Lithium primary cell

阅读:181发布:2021-09-17

专利汇可以提供Lithium primary cell专利检索,专利查询,专利分析的服务。并且A lithium primary cell including lithium as the anode, a solution of an iganic salt in an inorganic solvent as the electrolyte, and a current collector as the cathode is improved in cell performance by coating the lithium anode with calcium.,下面是Lithium primary cell专利的具体信息内容。

What is claimed is:1. In a lithium primary cell including lithium as the anode, a solution of an inorganic salt in an inorganic solvent as the electrolyte, and a current collector as the cathode, the improvement in cell performance obtained by coating the lithium anode with calcium.2. An improved lithium primary cell according to claim 1 wherein the inorganic salt is selected from the group consisting of LiAlCl.sub.4 and LiSbCl.sub.6.3. An improved lithium primary cell according to claim 1 wherein the inorganic solvent is a covalent inorganic oxychloride solvent selected from the group consisting of thionyl chloride, phosphorous oxychloride, monofluorophosphoryl dichloride, and sulfuryl chloride.4. An improved lithium primary cell according to claim 1 wherein the electrolyte is a solution of about 1.5 molar LiAlCl.sub.4 in SOCl.sub.2.5. An improved lithium primary cell according to claim 4 wherein the lithium anode is coated with calcium by exchange from a solution containing dissolved calcium in SOCl.sub.2.6. An improved lithium primary cell according to claim 1 wherein the current collector is a high surface area electronically conducting material.7. An improved lithium primary cell according to claim 6 wherein the high surface area electronically conducting material is selected from the group consisting of carbon and graphite.8. An improved lithium primary cell according to claim 7 wherein the high surface area electronically conducting material is carbon.9. An improved lithium primary cell according to claim 4 wherein the current collector is a high surface area electronically conducting material.10. An improved lithium primary cell according to claim 9 wherein the high surface area electronically conducting material is selected from the group consisting of carbon and graphite.11. An improved lithium primary cell according to claim 10 wherein the high surface area electronically conducting material is carbon.12. An improved lithium primary cell according to claim 1 wherein said inorganic solvent is also the depolarizer for the battery.

说明书全文

The invention described herein may be manufactured, used, and licensed by or for the Government for governmental purposes without the payment to me of any royalty thereon.

This invention relates to an improved lithium primary cell.

BACKGROUND OF THE INVENTION

In recent years, there has been considerable research and development on ambient temperature, high energy density lithium cells. A particularly promising system is based on thionyl chloride, SOCl2. Here, SOCl2 serves both as solvent and depolarizer for the cell. A suitable current collector such as carbon serves as the cathode.

One of the difficulties encountered with the Li/SOCl2 cell is that its high rate capability is limited by a passivating film formed on the lithium anode. This passivation occurs most readily during storage at elevated temperatures.

SUMMARY OF THE INVENTION

The general object of this invention is to provide a lithium primary cell having an improved cell performance. A further object of the invention is to provide such a cell that will use an all-inorganic electrolyte and be operable and storable over the temperature range of -40° F to +160° F. A still further object of the invention is to provide such a cell having a minimum energy density of 150 watt hours per pound of cell weight and a power density of 50 watts per pound. A particular object of the invention is to provide such a cell in which the problem of Li/SOCl2 cell passivation during storage at elevated temperatures is overcome and the good rate capability of the cell retained.

The foregoing objects have now been attained and the good rate capability retained by coating the lithium anode with calcium.

The coating is effective because calcium has three useful properties: a good open circuit potential, good rate capability, and resistance to passivation in thionyl chloride solutions. That is, the open circuit potential of calcium versus lithium in a solution of 1.5 molar LiAlCl4 in SOCl2 is +0.8 volt. The open circuit voltage of the Ca/1.5M LiAlCl4, SOCl2 /carbon cell is 2.8 volts with the calcium as the anode. Moreover, calcium metal dissolves at 20mA/cm2 at polarizations of less than 1.0 volt. Complete Ca/SOCl2 cells stored up to 350 hours at 160° F show little evidence of passivation.

DESCRIPTION OF THE PREFERRED EMBODIMENT

Lithium anodes are coated with calcium by exchange from a thionyl chloride solution containing calcium ions. The more noble calcium deposits on the lithium surface. The solution is prepared by saturating a solution of 1.5M LiAlCl4 in SOCl2 with CaCl2 or with other soluble Ca-containing salts such as Ca(SbCl6)2. Complete cells are comprised of a flat anode and carbon cathode separated by glass fiber paper and compressed into a tight package by flat plates or Teflon discs. The cells thus assembled with calcium coated lithium anodes are stored up to 800 hours at 160° F in 1.5M LiAlCl4 in SOCl2. The calcium coated lithium anode cells show little or no voltage delay at current densities of 5 to 6mA/cm2. Cells stored up to 500 hours at 160° F yield 80 to 100 percent of their nominal capacity when immersed in the electrolyte with which they were stored and discharged to a 2.0-volt cutoff with an average cell voltage of 2.85 volts and an average current of 5.9mA/cm2. The performance of the cell degrades somewhat after 800 hours at 160° F, but it is still remarkably good. Such a cell has yielded 80 percent of its nominal capacity at an average cell voltage of 2.4 volts (5.0mA/cm2). This performance can be compared to lithium anode cells assembled without the calcium coating. After 800 hours of storage, such cells polarize to less than 1.0 volt at current densities of approximately 1mA/cm2. The calcium coated electrode is clearly an improvement for the lithium anode performance in Li/SOCl2 cells.

In the foregoing embodiment, in lieu of LiAlCl4 as the salt for the electrolyte, one might use another inorganic lithium salt such as LiSbCl6.

Similarly, in lieu of thionyl chloride as the solvent, one might use other covalent inorganic solvents such as phosphorous oxychloride, monofluorophosphoryl dichloride or sulfuryl chloride or a solvent such as SeOCl2, VOCl3, and CrO2 Cl2.

The concentration of salt in the electrolyte can be varied from about 0.1 molar to about 2.5 molar, the preferred concentration being in the range of 0.5 molar to 1.5 molar.

When the solvent of the electrolyte also serves as the depolarizer as in the case of thionyl chloride, a current collector such as carbon serves as the cathode. In lieu of carbon, one might use another high surface area electronically conducting material such as graphite.

I wish it to be understood that I do not desire to be limited to the exact details described, for obvious modifications will occur to a person skilled in the art.

高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈