首页 / 专利库 / 显示技术 / 柔性显示器 / 柔性电池 / Liイオン電池用のフレキシブルで自立したバインダフリーの高性能アノードとしてのカーボンナノチューブ‐金属ナノ複合体

Liイオン電池用のフレキシブルで自立したバインダフリーの高性能アノードとしてのカーボンナノチューブ‐金属ナノ複合体

阅读:740发布:2024-01-19

专利汇可以提供Liイオン電池用のフレキシブルで自立したバインダフリーの高性能アノードとしてのカーボンナノチューブ‐金属ナノ複合体专利检索,专利查询,专利分析的服务。并且【課題】本発明は、化学的経路によるカーボンナノチューブ‐金属ナノ複合体と、それと対応した、多層カーボンナノチューブの高アスペクト比に好まれる単純な減圧濾過技術による、強くフレキシブルで軽量な自立したアノードの開発とに関連する。 【解決手段】自立したアノードは(他の炭素質粉末材料と異なり)バインダ及び導電体なくして電極として使用できるという追加的な利点を有し、正確な電気化学的特性を解明することを助ける。使用される金属はSn、Si、Alなどでよい。開発された高容量で自立したアノードは、再充電可能なLiイオン電池に用いることができ、太陽ランタンに電 力 を供給することを実演するのに成功した。 【選択図】図1,下面是Liイオン電池用のフレキシブルで自立したバインダフリーの高性能アノードとしてのカーボンナノチューブ‐金属ナノ複合体专利的具体信息内容。

カーボンナノチューブ(CNT)及び金属を100:0から50:50の範囲の比率で含み、C/10レートで50サイクル後に136から417mAh/gの範囲の比容量を有する、Liイオン電池用の紙の形態のフレキシブルで自立したアノード材料。請求項1に記載の紙の形態のフレキシブルで自立したアノード材料の製造方法であって、以下のステップを備える方法: (i)超音波処理を3時間使用することで、溶媒中にカーボンナノチューブを分散させるステップ; (ii)超音波処理によって蒸留中に塩化スズ(II)等の無機金属塩を溶解(30wt%)するステップ; (iii)ステップ(i)及び(ii)から得られた溶液を、磁気撹拌子を用いて1時間混合するステップ; (iv)ステップ(iii)で得られた溶液を、大気下、100℃で4時間還流するステップ; (v)ステップ(iv)で得られた溶液を減圧濾過ユニットで濾過し、金属酸化物/カーボンナノチューブナノ複合体を得るステップ; (vi)ステップ(v)で得られた濾液を、脱イオン水を用いて洗浄するステップ; (vii)ステップ(vi)で得られた複合体を真空オーブン内で乾燥するステップ;及び (viii)減圧濾過を用いた製紙技術によって、紙の形態のフレキシブルで自立したアノード材料を得るステップ。請求項2のステップ(i)において、前記溶媒がエチレングリコール及びジエチレングリコール、ポリエチレングリコール等の他のポリオールの誘導体からなる群から選択される方法。請求項2のステップ(i)において、前記カーボンナノチューブが多層カーボンナノチューブ(MWCNT)、単層カーボンナノチューブ(SWCNT)カーボンナノファイバー、カーボンファイバー及びそれらの組み合わせからなる群から選択される方法。

说明书全文

本発明は、化学的経路によるカーボンナノチューブ‐金属ナノ複合体の開発と、それと対応した、多層カーボンナノチューブの高アスペクト比に好まれる単純な減圧濾過技術による、強くフレキシブルで軽量な自立したアノードの開発とに関連する。自立したアノードは(他の炭素質粉末材料と異なり)バインダ及び導電体なくして電極として使用できるという追加的な利点を有し、正確な電気化学的特性を解明することを助ける。使用される金属はSn、Si、Alなどでよい。開発された高容量で自立したアノードは、再充電可能なLiイオン電池に用いることができ、太陽ランタンに電を供給することを実演するのに成功した。

エネルギー効率の高いグリーン生活に向けた足がかりとして、再生可能エネルギー資源の開発のための投資は世界的に増加しており、特に風力発電及び太陽光発電が注目されている。しかしこれらの資源の中断は高効率なエネルギー貯蔵システムを要求する。今日、電力源の最も便利な形態は電気化学セル/電池であり、化学エネルギー貯蔵と、電極で起こる電気化学的な酸化還元反応による電気エネルギーへの変換との可搬性を提供する。排出ゼロ及び高エネルギー変換効率の形態で更なる利益が現れる。

更に、曲げることのできる最新のガジェットの要求を満たすために、極薄でフレキシブルかつソフトな電池の開発を目指す膨大な研究努力が現在存在する。最終目標は電荷容量の損失なしに率能力を改善し、電気化学的繰り返し特性が十分であることである。フレキシブル電池は、例えばロールアップディスプレイ、アクティブ無線周波数識別タグ、集積回路スマートカードおよび埋め込み型医療機器などのために必要なだけでなく、今後のハイブリッド車や電気自動車の車体の空洞に大きなフレキシブル電池を配置する意図もある。強調するまでもないが、高出力及び高エネルギー密度が期待される。当然ながら電池の性能は、適用された電極の構造的及び電気化学的特性と密接に関連している。それゆえ、高エネルギー密度及び高出力密度を有し、優れた率能力を有し、長年の間安全に機能することができるフレキシブル電極の開発が重要となっている。

長いサイクル寿命、広い動作温度範囲、低自己放電率、容量およびエネルギー密度の観点での高パフォーマンス、及びメモリ効果がないという理由から、リチウムイオン電池(LIB)は他の系に比べて好まれる。セルが充放電される際に、リチウムイオンが正極と負極の間を前後に「揺らされる」ので、LIBは揺り椅子電池とも呼ばれる。アノードはLiイオンのホストとして働くので、構成要素の中でアノードは、セルを正常に機能させる上で最も重要な部分の一つである。アノードは、高リチウム挿入容量を有するべきであるだけでなく、高サイクル性に対する構造的な安定性及びセルの長寿命を維持しつつ、容易なLiの挿入/脱挿入も可能にすべきである。

今のところ炭素はLIBアノード用の最も好ましい材料であるが、しばしば容量と呼ばれる、その貯蔵密度は理論限界を有する(グラファイトの場合には372mAhg−1である)。従ってリチウムと合金化することによってグラム当たりずっと多くのリチウムを貯蔵することができるSn、Al、Si等の異なる金属が研究されてきた。しかしこれらは大きな体積膨張(250%超)を引き起こす微粉化によって本来的にサイクリング中に不安定であり、アノードの構造的な完全性に影響する。さらに粉状に準備されたアノード材料は、銅集電体を伝導性にし、かつ機械的に強固にするために、通常銅集電体上にコートされる。これにより電極の屈曲性が制限され、セルの無駄な重量(dead weight)も増加する。

ナノ構造の電極がより良好なサイクル耐久性を示し得ることが前提とされている。小さな粒子の利点は体積膨張が少なく、クラッキング及び微粉化が抑制されることによって説明され得る。更に、小粒子は表面積が大きいので電極反応速度が速い。表面積が大きいほど、固体電解質界面(SEI)形成により多くのLiを消費し、初期サイクルで電気化学的な不可逆性が高まることに注意するべきである。この問題を解決するより改良した方法は、充放電サイクル中に起こる大きな体積変化を収容するための第二相を使用することである。優秀な伝導能力とLi挿入に対する小さな体積変化によって、炭素はリチウム貯蔵金属用の理想的なマトリクスとなる。炭素上に均一に分散されかつ固定された金属的ナノ粒子によって、凝集が抑制されることが期待される。炭素コートも電解質の分解を抑制することができ、金属粒子の周りに一体的で連続した伝導ネットワークを提供することができる。

様々な炭素材料の中で、カーボンナノチューブはその独特の構造、高い電気伝導性、高いアスペクト比(>1000)、顕著な熱伝導性、良好な容量、及び良好な機械特性のために魅力的である。この種のカーボンナノチューブ/金属複合体の利点は、カーボンナノチューブを足場として使用し、アノード中の微粉化及び崩壊を防ぎつつ、金属合金材料の容量が増加することである。金属及びカーボンナノチューブの両方からなる複合体は、インターカレーションと合金化という二つのリチウム貯蔵メカニズムを有する。容量の増加及び良好なサイクル性に加えて、カーボンナノチューブは輸送電極への導電ワイヤとして機能することができる。さらに、カーボンナノチューブの高い引張強度と、高い屈曲性と、高いアスペクト比(>1000)によって、リチウムイオンセル用の、自立したフレキシブルなアノード材料を作るために比類なく適したものとなる。

米国特許出願第2011/0070495号明細書

米国特許出願第2011/0297889号明細書

米国特許7094499号明細書

[従来技術とその欠点] 米国特許出願第2011/0070495号は、熱処理及び減圧濾過処理を用いたリチウムイオン電池用の高容量かつバインダフリーなアノードの製造方法を提供する。上記電極は電気化学的に活性なナノ粒子からなる活性部位を含み、一実施形態では3d遷移金属酸化物を利用して、電極の電気化学容量を提供する。活物質はSi、Snなどの他の電気化学材料を含む。また、電極は、電極にバインダが必要ないように、活物質を接続または結合するカーボンナノチューブのような導電ナノ材料のマトリクスまたはネットを含む。しかし準備されたアノード材料は自立せず、銅集電体を必要とする。

米国特許出願第2011/0297889号は酸化スズ粒子と繊維状カーボン材料とを含む複合材料の作製法を開示し、カーボンナノチューブのような繊維状カーボン材料、カーボンナノファイバー、または二つの混合物、及び酸の存在下で、水—アルコール媒体中で沈殿/核生成することによってスズ塩から得られる水酸化スズ粒子を合成することを含む。準備されたアノード材料はバインダ及び導電体と混合され、その後、金属集電体上にコートされ、アノードとして使用された。

米国特許7094499号はリチウムイオン電池用のアノードとしての使用のための複合材料の作製方法に関する。その工程は、複合物の一部を構成するカーボン材料を選択するステップ、選択されたカーボン材料を化学処理してナノ粒子を受け取るステップ、ナノ粒子を化学処理されたカーボン材料内へと組み込むステップ、及びナノ粒子が組み込まれたカーボン材料の外面から表面のナノ粒子を除去するステップを含む。また、この発明はパラジウム、スズ、または酸化スズのようなリチウムと合金化するナノ粒子からなる材料に関する。

[制限] 全ての特許において、混合、キャスティング、及びリチウム蓄積用のアノード材料を含む混合組成物のプレスを通常含む従来のLIB電極の製造方法は、金属集電体からの活物質の崩壊を防止するためのポリフッ化ビニリデン等のバインダ、及び金属集電体上への導電性を維持するための導電体が用いられる。

バインダ及び金属集電体はリチウム蓄積に全く貢献せず、導電体は最小限のリチウム蓄積性能を有することに注意するべきである。従って、これらの構成要素はLIBのエネルギー密度を著しく下げる。更に、電極にバインダが存在することで利用可能な活物質の特定の領域が減少し、また電極の電気化学的分極が増加して有効なリチウムイオン輸送が害される。バインダの熱的不安定性に起因して、動作温度範囲も制限される。バインダ、導電体、及び金属集電体は合わせて高出力セルの全重量の20%以上を構成し、これはセル容量に全く貢献しない無駄な重量である。

添加されるバインダの量の最適化は非常に重要である。新しい材料はそれぞれ別々に最適化されるべきである。最適化パラメータは、粒子サイズ、凝集、表面特性などに依存する。

また、電極はフレキシブルでない金属集電体に基づく。なぜなら活物質層は集電体が曲がるときに簡単に砕けるか剥離するからである。

金属集電体(アノードの場合には銅)に関連して、アノード材料の適切な付着のための銅の表面研磨の最適化、電解質と接触した際の金属集電体の腐食、無駄な重量の増加、及びコストの増加など、他の問題も存在する。

従って、フレキシブルで、軽量で、バインダフリーで、集電体フリーな電極配置を開発し、エネルギー密度を高めることが重要である。

[発明の目的] 本発明の主な目的はフレキシブルで、自立した、バインダフリーで、高容量なリチウムイオン電池用のアノードを準備することである。

本発明の別の目的は、アノードの準備方法を提供することである。

本発明の別の目的は、カーボンナノチューブ金属ナノ複合体を開発するための高速で簡便な方法を提供することである。

本発明の更に別の目的は、高容量でフレキシブルな、再生可能エネルギー貯蔵システムで使用され得るリチウムイオン電池用の自立したアノード材料として使用可能な、カーボンナノチューブ‐金属ナノ複合体を開発することである。

従って、本発明は、カーボンナノチューブ(CNT)及び金属のナノ複合体から構成され、可逆容量が大きく、サイクル性が良好なアノードを提供する。開発されたアノードはバインダが存在せず、非常にフレキシブルで、自立する、即ち導電体及び銅集電体を必要とせずにリチウムイオン電池用のアノードとして使用できる。

本発明の別の実施形態では、アノード材料としてのカーボンナノチューブ‐金属ナノ複合体を準備する方法は以下のステップを含む:

(i)多層カーボンナノチューブをエチレングリコール中で2〜4時間分散するステップ、 (ii)金属塩を蒸留水中に溶解し、0.01〜0.05M溶液を得るステップ、 (iii)一定に撹拌しながら、金属塩溶液を分散したカーボンナノチューブに徐々に加えるステップ、 (iv)上記で得られた懸濁液を、100℃で4〜8時間還流するステップ、 (v)濾過し、得られた濾液を蒸留水で洗浄するステップ、 (vi)濾液を乾燥して多層カーボンナノチューブ/酸化スズ(II)ナノ複合体を得るステップ、 (vii)超音波を用いて、多層カーボンナノチューブ/酸化スズ(II)ナノ複合体を、イソプロピルアルコール、アセトン等の別の溶媒に分散するステップ、及び (viii)製紙技術を用いて自立したアノードを得るステップ。

本発明の更に別の実施形態では、溶媒はポリオール類からなる群から選択される。

本発明の更に別の実施形態では、カーボンナノチューブは多層カーボンナノチューブ(MWCNT)、単層カーボンナノチューブ(SWCNT)、またはそれらの組み合わせから選択される。

本発明の更なる別の実施形態では、カーボンナノチューブはCVD(化学気相堆積)、アーク放電、またはHiPCo(高圧一酸化炭素)によって製造される。

本発明の更なる別の実施形態では、ステップ(ii)及び(iii)で得られたカーボンナノチューブは自立した紙の形態である。

本発明の更なる別の実施形態では、自立材料は減圧濾過を介した製紙技術によって得られる。

本発明の更なる別の実施形態では、濾過ユニットは、上部カプラ、濾紙、金属ふるい、底部カプラ、ラバーコルク、真空ポート、及び円錐真空フラスコを備える。

本発明の更なる別の実施形態は、カーボンナノチューブ(CNT)及び金属を100:0から50:50の割合で備える、リチウムイオン電池用の紙の形態のフレキシブルで自立したアノード材料がコイン電池で試験され、C/10レートで50サイクル後に136から417mAh/gの範囲の比容量を与えたことを開示する。

本発明の更なる別の実施形態では、紙の形態の、フレキシブルで自立したアノード材料の準備方法は以下のステップを備える: (i)超音波処理を3時間使用することで、エチレングリコール、ポリエチレングリコールなどのポリオール中にカーボンナノチューブを分散させるステップ、 (ii)超音波処理によって蒸留水中に塩化スズ(II)等の無機金属塩を溶解(30wt%)するステップ、 (iii)ステップ(i)及び(ii)から得られた溶液を磁気撹拌子を用いて1時間混合するステップ、 (iv)ステップ(iii)で得られた溶液を、大気下、100℃で4時間還流するステップ、 (v)ステップ(iv)で得られた溶液を減圧濾過ユニットで濾過し、金属酸化物/カーボンナノチューブナノ複合体を得るステップ、 (vi)ステップ(v)で得られた濾液を脱イオン水で洗浄するステップ、 (vii)ステップ(vi)で得られた複合体を真空オーブンで乾燥するステップ、及び (viii)減圧濾過を用いた製紙技術によって、紙の形態の、フレキシブルで自立したアノード材料を得るステップ。

本発明の更なる別の実施形態では、溶媒はエチレングリコール及びジエチレングリコール、ポリエチレングリコールなどの他のポリオールの誘導体からなる群から選択される。

本発明のカーボンナノチューブは多層カーボンナノチューブ(MWCNT)、単層カーボンナノチューブ(SWCNT)カーボンナノファイバー、カーボンファイバー及びそれらの組み合わせからなる群から選択される。

本発明の更なる別の実施形態では、自立したアノードは、バインダ、導電体、及び集電体なしで使用することができる。

電池の電気化学的性能を説明する図である。

リチウムイオン再充電可能電池用の、自立したフレキシブルなアノードを示す図である。

本発明は、フレキシブルで自立したバインダフリーなカーボン‐金属ナノ複合体アノード及びその製造方法を提供する。バッキーペーパーがフレキシブルであるので、用途に応じた異なった形状で使用することが可能となる。

直径2〜100nm、アスペクト比100以上の多層カーボンナノチューブ(MWCNT)が超音波処理によってポリオール中に均一に分散された。ポリオールはカーボンナノチューブの良好な分散剤として機能するだけでなく、金属イオン間の距離を調整するスペーサーとしても機能し、有機物除去の序盤に金属酸化物粒子が凝集するのを防ぐ。蒸留水中のスズ(II)塩などの金属塩の溶液を、上記懸濁液に、一定に撹拌しながら徐々に添加した。上記懸濁液は、大気下、130〜100℃で4〜8時間還流された。還流工程によって酸化スズ(II)の形態のスズがカーボンナノチューブ上に固定され、それによりカーボンナノチューブ/酸化スズ(II)ナノ複合体を形成する。ポリオールは還元剤として機能するが、カーボンナノチューブの表面上のスズナノ粒子は、溶液中の酸素雰囲気のために、すぐに酸化スズ(II)ナノ粒子へと酸化される。還流に続いて、十分量の脱イオン水で洗浄し、乾燥し、これにより酸化スズ(II)/多層カーボンナノチューブナノ複合体を製造する。

自立したアノードは、製紙技術によってナノ複合体から作られた。装置は濾過ユニットを備えた真空ポンプからなる。ここで、我々はアノードを製造する非常に単純な減圧濾過技術を導入した。酸化スズ(II)/多層カーボンナノチューブナノ複合体は、超音波処理によって、イソプロピルアルコール、アセトン等の別の溶媒に分散された。十分分散されたチューブは減圧濾過され、酸化スズ(II)/多層カーボンナノチューブの紙を得た。このように形成された紙(自立したアノード)は、機械的に強固であり、フレキシブルであることが分かった。

[実施例] 以下の実施例は本発明の例示として与えられ、従って本発明の範囲を制限するように解釈されるべきではない。

[実施例1] 超音波処理により0.1gのMWCNTが150mlのエチレングリコールに分散された。試料は大気下、100℃で4時間還流された。還流に続き、十分量の脱イオン水で洗浄し、乾燥した。超音波処理により0.1gのナノ複合体が100mlのイソプロピルアルコールに分散された。十分分散されたチューブが濾過装置を用いて減圧濾過され、リチウムイオン電池でフレキシブルな自立したアノードとして使用可能なMWCNT紙を得た。

アノードとして準備された自立試料(直径18mm)を真空オーブン内で乾燥し、グローブボックス内へ移し、対電極としてのリチウム箔、セパレータ(ポリプロピレンフィルム)、及び有機電解質(1:1の割合のEC+DEC内の、1MのLiPF6)からなる半電池へと配置した。セルは24時間エージングされた。定電流(Galvanostatic)充放電がC/10レートで実施された。試料は50サイクル後に136mAh/gの放電容量を与えた。

[実施例2] 超音波処理により0.3gの多層カーボンナノチューブ(MWCNT)が150mlのエチレングリコールに分散された。上記懸濁液に、蒸留水中のSnCl2の0.01M溶液を、一定に撹拌しながら一滴ずつ、Sn:CNT比が1:4(即ち20wt%のSn:80wt%のMWCNT)となるように添加した。上記溶液のpHが測定され、2未満と分かった。試料は大気下、100℃で4時間還流された。還流に続き、十分量の脱イオン水で洗浄し、乾燥することによって、酸化スズ(II)/多層カーボンナノチューブナノ複合体が製造された。

超音波処理により0.1gのナノ複合体が100mlのイソプロピルアルコールに分散された。十分分散されたチューブが濾過装置を用いて減圧濾過され、リチウムイオン電池でフレキシブルな自立したアノードとして使用可能な酸化スズ(II)/多層カーボンナノチューブ紙を得た。

試料は、Liイオン電池のアノードとして使用されると、50サイクル後に200mAh/gの放電容量を与えた。

[実施例3] 超音波処理により0.3gの多層カーボンナノチューブ(MWCNT)が150mlのエチレングリコールに分散された。上記懸濁液に、蒸留水中のSnCl2の0.01M溶液を、一定に撹拌しながら一滴ずつ、Sn:CNT比が1:4(即ち20wt%のSn:80wt%のMWCNT)となるように添加した。上記溶液のpHが測定され、2未満と分かった。試料は窒素下、100℃で4時間還流された。還流に続き、十分量の脱イオン水で洗浄し、乾燥することによって、酸化スズ(II)/多層カーボンナノチューブナノ複合体が製造された。

超音波処理により0.1gのナノ複合体が100mlのイソプロピルアルコールに分散された。十分分散されたチューブが濾過装置を用いて減圧濾過され、リチウムイオン電池でフレキシブルな自立したアノードとして使用可能な酸化スズ(II)/多層カーボンナノチューブ紙を得た。

試料は30サイクル後に175mAh/gの容量を示した。

[実施例4] 超音波処理により0.3gの多層カーボンナノチューブ(MWCNT)が150mlのエチレングリコールに分散された。上記懸濁液に、蒸留水中のSnCl2の0.01M溶液を、一定に撹拌しながら一滴ずつ、Sn:CNT比が1:4(即ち30wt%のSn:70wt%のMWCNT)となるように添加した。上記溶液のpHが測定され、2未満と分かった。試料は大気下、100℃で4時間還流された。還流に続き、十分量の脱イオン水で洗浄し、乾燥することによって、酸化スズ(II)/多層カーボンナノチューブナノ複合体が製造された。

超音波処理により0.1gのナノ複合体が100mlのイソプロピルアルコールに分散された。十分分散されたチューブが濾過装置を用いて減圧濾過され、リチウムイオン電池でフレキシブルな自立したアノードとして使用可能な酸化スズ(II)/多層カーボンナノチューブ紙を得た。50サイクル後にサンプルの比容量は417mAh/gである。

[実施例5] 超音波処理により0.3gの多層カーボンナノチューブ(MWCNT)が150mlのエチレングリコールに分散された。上記懸濁液に、蒸留水中のSnCl2の0.01M溶液を、一定に撹拌しながら一滴ずつ、Sn:CNT比が1:4(即ち40wt%のSn:60wt%のMWCNT)となるように添加した。上記溶液のpHが測定され、2未満と分かった。試料は大気下、100℃で4時間還流された。還流に続き、十分量の脱イオン水で洗浄し、乾燥することによって、酸化スズ(II)/多層カーボンナノチューブナノ複合体が製造された。

超音波処理により0.1gのナノ複合体が100mlのイソプロピルアルコールに分散された。十分分散されたチューブが濾過装置を用いて減圧濾過され、リチウムイオン電池でフレキシブルな自立したアノードとして使用可能な酸化スズ(II)/多層カーボンナノチューブ紙を得た。

50サイクル後にサンプルの比容量は380mAh/gである。

表1は、作成された様々な試料及びそれらのサイクル性能の纏めを与える。試料の名付けは以下の通りである: T0:元の多層カーボンナノチューブ T2A:20wt%のスズ充填を伴う酸性媒体中で、大気下で還流することで準備されるアノード試料。 T2N:20wt%のスズ充填を伴う中性媒体中で、大気下で還流することで準備されるアノード試料。 T2B:20wt%のスズ充填を伴う塩基性媒体中で、大気下で還流することで準備されるアノード試料。 T3A:30wt%のスズ充填を伴う酸性媒体中で、大気下で還流することで準備されるアノード試料。 T4A:40wt%のスズ充填を伴う酸性媒体中で、大気下で還流することで準備されるアノード試料。 T5A:50wt%のスズ充填を伴う酸性媒体中で、大気下で還流することで準備されるアノード試料。 N2A:20wt%のスズ充填を伴う酸性媒体中で、窒素下で還流することで準備されるアノード試料。 N2N:20wt%のスズ充填を伴う中性媒体中で、窒素下で還流することで準備されるアノード試料。 N2B:20wt%のスズ充填を伴う塩基性媒体中で、窒素下で還流することで準備されるアノード試料。

[本発明の利点] (1)Liイオン電池用のフレキシブルで自立したアノードを合成する本方法は新規であり、単純である。 (2)開発された自立したアノードは以下の通り多くの利点を有する: (a)バインダ及び集電体を除去することによって、電極の無駄な重量が減少し、使用可能な容量が増加し、全体的な電池設計に対して特定のエネルギー密度が増加する。 (b)フレキシブルなCNT紙の取り扱いが容易であることにより、様々なフレキシブルで軽量な電子デバイスで要求される様々な形状へと成形するのが容易となる。 (c)金属集電体、その製造、加工、腐食、及び電極材料との付着の問題に関連した問題が回避される。 (d)CNT/SnO2ナノ複合体を合成する方法は非常に単純であり、カーボンナノチューブの機能化すら要求しない。 (e)アノードは、示された通り遠隔地域で使用可能なソーラーランタン、ソーラーファン等に電力を供給するのに使用可能なLiイオン電池において使用可能である。

高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈