首页 / 专利库 / 光学 / 快门眼镜 / 无眼镜多观众三维显示的组件与方法

无眼镜多观众三维显示的组件与方法

阅读:899发布:2020-05-13

专利汇可以提供无眼镜多观众三维显示的组件与方法专利检索,专利查询,专利分析的服务。并且该 发明 有关于无眼镜和无观众人数限制的三维显示方法及相应组件,它对于眼睛 位置 有一定的宽容度,其重要的 基础 是“眼空间”概念的引入和快 门 屏幕上的快门瞳孔的控制 电路 单元。该方法适应于任何三维显示,如电视,计算机终端,智能器件(iPhone,iPad,等),电影院,游戏,等。有两种方法,其一是”模仿情景方法”,其二是”动态小孔快门方法”。,下面是无眼镜多观众三维显示的组件与方法专利的具体信息内容。

1.基于眼空间概念的裸眼三维显示方法,其特征在于,包含有
(1)一个图像像素发光屏幕,用于像素亮度颜色的显示,在动态小孔快方法中,发光屏又叫图像像素屏幕;
(2)至少一个快门屏幕并相对发光屏幕有适当的距离,用于控制光线的方向,使光进入应该进入的区域,也就是眼空间中属于左眼和右眼的区域,分别叫做左眼区和右眼区,统称眼区;
(3)由地址矩阵构成的地址驱动器用于形成快门瞳孔或控制发光像素大小,用来控制和实现物理极限最密集的观看视点;
(4)确定快门屏幕快门位置及尺寸和发光屏上发光像素位置的方法,在动态小孔快门方法中,快门屏幕各动态快门位置及尺寸,是由所要显示的显示像素位置及尺寸和所有相应的眼区位置及尺寸决定的;在模仿情景方法中,引入图像空间中的深度剖面上虚拟发光点概念,所要显示的显示像素就像是从这虚拟发光点发散出来,内外快门屏幕上各动态快门位置及尺寸以及发光屏上发光像素位置,也是由所要显示的虚拟发光点位置及尺寸和所有相应的眼区位置及尺寸决定的;
(5)发光屏和快门屏幕的控制方法;
在此,基于眼空间概念的裸眼三维显示方法及其组件对模仿情景方法和动态小孔快门方法两者都适用,也适用于任何三维显示;
在此,眼空间概念提供了快门像素控制的关键基础,眼空间由密排的左眼右眼对组成,相邻的左眼右眼对之间的平距离就是人眼间距,因此能达到上述物理极限最密集的观看视点。
2.根据权利要求1所述的方法,其中图像像素发光屏幕和快门屏幕的控制方法的特征在于,
(1)关于快门屏幕上快门瞳孔的确定,在动态小孔快门方法中,对于图像像素发光屏上给定的一个像素,眼空间中眼区的尺寸和位置及其像素的尺寸和位置决定了快门屏幕上快门瞳孔位置和大小,在模仿情景方法中,对于图像空间中给定的一个虚拟像素,眼空间中眼区的尺寸和位置及其上述虚拟发光点的高度和位置决定了发光屏上发光瞳孔的位置和大小,和及其内外快门屏幕上相应快门瞳孔的位置和大小;
(2)关于发光屏的扫描,在图像像素发光屏上或在图像空间中,发光屏幕的扫描能接受传统有眼镜三维显示相同的方式对像素扫描,单屏扫描,多子屏即多区同步扫描即就是每个子屏同时分别扫描与其位置相应的那部分图像,但是,要轮换每一子屏,分别给眼空间中不同的区;在扫描过程中,当一个像素被选到时,即就是当一个像素发光时,属于这个像素的所有颜色像素可以是同时发光,或是按顺序分别发光;
(3)关于发光屏和快门屏幕的控制,(a)当发光屏上的右眼图像像素或左眼图像像素发光时,快门屏幕上与所有右眼相对应的所有快门瞳孔,或与所有左眼相对应的所有快门瞳孔,将同时打开,也就是在这些快门瞳孔的每一个中,所有快门光或快门像素打开让光通过,这个动态过程是由快门的静态地址驱动器来控制的,快门地址驱动器又分右眼地址驱动器和左眼地址驱动器,而右眼地址驱动器或左眼地址驱动器又分列地址驱动器和行地址驱动器,一维光栅是二维光栅中快门瞳孔变成快门瞳条的约简特例,行地址驱动器中多行退化为一行,也就是说一维光栅只需要列地址驱动器;(b)当图像空间一个虚拟像素被选到时,为此虚拟像素,图像空间中所有的虚拟像素都将被一一扫描一遍,对于每一扫到的虚拟像素,分区发光屏幕上所有相应像素都同时发光,而且,内外快门屏幕上所有相应的快门瞳孔都同时打开,也就是在这些快门瞳孔的每一个中,所有快门光阀或快门像素打开让光通过,这个动态过程是由快门的动态地址驱动器来控制的,即就是对于图像空间中给定的一个虚拟像素,发光屏上发光瞳孔的位置和大小及其内外快门屏幕上相应快门瞳孔的位置和大小由动态地址驱动器来控制,而且,快门地址驱动器不分右眼地址驱动器或左眼地址驱动器,但分列地址驱动器和行地址驱动器,一维光栅是二维光栅中快门瞳孔变成快门瞳条的约简特例,行地址驱动器中多行退化为一行,也就是说一维光栅只需要列地址驱动器。
3.根据权利要求1所述的方法,其中由地址矩阵构成的地址驱动器的特征在于,(1)是在地址驱动器的控制下,形成了为裸眼三维显示所要求的快门瞳孔,在动态小孔快门方法中,地址驱动器驱动快门屏幕上的快门光阀或快门像素,在模仿情景方法中,除地址驱动器驱动内外两快门屏幕上的快门光阀或快门像素外,还驱动发光屏幕上的发光像素;
(2)地址驱动器包括两部分,即列地址驱动器并带有列地址矩阵,和行地址驱动器并带有行地址矩阵;在此,地址矩阵是一个导体网,每一个网交叉处形成一个节点但交叉导体网线并不直接相连,在所有节点中的每一个,或在部分节点中的每一个,都有一个元件,或是一个电压受控开关元件,或是一个单向导通元件,与交叉处两导体网线相连;
(3)快门屏幕上,快门瞳孔中的快门像素开或关的状态,和发光屏幕上像素的发光与否,是由行地址矩阵中的行网线与列地址矩阵的列网线之间的电压差来决定,当行地址矩阵中只有一条行网线时,即为一维光栅;
(4)列地址矩阵的列网线电压,又是上述电压受控开关元件或单向导通元件的导通状态所决定,而这个导通状态又是由那个触发图像屏幕上每个像素的信号或触发图像空间里每个虚拟像素的信号所控制,触发信号是由列地址矩阵的行网线传导的,此外,若对于基于动态小孔快门方法有眼跟踪的系统或基于模仿情景方法的系统,导通状态还由从动态控制引线而来的动态控制电压与上述触发信号来共同控制;
(5)行地址矩阵的行网线电压,也是上述电压受控开关元件或单向导通元件的导通状态所决定,而这个导通状态又是由那个触发图像屏幕上每个像素的信号或触发图像空间里每个虚拟像素的信号所控制,触发信号是由行地址矩阵的列网线传导的,同样,若对于基于动态小孔快门方法有眼跟踪的系统或基于模仿情景方法的系统,导通状态还由从动态控制引线而来的动态控制电压与上述触发信号来共同控制;
此外,
若无眼跟踪系统,快门瞳孔的地址矩阵是在电路设计时事先决定的,若有眼跟踪系统,快门瞳孔的地址矩阵是动态计算和动态控制的;
在动态小孔快门方法中,若眼空间分多区,每一个区都需要一个为所有右眼的行地址矩阵和一个为所有右眼的列地址矩阵;
在动态小孔快门方法中,若眼空间分多区,每一个区都需要一个为所有左眼的行地址矩阵和一个为所有左眼的列地址矩阵;
在模仿情景方法中,若眼空间分多区,每一个区只需要一个为所有的眼的行地址矩阵和一个列地址矩阵,而不区分左眼和右眼。
4.根据权利要求1所述的方法,其中基于像素景深地图的模仿情景方法的特征在于,含有,至少一个地址驱动器,至少一个由地址驱动器所驱动的发光屏,至少一个由地址驱动器所驱动的内快门屏幕,至少一个由地址驱动器所驱动的外快门屏幕,地址驱动器控制单元和数据流处理单元,和为裸眼三维显示的算法及控制流程,发光屏幕上发光像素的位置和发光瞳孔的大小,和内外快门屏幕上相应快门瞳孔的位置和大小,由眼空间中眼睛的位置和给定图像像素的位置和像素景深即虚拟发光点高度决定。
5.根据权利要求1所述的方法,其中动态小孔快门方法的特征在于,含有,至少一个地址驱动器,至少一个图像像素发光屏,至少一个由地址驱动器所驱动的快门屏幕,地址驱动器控制单元和数据流处理单元,和为裸眼三维显示的算法及控制流程,快门屏幕上相应快门瞳孔的位置和大小,由眼空间中眼睛的位置和给定图像像素的位置决定。
6.根据权利要求1所述的方法,其中确定快门屏幕快门位置及尺寸和发光屏上发光像素位置的方法的特征在于,在动态小孔快门方法中,快门屏幕各动态快门位置及尺寸,是由两条线在快门屏幕上的两交点位置及间距决定的,这两条线中的一条从眼区的右沿到像素的左沿,另一条从眼区的左沿到像素的右沿;在模仿情景方法中,内外快门屏幕上各动态快门位置及尺寸和发光屏上发光像素位置及数目,是由两条线在内外快门屏幕上和发光屏上的两交点位置及间距决定的,这两条线中的一条从眼区的右沿到所要显示的虚拟像素的左沿,另一条从眼区的左沿到所要显示的虚拟像素的右沿。
7.根据权利要求1所述的方法,其中眼空间的特征在于,在动态小孔快门方法中,眼空间的诸多眼要分类成左眼集和右眼集,因此需要两种地址驱动器分别为左眼集和右眼集,在模仿情景方法中,无需区分左眼和右眼,因此只需一种地址驱动器,而每种地址驱动器包含行地址驱动器和列地址驱动器,对一维光栅而言只包含列地址驱动器。
8.根据权利要求3所述的方法,其中地址驱动器的进一步特征在于,无论行地址驱动器,还是列地址驱动器,都含有一组或多组地址矩阵,分别针对眼空间是单一区或是多区,对于模仿情景方法,每一组为所有眼的行地址矩阵和列地址矩阵,对于动态小孔快门方法,每一组为所有左眼的行地址矩阵和列地址矩阵,以及所有右眼的行地址矩阵和列地址矩阵,在此,多组中的每一组用眼空间中多区中的每一区,以便当给定眼运动的容忍度时增加眼空间的总景深,或给定总景深时增加每个区内眼运动的容忍度,在此,眼空间中的诸多区域中,自下而上其眼-屏间距是增加的,因而快门瞳孔的尺寸是减小的,相应地,快门瞳孔密度和眼区投影密度是增加的。
9.根据权利要求3所述的方法,其中单向导通元件的特征在于单向导通元件是任何一种能够单向导通的器件。
10.根据权利要求3所述的方法,其中电压受控开关元件的特征在于,电压受控开关元件是任何一种可能够由电压来控制其方向导通的器件,其单向导通性是由称之为导通性控制电压的第二个电压所控制,使之具备导通的条件但需要称之为快门开关控制电压的第一个电压也满足适当的条件,或使之全然不具备导通的条件。

说明书全文

无眼镜多观众三维显示的组件与方法

[0001] 相关优先申请
[0002] 该申请请求标题为“Method of Glassless 3D Display(无眼镜三维显示的方法)”的美国专利优先申请(申请号为No.61/744,786)的优先权,此美国专利优先申请于2012年10月1日邮寄提交,其美国专利局注册日期为2012年10月4日。

技术领域

[0003] 该发明有关于无眼镜和无观众人数限制的三维显示方法及相应组件,对于眼睛位置也有一定的宽容度,它适应于任何三维显示。

背景技术

[0004] 当前的无眼镜三维显示系统,其技术主要基于光行差,扁豆状透镜,光栅,微透镜阵列(如集成光刻术),菲涅尔镜,球面镜,全息屏幕等,除全息屏幕外,观看人数是有限的,如在2011FPD中国展览会上,三星(Samsung)示范了9人同时观看的三维电视,东芝也研发了3人同时观看的样机。下面第一个图(但编号为16,即图16)是“已有技术”的一个例证,从其中我们可以看到基于光行差方法三维显示的原理,且以6人同时观看为例,为最佳是看效果,要把电视屏分成6个子屏(1行6列,或2行3列),每个子屏同时分别显示与其位置相应的那幅部分图像,但是,要轮换每一子屏,分别把最佳视投射给6个观众中的每一个(通过调节像素位置或光栅位置)。可以看到,观看者的位置是固定的,没有自由余地。
[0005] 相关的美国专利
[0006]
[0007]
[0008] 美国以外的相关专利
[0009]
[0010]

发明内容

[0011] 该发明有关于无眼镜和无观众人数限制的三维显示方法及相应组件,它对于眼睛位置有一定的宽容度,其重要的基础是“眼空间”概念的引入和快屏幕上的快门瞳孔的控制电路单元。该方法适应于任何三维显示,如电视,计算机终端,智能器件(iPhone,iPad,等),电影院,游戏等。有两种方法,其一是”模仿情景方法”,其二是”动态小孔快门方法”。附图说明
[0012] 图16是“已有技术”的一个举例--基于光行差方法的三维显示原理和6观众子屏轮换;
[0013] 图1是“模仿情景方法”中,景点在显示屏之内(屏后)的情形;
[0014] 图2是“模仿情景方法”中,景点在显示屏之外(屏前)的情形;
[0015] 图3是“模仿情景方法”系统构建的一个举例,以说明其三维显示的过程和控制;
[0016] 图4是眼空间举例,以说明眼空间与像素(显示)屏幕和快门屏幕的关系;
[0017] 图5是两个举例,以说明眼空间和眼睛容忍度范围;
[0018] 图6是另外两个举例,以进一步说明眼空间和眼睛容忍度范围;
[0019] 图7说明不同横向位置处的眼睛容忍度范围;
[0020] 图8说明不同纵向深度处的眼睛容忍度范围;
[0021] 图9说明,在快门屏幕上,怎样确定对应于所有右眼的快门瞳孔的位置和大小;
[0022] 图10说明,在快门屏幕上,怎样确定对应于所有左眼的快门瞳孔的位置和大小;
[0023] 图11是一个近看图,以说明像素(显示)屏幕上的像素,和快门屏幕上的快门瞳孔和快门像素;
[0024] 图12是三维显示系统构建的一个举例,以说明无眼镜三维显示的过程和控制,对于“模仿情景方法”和“动态小孔快门方法”两者都适应;
[0025] 图13是三维显示系统构建的一个固定瞳孔举例,以说明无眼镜三维显示的过程和控制,只适应于“动态小孔快门方法”,瞳孔开关的状态是在制造时就固定了;
[0026] 图14是三维显示系统构建的另一个固定瞳孔举例,以说明无眼镜三维显示的过程和控制,只适应于“动态小孔快门方法”,瞳孔开关的状态也是在制造时就固定了;
[0027] 图15是三维显示系统构建的一个动态瞳孔举例,以说明无眼镜三维显示的过程和控制,瞳孔开关的状态是可以动态调节的;

具体实施方式

[0028] 在该发明中,我们提出了两套三维显示的方法及其相应的组件,一种方法叫做”模仿情景方法”,另一种方法叫做”动态小孔快门方法”,两套方法的基础是“眼空间”概念,和快门瞳孔的控制电路单元,下面将给出详细描述。
[0029] <模仿情景方法>
[0030] 如图1和图2所示,在模仿情景方法中,将要用到情景的深度(景深)地图,图1是景点在显示屏之内(屏后)的情形,图2是景点在显示屏之外(屏前)的情形。关于景深地图,(1)可由2D到3D的转换技术得到,或(2)通过对两幅立体图像(即左眼和右眼的图像)快速傅里叶变换相关分析做重建而得到,就如图1所示,或(3)通过景深地图相机得到(这种情形下,电视发射塔需发送一幅2维电视图像和一幅景深地图图像,可节约二色数据的带宽。我们已知道,对于3维电视,一般而言,需要两组3色数据,即总共6色数据带宽)。对于第(2)种情形而言,第一步要做的就是匹配过程,也就是找出两幅立体图像画面中的对应点x’1和x’2,再利用相机的设置参数(即,两眼或两相机(51,52)的间距a,两眼或两相机(51,52)视角a1=a2,相机的焦距长度f),来构建图像的景深z=zo+dk,这要用到下面的公式,
[0031]
[0032]
[0033]
[0034] 从(1)到(3)式中求解出(z,x,y),即
[0035]
[0036]
[0037]
[0038] 为了理解方便,让我们考虑一个想象的“图像空间”(PS)92,如图3所示,这个图像空间包含了与两幅立体图像中任何一个图像相同大小的像素阵列(N1 x N2),而且,图像空间中的虚拟像素与两幅立体图像中任何一个图像的像素有一对一的对应关系。对于图像空间中位于(i,j)的指定虚拟像素[也就是在第i行,第j列,那么有,x=j,和y=i],要在两幅立体图像中找到这个虚拟像素的两个对应点的位置(x’1,y’1)和(x’2,y’2),需要用到两幅立体图像中围绕像素(i,j)的子像素阵列(n1 x n2)[也就是,子像素阵列中心位于(x,y),,而且,n1和n2应足够大,但应满足n1<<N1和n2<<N2],然后把快速傅里叶变换相关分析用到这两个子像素阵列上,从而得到这两个子像素阵列间的图像位移量(dX,dY),于是,作为一级近似,x’1=x+dX/2,x’2=x-dX/2,和y’1=y+dY/2,y’2=y-dY/2,进而从上面(4)式中计算z。若需要,可以通过迭代计算对(x’1,y’1),(x’2,y’2)和z作修正,即就是,对于给定的z,从(5)和(6)是中求解出x’2和y’2,然后,通过适当的加权对新的(x’2,y’2)与老的(x’2,y’2)进行混合,从而得到修正的(x’2,y’2),然后用x’1=x’2+dX和y’1=y’2+dY得到修正的(x’1,y’1)。最后,把修正的(x’1,y’1)和(x’2,y’2)代入(4)式中,便得到修正的z,如此作下去,直到新值与老值的差异足够小为止。当两幅立体图像中存在大面积的均匀区域是,需要用以特殊处理,即用分解的图像(例如,1/4,1/16,1/64,...)来作快速傅里叶变换相关分析。
[0039] 一旦显示处理单元90(如图3所示)接受到左眼和右眼图像信号(或接受一幅图像信号和景深地图),处理单元90可用任何方法,例如上所述的方法,来得到景深剖面40(还需要更复杂的技术来处理“丢失部件”的困难),然后,处理单元90计算像素串中的每个像素的位置(指向眼空间每个眼的射线对应一个像素串,指向给定眼的射线的像素串含有三个像素,并排成沿射线方向的直线,三个像素分别在发光屏10(叫做发光像素),内层方向快门屏20和外层方向快门屏30上(都叫快门像素)),再准备为这些像素的开关所需的的单元选择地址编码,之后,再把这些信息组合成显示数据流,并把数据流送到显示缓冲器(60,70,
80),这只是暂时储存,以便为释放做好准备,一旦收到触发信号就释放。显示数据流包括了三种数据流,他们分别送到发光屏10,内层方向快门屏20和外层方向快门屏30。对于给定的方向(或给定的射线),发光屏10上的像素(含颜色亮度)与方向快门20和30上的像素同步地打开和关闭。图像空间中的虚拟像素与发光屏10及方向快门20和30上的像素时有区别的,图像空间中的每一虚拟像素与景深剖面上的“物点”有一对一的关系,它包含了该“物点”的颜色和亮度,而这个“物点”又发射射线到所有的方向或到眼空间中所有的眼[对于动态小孔快门方法,眼空间如图4所示,对于模仿情景方法,其眼空间与图4所示类似,但不完全相同,对于模仿情景方法,眼空间无需区分左眼和右眼,而且眼密度可以比动态小孔快门方法高很多,因为动态小孔快门可以是一维的,也可以是二维。一维光栅是二维光栅中快门瞳孔变成快门瞳条的约简特例,以下用二维光栅来说明]。因此,图像空间中的每一虚拟像素都包含了信息(dk,R,B,G,I),其中dk是该像素的景深,(R,B,G)是该像素的颜色,I(还取决于电视机设置)是该像素的亮度,并且,虚拟像素的信息决定了发光屏10上的像素的位置,颜色和亮度。图像空间虚拟像素的密度与常规的二维或三维显示的密度相同,但是,发光屏10和方向快门20和30上的像素密度是由眼空间的眼密度决定,而这个密度需比虚拟像素的密度高很多。
[0040] 至于发光屏10和方向快门20和30,如图1和2所示,他们有下列构成方式:(1)一整片像素阵列(二维),或(2)一整片竖直像素条阵列(一维),或(3)分片像素阵列群(二维),或(4)分片竖直像素条阵列群(准一维),分片阵列可以看作是子屏。
[0041] 在(1)和(2)的情形中,对景深剖面40上的每一个“物点”(即图像空间中的每一个虚拟像素),需平方向扫描每个像素条或水平方向和竖直方向(即一行一行地或一列一列地)扫描每个像素。当扫过时,整个发光屏10的所有像素或像素条都发与该“物点”相同的颜色和亮度,即整屏颜色和亮度是均匀的,但只是扫过,不是同时发光;
[0042] 在(3)和(4)的情形中,整屏被分成子屏,对景深剖面40上的每一个“物点”,做与上相同的事,即也需水平方向扫描每个像素条或从水平方向和竖直方向扫描每个像素。但当扫过时,发光屏10中的每个子屏(而不是整屏)的所有像素或像素条都发与该“物点”相同的颜色和亮度(即整个子屏颜色和亮度是均匀的),到此还有两个选择:(a)在所有子屏中,像素条或像素同时扫描,由于相邻两个子屏中的对应像素条或像素有一常数间距(当打开发光时),这个间距(即子屏的大小)应足够大以避免“错误的射线”,如图1所示的长虚线dir1和dir2;(b)在子屏中,不做像素条或像素扫描,而是同时打开或关闭所有的像素条或像素,但任何两个相邻两个子屏不是同时打开或关闭,而应交替打开或关闭,以避免上述“错误的射线”。
[0043] 图像空间也可以划分成多个子屏,在三维显示播放中,也需一行一行地(水平),或一列一列地(竖直)扫描每个虚拟像素,扫描可遍及整个图像空间,也可只在每个子屏独立进行。
[0044] 在下面的例子中,我们假定是一行一行地扫描,在图像空间,一个虚拟像素被打开是指,对应于第一行第一条射线的像素串中的三个像素同时被触发而打开(三个实像素分别在发光屏10和方向快门20和30上),然后,第一行第二条射线的三个像素同时被触发而打开,…,直到第一行最后一条射线的三个像素同时被触发而打开,再转到第二行的第一条射线到最后一条射线,再转到第三行,…,直到最后一行,然后再转到下一个虚拟像素,如此轮环下去…。
[0045] 总之,无论是发光屏10(同方向快门20和30一起),还是图像空间,还是二者一起,都可以分成多个子屏(多个区域),上述的扫描可同时用于每个区域,以适应于高速处理的要求,以便在相同的其他条件下,提高亮度,同时,也可以避免上述“错误的射线”。
[0046] 射线不可能无限地密,我们可规定一个最大的发散角,例如a/z的十分之一,它决定了图1中的Der和设计参量Ws1,Ws2,D1和D2。
[0047] <动态小孔快门方法>
[0048] 我们将要用到所有从图4到图15,来说明动态小孔快门方法,同时也说明模仿情景方法的有关细节。为了描述方便面,将引入下列专用名词:
[0049] 1.眼空间500---在动态小孔快门方法中,是指所有可能的左右“眼睛对”的位置,对于居室里的70寸电视,眼睛可达1360对,对于影剧院,眼睛可达5000对,因此,在给定条件下,可提供无限观看人数限制的服务[但是,在模仿情景方法中,眼空间是指所有可能的眼睛位置,无需区分左眼和右眼,对于居室里的70寸电视,眼睛可达10000只,对于影剧院,眼睛可达40000只,事实上,这种情形,对眼睛数没有上限,只要控制电路能做出来][0050] 2.眼投影平面400
[0051] 3.快门屏幕300,其上的诸多快门窗口(或快门瞳孔或瞳条)与眼投影平面的眼图有对应关系
[0052] 4.针孔(即小孔)平面200
[0053] 5.像素屏幕100,图像像素可能包含3个或4个颜色像素
[0054] 6.发光---意指像素门被打开让背光通过(如果像素是被动发光,比如液晶显示的LED背光),或意指像素主动发光(如等离子显示),因此,像素屏幕也叫发光屏
[0055] 7.快门/阀门像素-快门屏幕300上的最小物理光阀
[0056] 8.快门瞳孔-包含多个快门像素
[0057] 9.快门瞳孔行地址驱动器600,它或包含一个或不包含任何行地址矩阵
[0058] 10.快门瞳孔列地址驱动器700,它或包含一个或不包含任何列地址矩阵
[0059] 慎重申明:不同的人可以用不同的名称来定义这里的专用名词所定义的的同一事物或同一概念,对于熟悉这个领域人来说,试图对本发明中的名称,构造,结构,实体,装置,操作步骤,算法,和数据处理方法,作各种不同形式的变化,修正,更改,装饰和扩展,是非常简单而明了的,但仍然属本发明的精髓和范畴。虽然在描述本发明的过程中,用到了特定首选的构造,结构,实体,装置和专用名词,但是应该了解,本发明不应只限于此特类定的构造,结构,实体和装置,及其相应的专用名词。
[0060] 如图4所示,像素屏幕100上的任何一个图像像素与眼空间500中每个眼有一个光(或光束)连接,在给定时刻,从像素屏幕100上的一个图像像素发出的光束经过小孔平面200上的小孔(如201,202等,他们是想象的,不是实物),再经过快门屏幕300上的瞳孔(如
311等),然后经过眼投影平面400上的口径(如411等,他们是想象的,不是实物),最后到达眼空间500中相应的那只眼睛。无论是位置,还是尺寸大小,眼投影平面400上的口径与过快门屏幕300上的瞳孔有一对一的对应关系。
[0061] 图5和6所示,是眼投影平面400上可允许的口径尺寸或范围,和诸多可视区域。对于远处的眼,口径应小一些和密一些,在不变动观众的位置或姿势的条件下,和在不切换可视区域的条件下,图7示范了眼睛或人头运动的容忍范围。因此,从图8中可看出,近处观众对于两眼睛各向外侧运动有更多的容忍度,对于两眼睛各向内侧运动有较小的容忍度,但对远处的观众,则相反,即对于两眼睛各向内侧运动有更多的容忍度,对于两眼睛各向外侧运动有较小的容忍度。
[0062] 图9示范了,在快门屏幕300上,怎样确定对应于所有右眼的瞳孔位置和大小,图10示范了,在快门屏幕300上,怎样确定对应于所有左眼的瞳孔位置和大小,例如,行位置311’,321’,331’等,和在每行中的列位置311,321,331等。
[0063] 图11示范了用拉近镜头来看,像素平幕100上的图像像素,和瞳孔屏幕上300的快门瞳孔和快门像素。一个图像像素由3到4个颜色像素组成,如R,B,G(或红,绿,蓝和第4种颜色如需要的话),如图11所示那样,R,B,G颜色像素可以水平设置,就像目前的电视机的设置,或者,用竖直设置(图中没给出,但却是本发明的首选)。快门瞳孔含有一个,或两个,或三个,或更多快门像素或阀门像素。如果瞳孔中的快门像素尺寸小一些,对瞳孔大小和位置的控制有益处,只要不是太小,以至于成本太高或者红光的衍射效应变得很重要。瞳孔大小和密度在快门平面300上有一个分布。
[0064] 图像像素可用任何方法来制造,如液晶显示LCD类,包括常规或传统的LCD和LED-LCD,TET-LCD(薄膜晶体管),有机光发射二极管(OLED),表面导电电子发射显示(SED),等离子体显示,场致发射显示(FED),等等,还可以是现在还没被发明的任何方法。
[0065] 如果瞳孔屏幕的快门像素是基于极化光的话,液晶类显示的最前面的极化层或极化膜是可以省去的。
[0066] 在像素平幕100上,像素的扫描流程与有镜的传统三维显示的扫描流程相同,或者是多区域扫描[即,在每个区域,扫描属于该区域的图像,所有区域显示的扫描是同时进行的]。在显示过程中,当一个像素被选中时,该像素要发光,其中的所有颜色像素可同时发光,也可按顺序分别发光。如图12所示,无论用什么像素发光方法,当在素平幕100上的某一像素发出右眼图像光时,快门屏幕300上与之相应的所有右眼快门瞳孔将被同时打开(即,在这些右眼快门瞳孔中每一快门瞳孔内的所有快门像素都同时通光),这个过程是由行地址驱动器600和列地址驱动器700来控制和完成的(同样,因为一维光栅是二维光栅中快门瞳孔变成快门瞳条的约简特例,行地址驱动器中多行退化为一行,或者说,对于一维光栅,只需列地址驱动器700)。类似的,当在素平幕100上的某一像素发出左眼图像光时,快门屏幕300上与之相应的所有左眼快门瞳孔将被同时打开(即,在这些左眼快门瞳孔中每一快门瞳孔内的所有快门像素都同时通光)。如果没有眼睛跟踪系统,所有左右眼的快门瞳孔的地址(位置)矩阵和所有左右眼的快门瞳孔的地址矩阵是事先在电路设计时就决定了(即,出厂时,已装载于地址驱动器600和700之中),如果有眼睛跟踪器系统(即跟踪相机和处理单元),这些地址矩阵是先由地址驱动器600和700来动态计算(基于由眼睛跟踪器系统而来的数据)和动态控制,这些地址矩阵或先由眼睛跟踪器系统的处理单元来来计算,再让地址驱动器600和700执行快门瞳孔的动态控制。
[0067] 在眼空间中,自下至上,眼-屏距离是逐渐增加的,眼投影平面400上的孔径是逐渐减少的,其上的眼密度也就相应地逐渐增加,但是,在控制电路的开发中,要做到这种眼密度和孔径的自下至上逐渐增加或减少,是非常艰难的,我们可以把眼空间自下至上分成多(如2,或3,…)个区域,不同区域有不同的密度和孔径,但每个区域内眼密度和孔径是均匀的。因此,在每个区域,我们需要一组地址控制矩阵,这样,对于n(=1,2,3,…)个区域,就需要n组地址控制矩阵。对于每组地址控制矩阵,我们还需要3~4个地址控制矩阵---也就是,2个(左右眼)行地址矩阵和1(不分左右眼)~2(左右眼)个列地址矩阵,前者已装载于行地址驱动器600之中或先由前述处理单元来计算,其中一个为所有的右眼,一个为所有的左眼;后者已内装载于列地址驱动器700之中或先由前述处理单元来来计算,为所有的右眼或(和)所有的左眼。通常情况下,仅需有一组地址控制矩阵(一个区域,即不分区域),但如果在眼空间中的2个,3个或多个区域建造或设计2组,3组或多组地址控制矩阵(相邻的两区略有重叠),不但可以增加眼空间中总眼景深(即相对屏幕最近和最远两眼间的距离),还可增加眼动的容忍度[因为,对于给定的眼空间总眼深,在眼空间每个区域1,2,…(相应于组1,组2,…)的眼深就减小了]。
[0068] 图13示范了一个例子,来说明已内装载地址驱动器(以基于二极管的电路为例,但不限于此)是怎样工作的。地址驱动器有两个地址矩阵,一个是行地址矩阵600,另一个是列地址矩阵700.地址矩阵是一个金属网,在网上的某些节点(在交叉处)上,有一个开关元件(如图13中所示的二极管,但不限于此),它连接了交叉处的两金属线。如果交叉处的节点画有实圆圈,代表交叉处的两金属线通过一个二极管相连,如果交叉处的节点没有实圆圈,代表交叉处的两金属线不相连(没有二极管)。当某一图像像素发光时,比如在(2,3)处[即在第2行第3列交点处],那么,在第2行的触发信号(即702)触发并打开列地址矩阵700中第2条行线上的开关701,这使得,在地址矩阵700上与这条行线相交的所有带有是圆圈的列线也被都打开,这将进一步导致,在快门屏幕300上,所有相应的列线也被都打开,结果是,快门屏幕300上的这些列线都与电压源+V(即703)接通;与此同时,在第3列的触发信号(即602)触发并打开行地址矩阵600中第3条列线上的开关601,这使得,在地址矩阵600上与这条列线相交的所有带有是圆圈的行线也被都打开,这将进一步导致,在快门屏幕300上,所有相应的行线也被都打开,结果是,快门屏幕300上的这些行线都与电压源-V(即603)接通。这样最终结果是,快门屏幕上,在与这一排行线(带电压-V)和这一排列线(带电压+V)的交处形成一个打开(通光)的矩形开门瞳孔。用这种方法,对于像素屏幕100上的任意像素,可以得到所有右眼的瞳孔函数和所有左眼的瞳孔函数。上述开关元件(如二极管等)是由设计内装载于电路板中的。
[0069] 图14示范了一个例子,是用电压受控开关来实现这个任务。与图13类似,如果交叉处的节点画有实圆圈,代表交叉处的两金属线通过一个电压受控开关(如图14中所示,可以是三极管,但不限于此)相连,如果交叉处的节点没有实圆圈,代表交叉处的两金属线不相连(没有电压受控开关)。这种情形下,开关状态由在602或702处的电压信号所控制。上述开关元件(如三极管等)是由设计内装载于电路板中的。
[0070] 我们已看到,图13和14中的两个开关例子,是基于开关元件内装载于电路板的设计,都属于实现快门屏幕瞳孔动态开关的静态地址驱动器。图15见给出一个可动态控制的开关例子,它属于实现快门屏幕瞳孔动态开关的动态地址驱动器。现在,所有的节点处(无论它带实圆圈,还是不带实圆圈)都有一个电压受控开关,这里的电压受控开关与图14中的有所不同,在图14中,开关是由(602或702)处的电压信号所控制,而在图15中,开关是由(602或702)处的电压信号和动态控制电压(Vi或Vj)共同控制。请注意了,图中符号的定义已变了。如果交叉处的节点画有实圆圈,代表交叉处的开关已具有导通相连的条件,如果交叉处的节点没有实圆圈,代表交叉处的开关不具有导通相连的条件,导通相连的条件是由来自动态控制引线的动态控制电压(Vi或Vj)来动态控制的,而动态控制电压又是根据从眼跟踪相机所得到的数据而定的或根据虚拟像素、发光屏幕上发光瞳孔的位置和大小、及其内外快门屏幕上相应快门瞳孔的位置和大小的动态变化数据要求而定的。
[0071] 眼睛的运动可由两幅光学图象的相关(用快速傅立叶变换)得到,这两幅光学图象是由眼跟踪相机在相邻两时刻所拍下的,因此,在快门屏幕上,与所有右眼对应的和与所有左眼对应的快门瞳孔位置和大小都会容易地的到,进而,每一个快门瞳孔中的各快门像素(阀门)的行地址和列地址被计算出来,并在地址缓冲器中更新,地址缓冲器再为行地址矩阵600和列地址矩阵700提供一源源不断的地址数据流。
[0072] 为了增加亮度,可把屏幕分成多个分区,各分区内独立扫描并分区轮换,这时,精心的优化设计是必需的,以避免串光(“cross talk”),还可通过只在竖直方向或水平方向的分区轮换来增加亮度。
[0073] 重要声明:对于熟悉这个领域人来说,试图对本发明中的构造,结构,实体,装置,操作步骤,算法,和数据处理方法,作各种不同的变化,修正,更改,装饰和扩展,是非常简单而明了的,但仍然属本发明的精髓和范畴。虽然在描述本发明的过程中,用到了特定首选的构造,结构,实体和装置,但是应该了解,本发明不应只限于此特类定的构造,结构,实体和装置。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈