆挤出机中进行挤出、造粒,制备得热塑性聚合物/醋酸丁酸纤维素复合材料
[0017] b)将经步骤a)制得的热塑性聚合物/醋酸丁酸纤维素复合材料经熔融纺丝机进行纺丝、牵伸,得到复合纤维,其中纺丝机加工温度为130~270℃,牵伸速率为8~30m/min。
[0018] c)将经步骤b)制得的复合纤维在60℃的丙酮中回流72h萃取醋酸丁酸纤维素,将萃取醋酸丁酸纤维素后的复合纤维进行常温干燥,制备得到直径为50~500nm的热塑性聚纳米纤维。
[0019] 本发明还提供所述的一种可逆自修复的热塑性聚合物纳米纤维膜或气凝胶材料的制备方法,包括如下步骤:
[0020] S1、制备化学改性剂:将胺基嘧啶酮和六甲基二异氰酸酯溶于甲苯,以二月桂酸二丁基为催化剂,在惰性气体保护下反应,得到2-(3-(6-甲基-氧-1,4-二氢嘧啶-2-基)脲基)六亚甲基异氰酸酯;
[0021] S2、通过熔融共混相分离法制备热塑性聚合物纳米纤维;
[0022] S3、制备悬浮液:将上述步骤制备得到的所述热塑性聚合物纳米纤维及化学改性剂按照所述质量百分比分散于醇水混合溶剂中形成均匀的悬浮液;
[0023] S4、制备膜材料或气凝胶材料:取步骤S3制备得到的悬浮液涂覆于基体表面并在20~50℃下保温1~120min,继续干燥制备得到可逆自修复的膜材料或气凝胶材料。
[0024] 优选的,步骤S1中,所述反应条件为60-100℃反应8-20h。
[0025] 进一步优选的,步骤S1中,还包括对反应产物进行后处理过程,具体步骤为:将反应产物用乙醇洗涤1~3次,然后于60℃下真空干燥24h后制备得到化学改性剂2-(3-(6-甲基-氧-1,4-二氢嘧啶-2-基)脲基)六亚甲基异氰酸酯。
[0026] 优选的,步骤S3中,所述热塑性聚合物纳米纤维与化学改性剂的总质量与所述醇水混合溶剂的质量比为(0.005~0.1):1。
[0027] 优选的,步骤S3中,所述醇水混合溶剂为水与醇类有机溶剂按照体积比(1.2~10):1配制而成。
[0028] 进一步的,所述醇类有机溶剂为甲醇、乙醇、异丙醇或叔丁醇中的一种或多种。
[0029] 优选的,步骤S4中,所述干燥为常温干燥或冷冻干燥;所述常温干燥温度为10~40℃,干燥时间为1~60min;所述冷冻干燥温度为﹣80~﹣10℃,冷冻时间为4~6h,干燥时间为24~72h。
[0030] 其中,通过常温干燥可制备得到可逆自修复的热塑性聚合物纳米纤维膜材料;通过冷冻干燥可制备得到可逆自修复的热塑性聚合物气凝胶材料。
[0031] 优选的,步骤S4中,所述基体为编织布、非织造布、光滑的有机高分子薄膜材料中的一种。
[0032] 本发明还提供所述的一种可逆自修复的热塑性聚合物纳米纤维膜或气凝胶材料在气体/液体污染物吸附、传感、催化或过滤方面中的应用。
[0033] 本发明中,所述可逆自修复的热塑性聚合物纳米纤维膜或凝胶材料的可逆自修复原理如图2~4所示:
[0034] 化学改性剂2-(3-(6-甲基-氧-1,4-二氢嘧啶-2-基)脲基)六亚甲基异氰酸酯的异氰酸基端与乙烯-乙烯醇共聚物的羟基或者与聚酰胺的酰胺基反应形成共价键,同时2-(3-(6-甲基-氧-1,4-二氢嘧啶-2-基)脲基)六亚甲基异氰酸酯化学改性剂自身会通过亚基官能团形成分子间多重氢键。当热塑性聚合物纳米纤维膜或凝胶材料在外力作用下整体或局部破损,其破损部位两侧的多亚氨基官能团能够在潮湿或湿态下进行充分接触,重新形成分子间氢键,实现自修复。
[0035] 与现有技术相比,本发明的有益效果在于:
[0036] (1)本发明通过将自主合成的化学改性剂2-(3-(6-甲基-氧-1,4-二氢嘧啶-2-基)脲基)六亚甲基异氰酸酯与热塑性聚合物纳米纤维共混制备成热塑性聚合物纳米纤维膜材料或气凝胶材料,本发明制得的热塑性聚合物纳米纤维膜材料或气凝胶材料在空间上分布均匀、结构稳定,有利于更好的发挥纳米纤维材料比表面积大及活性位点多的优点。
[0037] (2)本发明热塑性聚合物纳米纤维膜材料或气凝胶材料在制备过程中加入了2-(3-(6-甲基-氧-1,4-二氢嘧啶-2-基)脲基)六亚甲基异氰酸酯化学改性剂,该改性剂的异氰酸基端可以与乙烯-乙烯醇共聚物的羟基反应形成共价键,也可以与聚酰胺的酰胺基反应形成共价键,同时所述改性剂自身会通过亚氨基官能团形成分子间多重氢键,从而提高了纳米纤维膜材料或气凝胶材料的强度,同时也具备较强的可逆自修复能力。
[0038] (3)本发明将2-(3-(6-甲基-氧-1,4-二氢嘧啶-2-基)脲基)六亚甲基异氰酸酯与聚合物纳米纤维复合制备成聚合物纳米纤维膜材料或三维气凝胶材料,不仅增强了纳米纤维膜材料和气凝胶材料的机械强度,还使其在湿态或潮湿环境下具有重复可逆的自修复功能,从而使纳米纤维膜材料或气凝胶材料在气体/液体污染物的吸附、传感、催化或过滤方面具备较好的应用和较长的使用寿命。
[0039] (4)本发明热塑性聚合物纳米纤维膜材料或气凝胶材料的制备过程中采用有机醇与水的混合溶剂,且反应在中低温下进行,合成方法简单、能耗低、且绿色环保,易于推广。附图说明
[0040] 图1为化学改性剂2-(3-(6-甲基-氧-1,4-二氢嘧啶-2-基)脲基)六亚甲基异氰酸酯的制备流程图。
[0041] 图2为化学改性剂与聚酰胺、乙烯-乙烯醇共聚物纳米纤维结合及其自修复原理示意图。
[0042] 图3为化学改性剂与乙烯-乙烯醇共聚物纳米纤维结合及其自修复原理示意图。
[0043] 图4为化学改性剂与聚酰胺纳米纤维结合及其自修复原理示意图。
[0044] 图5为实施例1制备得到的可逆自修复的热塑性聚合物纳米纤维膜材料的扫描电子显微镜表征结果。
[0045] 图6为实施例20制备得到的可逆自修复的热塑性聚合物纳米纤维气凝胶的扫描电子显微镜表征结果。
[0046] 图7为实施例20制备得到的可逆自修复的热塑性聚合物纳米纤维气凝胶吸附RNA溶液前后紫外吸收峰变化的图谱。
[0047] 图8为实施例20制备得到的可逆自修复的热塑性聚合物纳米纤维气凝胶吸附BSA溶液前后紫外吸收峰变化的图谱。

具体实施方式

[0048] 为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明;应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明;除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
[0049] 下面通过具体的实施例子并结合附图对本发明做进一步的详细描述。
[0050] 以下具体实施方式中,制得的可逆自修复的热塑性聚合物纳米纤维膜或气凝胶材料可应用于气体/液体污染物的吸附、传感、催化或过滤。
[0051] 实施例1
[0052] 一种可逆自修复的热塑性聚合物纳米纤维膜或气凝胶材料,由质量百分数为90%的乙烯-乙烯醇共聚物/醋酸丁酸纤维素聚合纳米纤维与10%的2-(3-(6-甲基-氧-1,4-二氢嘧啶-2-基)脲基)六亚甲基异氰酸酯化学改性剂在三维空间中通过氢键或多重氢键作用力相互缠结制备而成。
[0053] 所述的一种可逆自修复的热塑性聚合物纳米纤维膜或气凝胶材料的制备方法,包括如下步骤:
[0054] S1、制备化学改性剂:将2.8g胺基嘧啶酮和6.5g六甲基二异氰酸酯溶于50mL甲苯,通入氮气,15min后升温至80℃,再加入21mg二月桂酸二丁基锡作为催化剂,在氮气气氛下80℃继续反应12小时,反应结束后将溶液倒入乙醇中,将析出物用乙醇洗涤1~3次,并与60℃下真空干燥12h,得到8.9g2-(3-(6-甲基-氧-1,4-二氢嘧啶-2-基)脲基)六亚甲基异氰酸酯;
[0055] S2、通过熔融共混相分离法制备热塑性聚合物纳米纤维;
[0056] S3、制备悬浮液:将上述步骤制备得到的9g所述热塑性聚合物纳米纤维及1g 2-(3-(6-甲基-氧-1,4-二氢嘧啶-2-基)脲基)六亚甲基异氰酸酯化学改性剂分散于2000g醇水混合溶剂中形成均匀的悬浮液;其中,所述醇水混合液为水与异丙醇按照体积比为5:1配制而成;
[0057] S4、制备膜材料或气凝胶材料:取步骤S3制备得到的悬浮液涂覆于涤纶编织布基体表面并在30℃下保温30min,然后继续在该温度下常温干燥制备得到可逆自修复的纳米纤维膜材料。
[0058] 其中,所述乙烯-乙烯醇共聚物/醋酸丁酸纤维素复合纳米纤维由质量分数为20%的热塑性聚合物、80%的醋酸丁酸纤维素经熔融共混相分离法制备而成,其制备方法具体包括如下步骤:
[0059] a)将质量百分比为20%乙烯-乙烯醇共聚物与80%醋酸丁酸纤维素混合均匀,在加工温度为180℃的双螺杆挤出机中进行挤出、造粒,制备得热塑性聚合物/醋酸丁酸纤维素复合材料;
[0060] b)将经步骤a)制得的热塑性聚合物/醋酸丁酸纤维素复合材料经熔融纺丝机进行纺丝、牵伸,得到复合纤维,其中纺丝机加工温度为200℃,牵伸速率为20m/min;
[0061] c)将经步骤b)制得的复合纤维在60℃的丙酮中回流72h萃取醋酸丁酸纤维素,将萃取醋酸丁酸纤维素后的复合纤维进行常温干燥,制备得到直径为50~500nm的热塑性聚纳米纤维。
[0062] 图5为本实施例制备得到的可逆自修复的纳米纤维膜材料的扫描电子显微镜表征图,由图中结果可知,热塑性聚合物纳米纤维与化学改性剂相互反应后在基体表面相互粘附形成纤维膜,使得纳米纤维膜材料表面更加致密,从而表现出更好的力学性能。
[0063] 实施例2-4
[0064] 实施例2-4提供一种可逆自修复的热塑性聚合物纳米纤维膜材料,与实施例1相比,不同之处在于,改变热塑性聚合物纳米纤维与化学改性剂的质量百分比,除上述区别外,其他操作均相同,在此不再赘述;具体条件参数及制得的热塑性聚合物纳米纤维膜材料的强度及断裂后在80%湿度、25℃条件下放置24小时自修复后强度测试结果如下表所示。
[0065]
[0066]
[0067] 对比实施例1~4结果可知,随着2-(3-(6-甲基-氧-1,4-二氢嘧啶-2-基)脲基)六亚甲基异氰酸酯化学改性剂用量的增加,制备得到的可逆自修复的纳米纤维膜材料断裂后在80%湿度、25℃条件下放置24小时自修复后拉伸强度增加。与对比例1未加化学改性剂的制得的纳米纤维膜材料的测试结果相比,本发明经2-(3-(6-甲基-氧-1,4-二氢嘧啶-2-基)脲基)六亚甲基异氰酸酯化学改性剂改性后制得的可逆自修复的纳米纤维膜材料不仅拉伸强度增加,还具备较高的破损后自修复的功能。
[0068] 实施例5-10
[0069] 实施例5-10提供一种可逆自修复的热塑性聚合物纳米纤维膜材料,与实施例1相比,不同之处在于,改变2-(3-(6-甲基-氧-1,4-二氢嘧啶-2-基)脲基)六亚甲基异氰酸酯化学改性剂制备过程中的反应温度及时间,除上述区别外,其他操作均相同,在此不再赘述;具体实验条件参数及制得的热塑性聚合物纳米纤维膜材料的强度及断裂后在80%湿度、25℃条件下放置24小时自修复后强度测试结果如下表所示。
[0070]
[0071] 对比实施例1、实施例5~8结果可知,随着2-(3-(6-甲基-氧-1,4-二氢嘧啶-2-基)脲基)六亚甲基异氰酸酯化学改性剂制备过程中的反应温度的升高,制备得到的可逆自修复的纳米纤维膜材料的强度增大;但当反应温度超过80℃后进一步升高反应温度,纳米纤维膜材料的强度及断裂后在80%湿度、25℃条件下放置24小时自修复后强度略有降低,表明达到反应所需温度后,增加反应温度会对纳米纤维膜材料的强度造成影响。因此本发明选择80℃作为2-(3-(6-甲基-氧-1,4-二氢嘧啶-2-基)脲基)六亚甲基异氰酸酯化学改性剂的最佳反应温度。
[0072] 对比实施例1、实施例9~10结果可知,随着2-(3-(6-甲基-氧-1,4-二氢嘧啶-2-基)脲基)六亚甲基异氰酸酯化学改性剂制备过程中的反应时间延长,制备得到的可逆自修复的纳米纤维膜材料的强度及断裂后在80%湿度、25℃条件下放置24小时自修复后强度增大,当反应时间达到12h后进一步延长反应时间,纳米纤维膜的强度及断裂后在80%湿度、25℃条件下放置24小时自修复后强度略有降低。因此本发明选择12h作为2-(3-(6-甲基-氧-1,4-二氢嘧啶-2-基)脲基)六亚甲基异氰酸酯化学改性剂的最佳反应时间。
[0073] 实施例11-12
[0074] 实施例11-12提供一种可逆自修复的热塑性聚合物纳米纤维膜材料,与实施例1相比,不同之处在于,改变热塑性聚合物纳米纤维制备过程中热塑性聚合物与醋酸丁酸纤维素的用量比,除上述区别外,其他操作均相同,在此不再赘述;具体实验条件参数及制得的热塑性聚合物纳米纤维膜材料的强度及断裂后在80%湿度、25℃条件下放置24小时自修复后强度测试结果如下表所示。
[0075]
[0076] 对比实施例1、实施例11~12结果可知,随着热塑性聚合物用量的增加,制备得到的可逆自修复的纳米纤维膜材料的强度及断裂后在80%湿度、25℃条件下放置24小时自修复后强度增加,这是由于聚合物用量的增加会导致纳米纤维直径变大,从而使制得的可逆自修复的纳米纤维膜材料的强度增加;当聚合物的用量超过20%后,制得的纳米纤维膜材料的强度及断裂后在80%湿度、25℃条件下放置24小时自修复后强度略有降低。因此,本发明选定热塑性聚合物与醋酸丁酸纤维素的用量比为1:4作为热塑性聚合物纳米纤维制备的最佳用量比。
[0077] 实施例13-17
[0078] 实施例13-17提供一种可逆自修复的热塑性聚合物纳米纤维膜材料,与实施例1相比,不同之处在于,改变步骤S4中保温温度及时间,除上述区别外,其他操作均相同,在此不再赘述;具体实验条件参数及制得的热塑性聚合物纳米纤维膜材料的强度及断裂后在80%湿度、25℃条件下放置24小时自修复后强度测试结果如下表所示。
[0079]
[0080] 对比实施例1、实施例13~14结果可知,随着步骤S4中保温温度的升高,制备得到的可逆自修复的纳米纤维膜材料的强度及断裂后在80%湿度、25℃条件下放置24小时自修复后强度无明显变化,表明干燥温度的高低在一定范围内对可逆自修复的纳米纤维膜材料的强度无影响。
[0081] 对比实施例1、实施例15~17结果可知,随着步骤S4中保温时间的延长,制备得到的可逆自修复的纳米纤维膜材料的强度及断裂后在80%湿度、25℃条件下放置24小时自修复后强度无明显变化,表明干燥温度的时长对可逆自修复的纳米纤维膜材料的强度无影响。
[0082] 实施例18-25
[0083] 实施例18-25提供一种可逆自修复的热塑性聚合物纳米纤维气凝胶材料,与实施例1相比,不同之处在于,步骤S4中采用冷冻干燥方法制备热塑性聚合物纳米纤维气凝胶材料,除上述区别外,其他操作均相同,在此不再赘述;具体冷冻干燥实验条件参数及制得的热塑性聚合物气凝胶材料的强度及断裂后在80%湿度、25℃条件下放置24小时自修复后强度测试结果如下表所示。
[0084]
[0085] 对比实施例18~20结果可知,随着步骤S4中冷冻干燥温度的降低,制得的聚合物纳米气凝胶材料的强度及破损后在80%湿度、25℃条件下放置24小时自修复后强度增加,表明冷冻温度会影响米气凝胶材料的强度。
[0086] 对比实施例18、实施例21~22结果可知,随着步骤S4中冷冻时间的延长,制得的聚合物纳米气凝胶材料的强度及断裂后在80%湿度、25℃条件下放置24小时自修复后强度无明显变化,表明冷冻时间对制得的纳米纤维气凝胶材料的强度影响较小。
[0087] 对比实施例18、实施例23~24结果可知,随着步骤S4中干燥时间的延长,制得的聚合物纳米气凝胶材料的强度及断裂后在80%湿度、25℃条件下放置24小时自修复后强度增加,表明干燥时间对纳米纤维气凝胶材料的强度有影响,样品充分干燥后有助于展现更好的的力学性能。
[0088] 实施例20制得的聚合物纳米气凝胶材料的扫描电子显微镜表征结果如图6所示,由图中结果可知,热塑性聚合物纳米纤维被2-(3-(6-甲基-氧-1,4-二氢嘧啶-2-基)脲基)六亚甲基异氰酸酯化学改性剂所包覆,并以纳米纤维为骨架,形成规整的片层结构,因此具有较大的比表面积。
[0089] 实施例25-27
[0090] 实施例25~27提供一种可逆自修复的热塑性聚合物纳米纤维气凝胶材料,与实施例20相比,不同之处在于,改变热塑性聚合物纳米纤维与化学改性剂的质量百分比,除上述区别外,其他操作均相同,在此不再赘述;将实施例20及实施例25~27制得的可逆自修复的热塑性聚合物纳米纤维气凝胶材料应用于核糖核酸(RNA)的吸附亲和分离。
[0091] 其吸附实验方法如下:分别配制100mL 0.8g/L的核糖核酸(RNA)溶液和4g/L的血清蛋白(BSA)溶液,向溶液中分别加入0.05g实施例20、实施例25~27制得的可逆自修复的热塑性聚合物纳米纤维气凝胶材料,并与37℃下150r/min振荡吸附12h,取3ml吸附前和吸附后溶液,分别测试其在波长260nm处(核糖核酸)、280nm处(牛血清蛋白)的紫外吸收峰强度。其吸附效果如下表所示:
[0092]
[0093] 图7~8分别为实施例20制备得到的可逆自修复的热塑性聚合物纳米纤维气凝胶吸附RNA溶液、BSA溶液前后的紫外吸收峰变化图谱。由图7~8结合上表中结果可知,2-(3-(6-甲基-氧-1,4-二氢嘧啶-2-基)脲基)六亚甲基异氰酸酯化学改性剂与热塑性聚合物纳米纤维反应后制备的纳米纤维气凝胶材料,对核糖核酸具有较好的吸附性能,且随着改性剂含量的增加,气凝胶对核糖核酸的吸附容量增大(由上表结果所示),但对牛血清蛋白的吸附量为0,表明本发明制得的可逆自修复热塑性聚合物纳米纤维气凝胶材料对核糖核酸具有较高的选择吸附性能,能够应用于蛋白质溶液中核糖核酸的选择性分离。
[0094] 以上所述,仅为本发明的说明实施例,并非对本发明任何形式上和实质上的限制,应当指出,对于本技术领域的普通技术人员,在不脱离本发明方法的前提下,做出的若干改进和补充也应视为本发明的保护范围;凡熟悉本专业的技术人员,在不脱离本发明精神和范围的情况下,利用以上所揭示的技术内容做出的些许更改、修饰与演变的等同变化,均为本发明的等效实施例;同时,凡依据本发明的实质技术对上述实施例所做的任何等同变化的更改、修饰与演变,均仍属于本发明的保护范围。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈