首页 / 专利库 / 电信 / 输出节点 / 转换器和电源管理集成电路系统

转换器和电源管理集成电路系统

阅读:162发布:2024-01-01

专利汇可以提供转换器和电源管理集成电路系统专利检索,专利查询,专利分析的服务。并且本 发明 公开一种转换器和电源管理集成 电路 系统,所述转换器用于在输出 节点 处产生 输出 电压 ,所述转换器包括:第一转换路径,配置为在第一负载状态下在所述 输出节点 处生成所述输出电压;第二转换路径,配置为在与所述第一负载状态不同的第二负载状态下在所述输出节点处产生所述输出电压;以及至少一个电感器,耦合到所述第一转换路径和所述第二转换路径,并耦合到所述输出节点。通过这种方式,转换器可以根据不同的负载状态来切换到不同的转换路径,以针对不同的负载状态来对应的降低功率损耗,从而使转换器在对于不同的负载状态均可达到较高的转换效率,提高了转换器的效率。,下面是转换器和电源管理集成电路系统专利的具体信息内容。

1.一种转换器,用于在输出节点处产生输出电压,其特征在于,所述转换器包括:
第一转换路径,配置为在第一负载状态下在所述输出节点处生成所述输出电压;
第二转换路径,配置为在与所述第一负载状态不同的第二负载状态下在所述输出节点处产生所述输出电压;以及
至少一个电感器,耦合到所述第一转换路径和所述第二转换路径,并耦合到所述输出节点。
2.如权利要求1所述的转换器,其特征在于,所述输出节点处的输出电压低于所述第一转换路径或所述第二转换路径的输入电压。
3.如权利要求1所述的转换器,其特征在于,所述第一转换路径和所述第二转换路径并联连接在输入电压和所述电感器之间,所述输入电压高于在所述输出节点处的所述输出电压。
4.如权利要求1所述的转换器,其特征在于,所述第二转换路径包括DC-DC转换器,并且所述第一负载状态比所述第二负载状态更加重载或更加快速。
5.如权利要求4所述的转换器,其特征在于,所述DC-DC转换器是开关电容器DC-DC转换器或降压转换器
6.如权利要求4所述的转换器,其特征在于,所述DC-DC转换器或降压转换器配置为具有比所述转换器更高的功率效率。
7.如权利要求4所述的转换器,其特征在于,所述第一转换路径耦合到输入电压,并且所述第二转换路径的DC-DC转换器耦合到所述输入电压。
8.如权利要求7所述的转换器,其特征在于,所述第一转换路径包括耦合在所述输入电压和所述电感器之间的第一晶体管,并且所述第二转换路径包括耦合在所述DC-DC转换器和所述电感器之间的第二晶体管。
9.如权利要求1所述的转换器,其特征在于,所述第一转换路径耦合到第一输入电压,所述第二转换路径耦合到低于所述第一输入电压的第二输入电压,并且所述第一负载状态比所述第二负载状态更加重载或更加快速。
10.如权利要求1所述的转换器,其特征在于,所述转换器还包括耦合到所述输出节点的多个电感器,所述多个电感器包括所述电感器,以及还具有分别耦合到所述多个电感器的多个晶体管。
11.如权利要求1所述的转换器,其特征在于,所述第一转换路径包括耦合在输入电压和所述电感器之间的晶体管,并且所述第二转换路径包括耦合在所述输入电压和所述电感器之间的两个串联连接的晶体管。
12.一种转换器,能够在输出节点处产生多个输出电压,其特征在于,所述转换器包括:
第一转换路径,用于在所述输出节点处产生第一输出电压;
第二转换路径,用于在所述输出节点处产生第二输出电压;以及
至少一个电感器,耦合到所述第一转换路径和所述第二转换路径,并耦合到所述输出节点。
13.如权利要求12所述的转换器,其特征在于,所述第二转换路径包括DC-DC转换器,并且所述第一输出电压高于所述第二输出电压。
14.如权利要求12所述的转换器,其特征在于,所述第一转换路径耦合在第一输入电压与所述电感器之间,所述第二转换路径耦合在第二输入电压与所述电感器之间,所述第一输出电压高于所述第二输出电压,所述第一输入电压高于所述第二输入电压。
15.如权利要求12所述的转换器,其特征在于,第一转换路径配置为在第一负载状态下在所述输出节点处产生所述第一输出电压;第二转换路径配置为在第二负载状态下在所述输出节点处产生所述第二输出电压;其中所述第一负载状态比所述第二负载状态更加重载或更加快速。
16.一种电源管理集成电路系统,其特征在于,包括:
第一转换器,包括用于第一负载状态的第一转换路径,用于第二负载状态的第二转换路径,以及耦合到所述第一转换路径和第二转换路径的第一电感器。
17.如权利要求16所述的电源管理集成电路系统,其特征在于,还包括:
第二转换器,包括用于第三负载状态的第三转换路径,用于第四负载状态的第四转换路径,以及耦合到所述第三转换路径和第四转换路径的第二电感器,其中,所述第一转换器的第二转换路径包括DC-DC转换器,所述第一负载状态比所述第二负载状态更加载或更加快速,所述第二转换器的第四转换路径包括所述DC-DC转换器,以及所述第三负载状态比所述第四负载状态更加重载或更加快速。
18.如权利要求16所述的电源管理集成电路系统,其特征在于,当所述第二转换路径禁用时,所述第一转换器用作多相降压转换器。

说明书全文

转换器和电源管理集成电路系统

技术领域

[0001] 本发明涉及电源管理技术领域,尤其涉及一种转换器和电源管理集成电路系统。

背景技术

[0002] 转换器(converter)可以将一个电压电平(例如输入电压Vin)转换为另一个电压电平(例如输出电压Vout)。多相(multi-phase)转换器包括耦合到转换器的输出节点的多个电感器。电感器的数量根据转换器的负载状态确定。转换效率由输出功率与总功率的比率确定,总功率包括输出功率和功率损耗,例如传导损耗,开关损耗和驱动损耗。业界希望转换器具有较低的功率损耗,以达到较高的转换效率。因此,如何提供一种具有更高转换效率的转换器,成为亟需解决的问题。

发明内容

[0003] 有鉴于此,本发明提供一种转换器,具有更高的转换效率。
[0004] 根据本发明的第一方面,公开一种转换器,用于在输出节点处产生输出电压,所述转换器包括:
[0005] 第一转换路径,配置为在第一负载状态下在所述输出节点处生成所述输出电压;
[0006] 第二转换路径,配置为在与所述第一负载状态不同的第二负载状态下在所述输出节点处产生所述输出电压;以及
[0007] 至少一个电感器,耦合到所述第一转换路径和所述第二转换路径,并耦合到所述输出节点。
[0008] 根据本发明的第二方面,公开一种转换器,能够在输出节点处产生多个输出电压,所述转换器包括:
[0009] 第一转换路径,用于在所述输出节点处产生第一输出电压;
[0010] 第二转换路径,用于在所述输出节点处产生第二输出电压;以及
[0011] 至少一个电感器,耦合到所述第一转换路径和所述第二转换路径,并耦合到所述输出节点。
[0012] 根据本发明的第三方面,公开一种电源管理集成电路系统,包括:
[0013] 第一转换器,包括用于第一负载状态的第一转换路径,用于第二负载状态的第二转换路径,以及耦合到所述第一转换路径和第二转换路径的第一电感器。
[0014] 本发明提供的转换器由于转换器包括:第一转换路径,配置为在第一负载状态下在输出节点处生成所述第一输出电压;第二转换路径,配置为在与所述第一负载状态不同的第二负载状态下在输出节点处产生所述第二输出电压;以及电感器,耦合到所述第一转换路径和所述第二转换路径。通过这种方式,转换器可以根据不同的负载状态来切换到不同的转换路径,以针对不同的负载状态来对应的降低功率损耗,从而使转换器在对于不同的负载状态均可达到较高的转换效率,提高了转换器的效率。
[0015] 在阅读了随后以不同附图展示的优选实施例的详细说明之后,本发明的这些和其它目标对本领域普通技术人员来说无疑将变得明显。

附图说明

[0016] 图1是示出根据一些实施例的具有部分两阶段架构的单相转换器的示意图。
[0017] 图2是示出根据一些实施例的单相转换器的示意图,该单相转换器可以分别经由用于重载和轻载状态的相应路径转换不同的输入电压。
[0018] 图3是示出根据一些实施例的单相转换器的示意图,该单相转换器可以分别经由用于重载和轻载状态的单独路径转换一个输入电压。
[0019] 图4是示出根据一些实施例的多相转换器的示意图。
[0020] 图5是示出根据一些实施例的具有多个输出的功率管理集成电路的示意图。
[0021] 图6是示出根据一些实施例的在转换器的输出节点处生成输出电压的方法的流程图

具体实施方式

[0022] 在说明书和随后的权利要求书中始终使用特定术语来指代特定组件。正如本领域技术人员所认识到的,制造商可以用不同的名称指代组件。本文件无意于区分那些名称不同但功能相同的组件。在以下的说明书和权利要求中,术语“包括”和“包括”被用于开放式类型,因此应当被解释为意味着“包括,但不限于...”。此外,术语“耦合”旨在表示间接或直接的电连接。因此,如果一个设备耦合到另一设备,则该连接可以是直接电连接,或者经由其它设备和连接的间接电连接。
[0023] 以下描述是实施本发明的最佳设想方式。这一描述是为了说明本发明的一般原理而不是用来限制的本发明。本发明的范围通过所附权利要求书来确定。
[0024] 下面将参考特定实施例并且参考某些附图来描述本发明,但是本发明不限于此,并且仅由权利要求限制。所描述的附图仅是示意性的而并非限制性的。在附图中,为了说明的目的,一些元件的尺寸可能被夸大,而不是按比例绘制。在本发明的实践中,尺寸和相对尺寸不对应于实际尺寸。
[0025] 发明人已经认识并理解,当输出电压(Vout)变低时,因为输出功率下降而功率损耗(例如传导损耗,开关损耗和驱动损耗)还与之前(Vout未变低时)保持相近,因此转换器的效率可能会降低。例如,当移动电话从活动(active)模式切换到待机(standby)模式时,转换移动电话的电池电压(例如当前为4V)的转换器可能将输出电压降低到较低平(例如从1.2V至0.6V),此时输出电压降低导致输出功率降低,而输入电压不变(例如电池电压仍然为4V),使得功率损耗与之前相近,因此转换器的效率就降低了。负载状态可以指示出由输出电压驱动的负载的大小。活动模式的负载状态可能比待机模式的负载状态更加重载,例如活动模式下负载的电流比待机模式的负载的电流更大。
[0026] 可以通过降低输入电压来抑制(或称之为:降低)功率损耗从而提高转换效率。然而,转换器的瞬态响应受到电感器的电流转换速率(即(Vin-Vout)/L,其中L为电感器的电感值)的限制,由于L一般不变,因此当输入电压Vin和输出电压Vout的差值越大则瞬态响应越快速,越小则瞬态响应越慢速,在输出电压Vout不变的情况下转换器的瞬态响应随着输入电压Vin的降低而恶化。
[0027] 发明人已经认识并理解,通过分离不同负载状态的转换路径,转换器可以具有高效率和快速瞬态响应,例如通过本发明提供的方案,可以选择执行高效率的转换,或/和选择执行快速瞬态响应的转换。在一些实施例中,转换器可以具有耦合到电感器(该电感器耦合到输出节点)的第一转换路径和第二转换路径。当负载状态为重载时,转换器可以使第一转换路径在输出节点处产生输出电压;当负载状态为轻载时,转换器可以使第二转换路径产生输出电压。通过这种方式,转换器可以根据不同的负载状态来切换到不同的转换路径,以针对不同的负载状态来对应的降低功率损耗,从而使转换器在对于不同的负载状态均可达到较高的转换效率,提高了转换器的效率。在一些实施例中,转换器可具有高于85%,高于88%或高于92%的峰值效率。
[0028] 图1描绘了根据一些实施例的单相转换器100。转换器100可以将输入电压VDD 110转换为在输出节点124处的输出电压Vout以驱动负载122。负载122的值可以根据例如由输出电压Vout驱动的系统(例如智能手机或其他设备的系统)的运转模式(例如轻载或重载)而改变。可以将负载122的值与至少一个阈值电压(或阈值电流)进行比较,以便确定负载122是重载还是轻载。例如,若负载122的电流值不超过额定电流值的20%(或10%,15%,
18%,23%,25%等)则为轻载,若负载122的电流值大于等于额定电流值的80%(或70%,
75%,82%,88%等)则为重载;或者若负载122的电压值不超过额定电压值的20%(或10%,
15%,18%,23%,25%等)则为轻载,若负载122的电压值大于等于额定电压值的80%(或
70%,75%,82%,88%等)则为重载;或者若负载122的功率值不超过额定功率值的20%(或
10%,15%,18%,23%,25%等)则为轻载,若负载122的功率值大于等于额定功率值的80%(或70%,75%,82%,88%等)则为重载。例如,输出电压Vout可以驱动智能手机,智能手机可以在对应于重载负载状态的活动模式下运转,或者对应于轻载负载状态的待机模式下运转。输入电压VDD 110可以由智能手机的电池供电。对于不同的负载状态,输出电压Vout可以处于不同的水平(例如输出电压的电压值不同),此外负载状态不同也可以负载的电流值不同,或者负载的功率值不同。例如,在活动模式下运转的智能手机需要的来自转换器的输出电压可能高于在待机模式下运转需要的输出电压。
[0029] 转换器100可以包括第一转换路径102和第二转换路径104。第一转换路径102和第二转换路径104可以耦合到的电感器106(电感器106耦合到输出节点124),第一转换路径102和第二转换路径104还可以耦合到晶体管118。当第一转换路径102和第二转换路径104中的任何一个启用时,转换器100可以用作降压转换器(buck converter)。在所示示例中,转换器100包括两个转换路径,然而,本发明不应限于两个转换路径。转换器可包括任何合适数量的转换路径,用于例如适应任何可能的负载状态。
[0030] 转换器100可以具有至少一个将输入电压直接转换为输出电压的转换路径,以及至少一个将输入电压转换为中间电压然后将中间电压转换为输出电压的转换路径,因此转换器100可以称为部分两阶段(two-stage)架构。在一些实施例中,第一转换路径102可以具有一阶段架构(将输入电压直接转换为输出电压),第二转换路径104可以具有两阶段架构(将输入电压转换为中间电压(输入电压Vin)然后将中间电压转换为输出电压)。第一转换路径102可以包括耦合在输入电压VDD 110和电感器106之间的晶体管116,并且第一转换路径102将输入电压VDD直接转换为输出电压Vout。第二转换路径104可以包括相互串联连接的DC-DC转换器112和晶体管114,DC-DC转换器112和晶体管114耦合在输入电压VDD 110和电感器106之间。第二转换路径可以首先将输入电压VDD转换为节点126处的中间电压,然后将该中间电压转换为输出电压Vout。在一些实施例中,DC-DC转换器112的效率可以高于转换器100的效率,例如在本发明中使用转换效率较高的DC-DC转换器。DC-DC转换器112可以是开关电容器DC-DC转换器,或降压转换器,或任何合适的DC-DC转换器,DC-DC转换器112可以将输入电压VDD 100进行降压转换,使在节点126处的电压(输入电压Vin)比输入电压VDD 100低。此外,本实施例中,转换器100包括第一转换路径102,第二转换路径104,电感器106,晶体管118,输出电容器108。转换器100可以包括控制器或不包括控制器,本实施例中以转换器100不包括控制器为例描述。
[0031] 转换器100可以由控制器120控制,控制器120可以是控制电路或程序设计有用于控制转换路径的指令的处理器。控制器120可以根据负载122的负载状态(例如重载或轻载)来控制第一转换路径102和第二转换路径104的启用或禁用。可以通过接通或断开晶体管116和114来分别启用或禁用第一转换路径102和第二转换路径104。在一些实施例中,晶体管116和114可以是功率场效应晶体管(FET,field effect transistor)。
[0032] 发明人已经认识并理解,当负载状态为重载时,与晶体管的导通电阻(Rds,on)成正比的传导损耗决定了功率损耗。将输入电压直接转换为输出电压可以产生最高效率,因为可以通过增加晶体管的栅极至源极电压(Vgs)来降低Rds,on。另一方面,当负载状态为轻载时,与晶体管的漏极至源极电压的平方(即Vds2)成正比的开关损耗变得与传导损耗相当。在多阶段中转换输入电压可以减少开关损耗,因此此时可以启用第二转换路径104,并禁用第一转换路径102。例如,Vds的值为4,直接转换的开关损耗结果为16(即42),而两阶段转换的开关损耗结果为8(即22和22的总和),这是直接转换的值的一半,因为每阶段的Vds的值为2(4/2(两阶段)=2),因此每阶段的开关损耗就是4(即22),两阶段的开关损耗就是8(即4+4)。
[0033] 在一些实施例中,当负载122的负载状态为重载时,控制器120可启用第一转换路径102,并禁用第二转换路径104。第一转换路径102,晶体管118,电感器106,输出电容器108可以用作降压转换器。例如,当晶体管116导通时,电感器106和输出电容器108可以充电;当晶体管116截止时,电感器106和输出电容器108可以提供输出电压Vout。此时通过第一转换路径102将输入电压VDD转换为输出电压,以用于重载的负载状态。
[0034] 在一些实施例中,当负载122的负载状态为轻载时,控制器120可以启用第二转换路径104,并禁用第一转换路径102。第二转换路径104,晶体管118,电感器106,输出电容器108可以用作降压转换器。控制器120可以根据例如负载122的值来控制DC-DC转换器112的输出电压,其中负载122的值可以由主机系统(例如计算器系统或智能手机系统)请求的电压或电流来测量。DC-DC转换器112在节点126处的输出电压可以低于输入电压VDD110,使得可以提高轻载负载的效率。DC-DC转换器112的输出电压可以是输入电压VDD 110的一半,输入电压VDD 100的四分之一或任何合适的值。此时通过第二转换路径104将输入电压VDD转换为输出电压,以用于轻载的负载状态。此外,第一转换路径102和第二转换路径104的转换效率可以相同或不同。并且通过第一转换路径102转换后在输出节点124处产生的输出电压与通过第二转换路径104转换后在输出节点124处产生的输出电压可以相同,也可以不同(例如第二输出电压低于第一输出电压,当然第二输出电压也可以高于第一输出电压)。此外在本实施例中,晶体管118,电感器106,输出电容器108可以为第一转换路径102和第二转换路径104共享,晶体管118可以在电感器106和输出电容器108可以提供输出电压Vout时起到辅助作用。
[0035] 在一些实施例中,控制器120可以根据负载122的瞬态响应(例如快速或慢速)来控制第一转换路径102和第二转换路径104的启用或禁用。在一些实施例中,当负载122所需要的瞬态响应为快速时,控制器120可启用第一转换路径102,并禁用第二转换路径104。在一些实施例中,当负载122所需要的瞬态响应为慢速时,控制器120可以启用第二转换路径104,并禁用第一转换路径102。这是因为,在启用第一转换路径102时,输入电压Vin等于输入电压VDD 100,因此输入电压Vin与输出电压Vout差值较大,所以电感器的电流转换速率(即(Vin-Vout)/L)较大,瞬态响应就比较快速。因此对应的,在重载状态下时,瞬态响应比较快速。而在启用第二转换路径104时,输入电压Vin等于节点126处的电压值,节点126处的电压值比输入电压VDD 100低,因此输入电压Vin与输出电压Vout差值较小,所以电感器的电流转换速率(即(Vin-Vout)/L)较小,瞬态响应就比较慢速。因此对应的,在轻载状态下时,瞬态响应比较慢速。
[0036] 在一些实施例中,负载状态可以指示由转换器的输出电压驱动的负载的大小,以及负载的瞬态响应。在一些实施例中,当负载状态为轻载但需要输出电压下降超过一定量时,例如2%,3%,或多于另一轻载负载的瞬间(instant)先前输出电压(如0.7V),控制器120可启用第一转换路径102,并禁用第二转换路径104。也就是说,在轻载状态下负载突然增大,使得较低的输入电压Vin无法负担时,将会控制使用第一转换路径,从而增加输入电压Vin,使得可以驱动增加的负载(例如重载)。在一些实施例中,当负载状态为轻载但需要输出节点处的输出电流在一定时间内增加时,例如通过1μH的电感器106在0.1ms内从0A增加到1A,控制器120可以启用第一转换路径102,并且禁用第二转换路径104。也就是说,如果在轻载状态时需要快速瞬态响应,可以启用第一转换路径102(当然此时瞬态响应快速而转换器的效率因为功率损耗较大(例如上述描述的直接转换导致功率损耗为42=16)的原因相对较低)。另一方面,当负载可以接受所需的输出电流在较长时间内(例如5ms)才提供时,控制器120可以启用第二转换路径104,并且禁用第一转换路径102,以得到更高的效率。也就是说,如果在轻载状态时不需要快速瞬态响应时(即轻载状态时为慢速瞬态响应),可以继续启用第二转换路径104,而此时的转换效率相对较高。
[0037] 在一些实施例中,转换器可以针对不同的转换路径具有不同的输入电压。图2描绘了单相转换器200的示例性实施例,单相转换器200可以具有第一转换路径202和第二转换路径204。类似于图1所示的转换器100的第一转换路径102和第二转换路径104,图2中的第一转换路径202和第二转换路径204可以耦合到的电感器206(电感器206耦合到输出节点224),此外还设有输出电容器208耦合到输出节点224。第一转换路径202和第二转换路径
204也可以耦合到晶体管218。
[0038] 第一转换路径202和第二转换路径204可以分别耦合到第一输入电压VDD和第二输入电压VCC。第一输入电压VDD可以由电池226提供。第二输入电压VCC可以来自由转换器200驱动的系统222(例如智能手机的系统)的内部节点。第二输入电压VCC可以低于第一输入电压VDD。
[0039] 第一转换路径202和第二转换路径204可以分别包括晶体管216和晶体管214。转换器200可以由控制器220控制,控制器220可以根据例如系统222的运转模式(例如轻载或重载)来控制第一转换路径202和第二转换路径204的启用或禁用。
[0040] 在一些实施例中,当系统222在重载模式下运转时,控制器200可以启用第一转换路径202,并且禁用第二转换路径204。这是因为,第一输入电压VDD的电压值较高(比第二输入电压VCC的电压值高),如上所述,当负载状态为重载时,与晶体管的导通电阻(Rds,on)成正比的传导损耗决定了功率损耗。将输入电压直接转换为输出电压可以产生最高效率,因为可以通过增加晶体管的栅极至源极电压(Vgs)来降低Rds,on。从而降低传导损耗,以提高转换效率。因此,转换器200可以将第一输入电压VDD转换为在输出节点224处的第一输出电压,以用于重载模式。
[0041] 在一些实施例中,当系统222在轻载模式下运转时,控制器200可以禁用第一转换路径202,并且启用第二转换路径204。这是因为,第二输入电压VCC的电压值较低(比第一输入电压VDD的电压值低),如上所述,当负载状态为轻载时,与晶体管的漏极至源极电压的平2
方(即Vds)成正比的开关损耗变得与传导损耗相当,因此减少晶体管214的输入电压(即第二输入电压VCC较低)将可以减少开关损耗,从而提高转换效率。因此,转换器200可以将第二输入电压VCC转换为在输出节点224处的第二输出电压(在一个示例中,第二输入电压低于第一输出电压),以用于轻负载模式。因此,尽管第二输出电压低于第一输出电压,但是可以提高转换器的轻载效率。此外,本实施例中转换器还可以具有更多个转换路径,例如第三转换路径,其中与第三转换路径对应的第三输入电压可以比第一输入电压VDD更高,例如第一输入电压VDD为4,第二输入电压VCC为2,第三输入电压为16,这样就可以更加精细的对应不同的负载或不同速度的瞬态响应。例如在最为重载的情况下,为提高转换效率而使用第三转换路径;在次级重载的情况下,可以使用第二转换路径;在轻载的情况下可以使用第三转换路径。
[0042] 图3描绘了单相转换器300的示例性实施例,单相转换器300可以分别经由单独的第一转换路径302和第二转换路径304转换一个输入电压VDD310,以分别用于重载和轻载状态。转换器300可以将输入电压VDD 310转换为在输出节点324处的输出电压Vout,以驱动负载322。第一转换路径302和第二转换路径304可以耦合到电感器306(电感器306耦合到输出节点324)。第一转换路径302和第二转换路径304还可以耦合到相互串联连接的晶体管318和晶体管328。第一转换路径302可以包括晶体管316。
[0043] 第二转换路径304可以包括相互串联连接的晶体管314和晶体管326。转换器300还可以包括耦合在晶体管326和晶体管318之间的飞跨电容器(flying capacitor)330。在一些实施例中,晶体管314和晶体管326之间可以驱动为180度异相。飞跨电容器330可以在每个切换周期重复充电和放电。除了输出电容器308之外,飞跨电容器330在放电时可以用作另一个电源(例如第二电源),当然电感器306也可以在放电时作为电源。
[0044] 转换器300可以由控制器320控制,控制器320可以根据负载322的负载状态控制第一转换路径302和第二转换路径304的启用或禁用。基于与图1类似的原因,在一些实施例中,当负载322的负载状态为重载时,控制器320可以启用第一转换路径302,并且禁用第二转换路径304。然后,转换器300可以用作降压转换器以用于快速瞬态响应性能。另一方面,当负载322的负载状态为轻载时,控制器320可以启用第二转换路径304,并且禁用第一转换路径302。此外,当启用第一转换路径302时,晶体管318和328控制为同时接通或断开,以在电感器306和输出电容器308作为电源时起到辅助作用。而当启用第二转换路径304时,晶体管318用作第二转换路径304其中的一阶段(第二转换路径304此时有3阶段,包括晶体管326,314和328),而晶体管328在电感器306和输出电容器308作为电源时起到辅助作用。因此,当启用第二转换路径304时,转换器300可以用作3阶段降压转换器(包括晶体管326,314和328),这样可以使开关损耗更低,以用于高轻载效率。
[0045] 图4描绘了根据一些实施例的多相转换器400。转换器400可以将输入电压VSP转换为在输出节点424处的输出电压VS1,以驱动负载(图未示)。转换器400可以包括第一转换路径402和第二转换路径404。控制器(图未示,例如类似于图1中的控制器120)可以根据负载的负载状态控制第一和第二转换路径402,404的启用或禁用。
[0046] 在一些实施例中,当负载状态为重载时,输入电压VSP可以通过第一转换路径402转换为第一输出电压,以驱动负载。第一转换路径402可以包括耦合到输入电压VSP的多个晶体管MH,1,...MH,N。第一转换路径402可以包括耦合到输出节点424的多个电感器L1,......LN,并且多个电感器L1,......LN还分别耦合到多个晶体管MH,1,...MH,N。第一转换路径402和晶体管ML,1可以用作多相降压转换器。
[0047] 在一些实施例中,当负载状态为轻载时,输入电压VSP可以通过第二转换路径404转换为第二输出电压(第二输出电压可以低于第一输出电压),以驱动负载。第二转换路径404可以包括串联连接到晶体管MLP的DC-DC转换器412。DC-DC转换器412在节点426处的输出电压可以低于输入电压VSP。因此,尽管第二输出电压可以低于第一输出电压,但是转换器400可以在重载负载和轻载负载状态下均具有高效率。此外VSN可以接地或接负电压。此外,作为另外一个示例,第二输出电压可以等于第一输出电压。
[0048] 图5描绘根据一些实施例的具有多个输出的电源管理集成电路(PMIC,power management integrated circuit)500的示意图。当然图5所示的电路也可以单独用于转换器中,此外图1-图4所示的电路可以用在PMIC中。PMIC500可以包括具有第一输出节点424的第一转换器BUCK1,以及将输入电压VSP转换为在第二输出节点524处的输出电压VSM的第二转换器BUCKN。在一些实施例中,第一转换器BUCK1可以具有转换器400的一些或者全部的特征。尽管PMIC 500在所示的示例中包括两个输出节点,但PMIC可包括三个,四个或任何合适数量的输出节点。
[0049] 第二转换器BUCKN可以具有两个转换路径502,504。在一些实施例中,第二转换器BUCKN可以具有转换器400的一些或全部的特征。在一些实施例中,转换路径502可以包括耦合到输入电压VSP的多个晶体管MH,M1,......MH,MN。转换路径502可以包括耦合到输出节点524的多个电感器LM1,......LMN,并且多个电感器LM1,......LMN还分别耦合到多个晶体管MH,M1,......MH,MN。当第二输出节点524处的负载状态为重载时,输入电压VSP可以通过转换路径502转换。因此,转换路径502和晶体管ML,M1可以用作多相降压转换器。
[0050] 在一些实施例中,第二转换路径504可以包括串联连接到晶体管MLP,M的DC-DC转换器412。当第二输出节点524处的负载状态为轻载时,输入电压VSP可以通过转换路径504转换。因此,第二转换器BUCKN可以用作降压转换器。此外,类似于图4所示的转换器400,当负载状态为重载时,输入电压VSP可以通过转换路径(例如与图4中的第一转换路径402对应的转换路径)转换为在节点424处的第一输出电压,以驱动负载。当负载状态为轻载时,输入电压VSP可以通过转换路径(例如与图4中的第二转换路径404对应的转换路径)转换为在节点424处的第二输出电压,以驱动负载。
[0051] 图6描绘了用于在转换器(例如转换器100,200,300,400或500)的输出节点处生成输出电压的方法600。方法600可以从步骤602在负载状态改变时开始。方法600可以包括步骤604,确定负载的大小,其中可以通过例如将负载的输出电压或负载的目标输出电流与阈值电压/电流进行比较来确定负载的大小。当确定负载的大小为重载时,方法600可以包括步骤606,启用第一转换路径(例如上述的转换路径102,202,302,402或502),以及禁用第二转换路径(例如上述的转换路径104,204,304或404)。
[0052] 当确定负载的大小为轻载时,方法600可以包括步骤608,确定负载的瞬态响应,其中可以通过例如将瞬态响应与阈值进行比较来确定负载的瞬态速度。当确定负载的瞬态响应速度为快速时,方法600可以包括步骤606,启用第一转换路径(例如上述的转换路径102,202,302,402或502),以及禁用第二转换路径(例如上述的转换路径104,204,304或404)。当确定负载的瞬态响应速度为慢速时,方法600可以包括步骤610,启用第二转换路径(例如上述的转换路径104,204,304或404),以及禁用第一转换路径(例如上述的转换路径102,202,
302,402或502)。应当理解的是,方法600的步骤不应限于所示的顺序。在一些实施例中,步骤608可以在步骤604之前执行,例如,方法600可以从步骤602在负载状态改变时开始;之后确定负载的瞬态响应速度,若负载的瞬态响应速度为快速,则启用第一转换路径以及禁用第二转换路径;若负载的瞬态响应速度为慢速,则确定负载的大小,若负载的大小为重载,则启用第一转换路径以及禁用第二转换路径;若负载的大小为轻载,则启用第二转换路径以及禁用第一转换路径。在一些实施例中,步骤600可以仅包括步骤604和608中的一个,例如,方法600可以从步骤602在负载状态改变时开始,之后确定负载的大小,若负载的大小为重载,则启用第一转换路径以及禁用第二转换路径;若负载的大小为轻载,则启用第二转换路径以及禁用第一转换路径。又例如,方法600可以从步骤602在负载状态改变时开始;之后确定负载的瞬态响应速度,若负载的瞬态响应速度为快速,则启用第一转换路径以及禁用第二转换路径,若负载的瞬态响应速度为慢速,则启用第二转换路径以及禁用第一转换路径。在一些实施例中,方法600可以包括任何其他合适的步骤。
[0053] 本文描述的装置和技术的各个方面可以单独使用,组合使用,或者在前面的描述中描述的实施例中没有特别讨论的各种布置中使用,因此在前面的描述中阐述的或在附图中示出的组件不限于本文描述的装置和技术应用的细节和布置。例如,一个实施例中描述的方面可以以任何方式与其他实施例中描述的组合。
[0054] 术语“大约”,“基本上”和“大约”可以用于表示在一些实施方案中在目标值的±20%之内,在一些实施方案中在目标值的±10%之内,在一些实施方案中在目标值的±5%之内,在一些实施方案中在目标值的±2%之内。
[0055] 在权利要求中使用诸如“第一”,“第二”,“第三”等的序数术语来修饰权利要求元素本身并不意味着一个该特征优先于另一特征的优先级,或者执行方法的动作的时间顺序,而是仅用作标记以将具有特定名称的一个特征与具有相同名称的另一个特征(但是用于使用序数术语)区分,以区分特征。
[0056] 此外,这里使用的措辞和术语是出于描述的目的,而不应被视为限制。本文中“包括”,“包含”或“具有”,“含有”,“涉及”及其变化形式的使用旨在涵盖其后列出的特征及其等同物以及附加特征。
[0057] 本领域的技术人员将容易地观察到,在保持本发明教导的同时,可以做出许多该装置和方法的修改和改变。因此,上述公开内容应被解释为仅由所附权利要求书的界限和范围所限制。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈