首页 / 专利库 / 电脑图像 / 像素 / 一种透明显示面板及透明显示器

一种透明显示面板及透明显示器

阅读:24发布:2024-02-17

专利汇可以提供一种透明显示面板及透明显示器专利检索,专利查询,专利分析的服务。并且本 发明 实施例 提供一种透明 显示面板 及透明显示器,涉及显示技术领域,可以解决增加透光区面积导致透明显示面板寿命低的问题。该透明显示面板包括多个亚 像素 ,每个所述亚像素包括透光区和非透光区;所述非透光区包括Micro-LED颗粒以及控制 电路 ;所述控制电路与所述Micro-LED颗粒连接,用于控制所述Micro-LED颗粒发光;所述透光区仅包括透明的绝缘材料。,下面是一种透明显示面板及透明显示器专利的具体信息内容。

1.一种透明显示面板,包括多个亚像素,每个所述亚像素包括透光区和非透光区;其特征在于,
所述非透光区包括Micro-LED颗粒以及控制电路;所述控制电路与所述Micro-LED颗粒连接,用于控制所述Micro-LED颗粒发光;
所述透光区仅包括透明的绝缘材料。
2.根据权利要求1所述的透明显示面板,其特征在于,所述透光区的面积大于所述非透光区的面积。
3.根据权利要求1所述的透明显示面板,其特征在于,所述透光区的面积为所述非透光区的面积的1倍~3倍。
4.根据权利要求1所述的透明显示面板,其特征在于,所述透明显示面板包括衬底以及设置在所述衬底上的绝缘层;所述衬底的材料和所述绝缘层的材料均为无机绝缘材料。
5.根据权利要求1所述的透明显示面板,其特征在于,所述透明显示面板包括衬底以及设置在所述衬底上的绝缘层;
所述绝缘层包括有机绝缘层,所述有机绝缘层在所述透光区镂空。
6.根据权利要求1所述的透明显示面板,其特征在于,所述透明显示面板包括衬底以及设置在所述衬底上的绝缘层;所述绝缘层在所述透光区镂空。
7.根据权利要求1所述的透明显示面板,其特征在于,所述控制电路包括晶体管;
所述晶体管为化物薄膜晶体管和/或低温多晶薄膜晶体管
8.根据权利要求1或7所述的透明显示面板,其特征在于,所述控制电路包括开关晶体管、驱动晶体管以及存储电容;
所述开关晶体管的栅极与扫描信号线电连接,第一极与数据信号线电连接,第二极与所述存储电容的第一端电连接;
所述驱动晶体管的栅极与所述存储电容的第一端电连接,第一极与第一电压端电连接,第二极与所述Micro-LED颗粒的一个电极电连接;
所述存储电容的第二端与所述第一电压端电连接。
9.根据权利要求1所述的透明显示面板,其特征在于,所述Micro-LED颗粒包括:依次层叠设置的p型半导体图案、发光图案以及n型半导体图案;
所述Micro-LED颗粒还包括:与所述p型半导体图案接触的第一电极以及与所述n型半导体图案接触的第二电极。
10.一种透明显示器,其特征在于,包括权利要求1-9任一项所述的透明显示面板。

说明书全文

一种透明显示面板及透明显示器

技术领域

[0001] 本发明涉及显示技术领域,尤其涉及一种透明显示面板及透明显示器。

背景技术

[0002] 透明显示器是指显示器本身具有一定程度的光穿透性,既可以看到显示器显示的画面,又可以看到显示器后面的信息。目前,透明显示器已被广泛应用在车窗玻璃、商场橱窗、AR(Augmented Reality,增强现实)、VR(Virtual Reality,虚拟现实)等高端显示领域。
[0003] 其中,透明显示器的透视效果与透过率、雾度有关。透过率越高,雾度越低,透过透明显示器看到的图像越清晰,亮度越高。参考图1,透过率Tr为透过透明显示器1的光线T2与入射光线T1的比值,即Tr=T2/T1。雾度是指偏离入射光度超过2.5°以上的光强度T3与透射光强T2的比例,即雾度=T3/T2。在透明显示器中,透光区面积越大,透过率越高,反光金属越多,光线散射越严重,雾度越大。为了看清透明显示器1后面的图像,因此透明显示器1的亚像素在设计时需要尽可能将透光区的面积增大,同时减少透光区内金属线。

发明内容

[0004] 本发明的实施例提供一种透明显示面板及透明显示器,可以解决增加透光区面积导致透明显示面板寿命低的问题。
[0005] 为达到上述目的,本发明的实施例采用如下技术方案:
[0006] 一方面,提供一种透明显示面板,包括多个亚像素,每个所述亚像素包括透光区和非透光区;所述非透光区包括Micro-LED颗粒以及控制电路;所述控制电路与所述Micro-LED颗粒连接,用于控制所述Micro-LED颗粒发光;所述透光区仅包括透明的绝缘材料。
[0007] 可选的,所述透光区的面积大于所述非透光区的面积。
[0008] 可选的,所述透光区的面积为所述非透光区的面积的1倍~3倍。
[0009] 可选的,所述透明显示面板包括衬底以及设置在衬底上的绝缘层;所述衬底的材料和所述绝缘层的材料均为无机绝缘材料。
[0010] 可选的,所述透明显示面板包括衬底以及设置在所述衬底上的绝缘层;所述绝缘层包括有机绝缘层,所述有机绝缘层在所述透光区镂空。
[0011] 可选的,所述透明显示面板包括衬底以及设置在衬底上的绝缘层;所述绝缘层在所述透光区镂空。
[0012] 可选的,所述控制电路包括晶体管;所述晶体管为化物薄膜晶体管和/或低温多晶薄膜晶体管
[0013] 可选的,所述控制电路包括开关晶体管、驱动晶体管以及存储电容;所述开关晶体管的栅极与扫描信号线电连接,第一极与数据信号线电连接,第二极与所述存储电容的第一端电连接;所述驱动晶体管的栅极与所述存储电容的第一端电连接,第一极与第一电压端电连接,第二极与所述Micro-LED颗粒的一个电极电连接;所述存储电容的第二端与所述第一电压端电连接。
[0014] 可选的,所述Micro-LED颗粒包括:依次层叠设置的p型半导体图案、发光图案以及n型半导体图案;所述Micro-LED颗粒还包括:与所述p型半导体图案接触的第一电极以及与所述n型半导体图案接触的第二电极。
[0015] 另一方面,提供一种透明显示器,包括上述的透明显示面板。
[0016] 本发明实施例提供一种透明显示面板及透明显示器,透明显示面板包括多个亚像素,每个亚像素包括透光区和非透光区,非透光区包括Micro-LED颗粒以及控制电路。由于Micro-LED颗粒的亮度高,寿命长,且Micro-LED颗粒的发光效率随亮度的增加而增大,因而非透光区采用Micro-LED颗粒来发光,不仅透明显示面板的寿命较长,而且透明显示面板可以达到较高的显示亮度,可以提高透明显示面板的对比度。此外,由于Micro-LED颗粒的亮度高,寿命长,因而在Micro-LED颗粒寿命可允许的条件下,可以减小非透光区的面积,增大透光区的面积,从而可以提高透明显示面板的透过率。
[0017] 在此基础上,本发明实施例中,由于透光区仅包括透明的绝缘材料,不包括金属走线,因而一方面可以避免金属走线对光的散射,降低雾度;另一方面可以提高光的透过率,从而使得透过透明显示面板看到的图像更清楚。附图说明
[0018] 为了更清楚地说明本发明实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
[0019] 图1为本发明实施例提供的一种光透过透明显示器透光区的结构示意图;
[0020] 图2为本发明实施例提供的一种透明显示器的结构示意图;
[0021] 图3为本发明实施例提供的一种透明显示面板的区域划分示意图;
[0022] 图4为本发明实施例提供的一种Micro-LED颗粒的结构示意图;
[0023] 图5为本发明实施例提供的另一种Micro-LED颗粒的结构示意图;
[0024] 图6为本发明实施例提供的一种控制电路的结构示意图;
[0025] 图7为本发明实施例提供的一种透明显示面板的结构示意图一;
[0026] 图8为本发明实施例提供的一种透明显示面板的结构示意图二;
[0027] 图9为本发明实施例提供的一种透明显示面板的结构示意图三;
[0028] 图10为本发明实施例提供的一种透明显示面板的结构示意图四。
[0029] 附图标记:
[0030] 01-亚像素;02-透光区;03-非透光区;1-透明显示器;2-框架;3-盖板玻璃;4-透明显示面板;10-Micro-LED颗粒;41-衬底;42-绝缘层;101-P型半导体图案;102-发光图案;103-n型半导体图案;104-第一电极;105-第二电极;420-有机绝缘层;421-无机绝缘层。

具体实施方式

[0031] 下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
[0032] 本发明实施例提供一种透明显示器1,如图2所示,透明显示器1的主要结构包括框架2、盖板玻璃3、透明显示面板4以及其它电子配件等。
[0033] 其中,框架2的纵截面呈U型,透明显示面板4以及其它电子配件等均设置于框架2内,盖板玻璃3设置在透明显示面板4的显示侧。
[0034] 本发明实施例还提供一种透明显示面板4,该透明显示面板4可以应用于上述的透明显示器1中。如图3所示,透明显示面板4包括多个亚像素01,每个亚像素01包括透光区02和非透光区03;非透光区03包括Micro-LED颗粒(也可以称为Micro-LED芯片或Micro-LED晶粒)以及控制电路;控制电路与Micro-LED颗粒连接,用于控制Micro-LED颗粒发光;透光区02仅包括透明的绝缘材料。
[0035] 应当理解到,对于透光区02,外界环境光可以透过透光区02;对于非透光区03,外界环境光不能透过非透光区03。
[0036] 此处,对于每个亚像素01中透光区02和非透光区03的面积大小不进行限定。透光区02的面积越大,透明显示面板4的透过率越大,透过透明显示面板4看到的图像越清晰。基于此,可选的,如图3所示,针对每个亚像素01,透光区02的面积大于非透光区03。
[0037] 在此基础上,考虑到每个亚像素01中若透光区02的面积太大,则非透光区03的面积就会较小。而非透光区03的面积较小,则设置的Micro-LED颗粒的尺寸就会较小,这样一来,Micro-LED颗粒发出光的亮度就会较暗,从而会导致透明显示面板4显示的图像的亮度较暗。为了确保既能够清晰地看到透明显示面板4后面的图像,又能够看清透明显示面板4显示的图像,因此可选的,透光区02的面积为非透光区03的面积的1倍~3倍。
[0038] 示例的,透光区02的面积可以为非透光区03面积的1倍、1.5倍、2倍、2.5倍或3倍等。
[0039] 应当理解到,在实际生产中,透明显示面板4中透光区02的面积与非透光区03的面积比值可以根据客户要求进行合理设置。
[0040] 此外,多个亚像素01中透光区02的面积大小可以相同,也可以不相同。
[0041] 本领域技术人员应该明白,Micro-LED颗粒以及控制电路应设置在衬底上,衬底的材料为绝缘材料。示例的,衬底的材料为玻璃。
[0042] 对于Micro-LED颗粒的结构不进行限定,在一些实施例中,如图4和图5所示,Micro-LED颗粒10包括:依次层叠设置的P型半导体图案101、发光图案102以及n型半导体图案103;Micro-LED颗粒10还包括:与P型半导体图案101接触的第一电极104以及与n型半导体图案103接触的第二电极105。
[0043] 在一些实施例中,如图4所示,第一电极104设置在p型半导体图案101远离n型半导体图案103的一侧;第二电极105设置在n型半导体图案103远离p型半导体图案101的一侧。即,第一电极104和第二电极105设置在p型半导体图案101的两侧。在另一些实施例中,如图
5所示,第一电极104设置在p型半导体图案101靠近n型半导体图案103的一侧;第二电极105设置在n型半导体图案103远离p型半导体图案101的一侧。即,第一电极104和第二电极105设置在p型半导体图案101的同一侧。
[0044] 此处,对于p型半导体图案101的材料、发光图案102的材料以及n型半导体图案103的材料不进行限定。p型半导体图案101的材料、发光图案102的材料以及n型半导体图案103的材料例如可以为GaN(氮化镓)。此外,发光图案102例如可以为多量子阱层。
[0045] 透明显示面板4中的Micro-LED颗粒10可以全部发白光,在此情况下,透明显示面板4用于实现黑白显示。在本发明实施例提供的透明显示面板4用于实现彩色显示的情况下,本领域技术人员应该明白,透明显示面板4至少包括发红光(R)的Micro-LED颗粒10、发绿光(G)的Micro-LED颗粒10以及发蓝光(B)的Micro-LED颗粒10。
[0046] 应当理解到,Micro-LED颗粒10中的第一电极104和第二电极105中的一个与控制电路电连接,另一个直接与金属走线(即公共电极线)电连接。
[0047] 为了给控制电路和Micro-LED颗粒10的一个电极输入信号,因而应当理解到,透明显示面板4还包括与控制电路和Micro-LED颗粒10的一个电极电连接的多条金属走线。示例的,金属走线包括扫描信号线、数据线、高电压信号线以及低电压信号线等。
[0048] 由于本发明实施例中,透光区02仅包括透明的绝缘材料,因而透明显示面板4中的金属走线应设置在非透光区03以及透光区02和非透光区03的边界处。
[0049] 由于透光区02仅包括透明的绝缘材料,因而透光区02的透过率可以达到98%左右。
[0050] 相关技术中的透明显示面板4,在非透光区03设置OLED(Organic Light-Emitting Diode,有机电致发光二极管)发光器件。透明显示面板4在显示时,由于外界环境光较强,因而若要达到较高的对比度,则透明显示面板4的显示亮度需要比普通的显示面板的亮度要高,才可以确保透明显示面板4达到较好的显示效果,而要保证透明显示面板4的显示亮度,则需要增加非透光区03的OLED发光器件发出光的亮度,因而导致OLED发光器件的寿命降低,进而导致透明显示面板的寿命降低。为了提高透明显示面板4的透过率,相关技术通过增大透光区02的面积,缩小非透光区03的面积来实现。而缩小非透光区03的面积会导致设置的OLED发光器件的尺寸较小,在亚像素01发出的光的亮度相同的情况下,导致了OLED发光器件发出的光的亮度增加,从而降低了OLED发光器件的寿命,因此相关技术中的透明显示面板4并不能无限增加透光区02的面积。此外,相关技术中的透明显示面板4,由于透光区02包括金属走线,因而光射到透光区02会被散射,导致雾度较大,从而会导致看不清透明显示面板4后面的图像。
[0051] 本发明实施例提供一种透明显示面板4,透明显示面板4包括多个亚像素01,每个亚像素01包括透光区02和非透光区03,非透光区03包括Micro-LED颗粒10以及控制电路。由于Micro-LED颗粒10的亮度高,寿命长,且Micro-LED颗粒10的发光效率随亮度的增加而增大,因而非透光区03采用Micro-LED颗粒10来发光,不仅透明显示面板4的寿命较长,而且透明显示面板4可以达到较高的显示亮度,可以提高透明显示面板4的对比度。此外,由于Micro-LED颗粒10的亮度高,寿命长,因而在Micro-LED颗粒10寿命可允许的条件下,可以减小非透光区03的面积,增大透光区02的面积,从而可以提高透明显示面板4的透过率。
[0052] 在此基础上,本发明实施例中,由于透光区02仅包括透明的绝缘材料,不包括金属走线,因而一方面可以避免金属走线对光的散射,降低雾度;另一方面可以提高光的透过率,从而使得透过透明显示面板4看到的图像更清楚。
[0053] 本领域技术人员应该明白,控制电路包括晶体管,对于晶体管的类型不进行限定,可选的,晶体管为氧化物薄膜晶体管和/或低温多晶硅薄膜晶体管(Low Temperature Poly-siliconThin Film Transistor,简称LTPS TFT)。
[0054] 示例的,氧化物薄膜晶体管可以为铟镓锌薄膜晶体管或氧化锌薄膜晶体管等。
[0055] 此处,控制电路中的晶体管可以全部为氧化物薄膜晶体管;也可以全部为低温多晶硅薄膜晶体管;当然还可以部分为氧化物薄膜晶体管,部分为低温多晶硅薄膜晶体管。
[0056] 此外,本发明实施例中的晶体管可以为底栅型薄膜晶体管,也可以为顶栅型薄膜晶体管。
[0057] 在此基础上,晶体管包括源极、漏极、有源层、栅极以及栅绝缘层,源极和漏极分别与有源层电连接,栅绝缘层设置在栅极和有源层之间。在一些实施例中,晶体管还包括层间界定层,层间界定层设置在有源层与源极、漏极之间。
[0058] 示例的,栅绝缘层的材料和层间界定层的材料可以为氮化硅(SiNx)、氧化硅(SiOx)和氮氧化硅(SiOxNy)中的一种或多种。
[0059] 本发明实施例,控制电路包括晶体管,由于晶体管为氧化物薄膜晶体管和/或低温多晶硅薄膜晶体管,氧化物薄膜晶体管和低温多晶硅薄膜晶体管的迁移率高、电流高,因而可以达到较高的亮度,从而使得透明显示面板4的对比度较高。对于控制电路不进行限定,以能控制Micro-LED颗粒10发光即可。本发明实施例中的控制电路可以和OLED显示面板的亚像素中的像素驱动电路相同。本发明实施例中的控制电路可以但不限于是包括2T1C、6T1C或7T1C的控制电路。以下以2T1C的控制电路为例,详细说明控制电路的结构。
[0060] 可选的,如图6所示,控制电路包括开关晶体管T1、驱动晶体管T2以及存储电容Cst;开关晶体管T1的栅极与扫描信号线Scan电连接,第一极与数据信号线Date电连接,第二极与存储电容Cst的第一端电连接;驱动晶体管T2的栅极与存储电容Cst的第一端电连接,第一极与第一电压端VDD电连接,第二极与Micro-LED颗粒10的一个电极电连接;存储电容Cst的第二端与第一电压端VDD电连接。
[0061] 参考图6,Micro-LED颗粒10的另一个电极与第二电压端Vref电连接。
[0062] 此处,可以是开关晶体管T1或驱动晶体管T2的第一极为源极,第二极为漏极;也可以是开关晶体管T1或驱动晶体管T2的第一极为漏极,第二极为源极。
[0063] 在此基础上,可以是第一电压端VDD为高电压端,第二电压端Vref为低电压端;也可以是第一电压端VDD为低电压端,第二电压端Vref为高电压端。
[0064] 在扫描信号线Scan输入电信号时,开关晶体管T1导通,数据信号线Date上的信号经过开关晶体管T1输入到驱动晶体管T2的栅极,驱动晶体管T2导通,第一电压端VDD与Micro-LED颗粒10的一个电极连通,为Micro-LED颗粒10的一个电极提供电信号。由于Micro-LED颗粒10的另一个电极与第二电压端Vref电连接,因此在第一电压端VDD为Micro-LED颗粒10的一个电极提供电信号的情况下,Micro-LED颗粒10发光。
[0065] 可选的,如图7所示,透明显示面板4包括衬底41以及设置在衬底41上的绝缘层42;衬底41的材料和绝缘层42的材料均为无机绝缘材料。
[0066] 其中,绝缘层42的材料为无机绝缘材料,即绝缘层42为无机绝缘层。
[0067] 此处,无机绝缘材料例如可以为氮化硅、氧化硅或氮氧化硅等。
[0068] 在一些实施例中,绝缘层42为单层结构。在另一些实施例中,绝缘层42为多层结构。在绝缘层42为多层结构的情况下,绝缘层42包括多层子绝缘层,多层子绝缘层可以相互接触,也可以相互不接触。
[0069] 应当理解到,绝缘层42可以为控制电路中薄膜晶体管中的栅绝缘层或层间界定层;也可以为缓冲层或保护层等,对此不进行限定。
[0070] 本发明实施例中,由于衬底41的材料和绝缘层42的材料均为无机绝缘材料,因而衬底41和绝缘层42的厚度可以设置的较小,这样一来,一方面,透明显示面板4的厚度较小,可以实现透明显示面板4的轻薄化;另一方面,由于绝缘层42的厚度可以设置的较小,因而可以减小透光区02的厚度,从而提高透光区02的透过率。
[0071] 可选的,如图8和图9所示,透明显示面板4包括衬底41以及设置在衬底41上的绝缘层42;绝缘层42包括有机绝缘层420,有机绝缘层420在透光区02镂空。
[0072] 应当理解到,有机绝缘层420可以作为缓冲层和/或保护层等。
[0073] 此处,可以是如图8所示,绝缘层42仅包括有机绝缘层420,不包括无机绝缘层;也可以是如图9所示,绝缘层42不仅包括有机绝缘层420,还包括无机绝缘层421。
[0074] 在此基础上,有机绝缘层420可以是单层结构,也可以是多层结构,即有机绝缘层420包括多层子有机绝缘层。在绝缘层42还包括无机绝缘层421的情况下,无机绝缘层421可以是单层结构,也可以是多层结构,即无机绝缘层421包括多层子无机绝缘层。
[0075] 此外,在绝缘层42不仅包括有机绝缘层420,还包括无机绝缘层421的情况下,可以是有机绝缘层420相对于无机绝缘层421靠近衬底41,也可以是无机绝缘层421相对于有机绝缘层420靠近衬底41。在有机绝缘层420和无机绝缘层421均为多层结构的情况下,子有机绝缘层和子无机绝缘层可以交替设置。
[0076] 在透明显示面板4包括有机绝缘层420的情况下,有机绝缘层420的厚度较大,由于有机绝缘层420在透光区02镂空,因而可以避免有机绝缘层420对透光区02透过率的影响。
[0077] 可选的,如图10所示,透明显示面板4包括衬底41以及设置在衬底41上的绝缘层42;绝缘层42在透光区02镂空。
[0078] 此处,绝缘层42可以是有机绝缘层;也可以是无机绝缘层;当然还可以是绝缘层42既包括有机绝缘层,又包括无机绝缘层。
[0079] 此外,绝缘层42可以是单层结构,也可以是多层结构。
[0080] 由于透光区02仅包括透明的绝缘材料,而绝缘层42在透光区02镂空,因而透光区02仅包括衬底41。在透光区02仅包括衬底41的情况下,透光区02的透过率可以达到近似
100%。
[0081] 本发明实施例中,透明显示面板4包括衬底41以及设置在衬底41上的绝缘层42,由于绝缘层42在透光区02镂空,即透光区02仅包括衬底41,因而避免了绝缘层42对光的吸收,进一步了提高透光区02的透过率。
[0082] 以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈