首页 / 专利库 / 电脑零配件 / 超级本 / 一种NiCo2O4@MnO2/泡沫镍/MnO2超级电容器复合电极材料的制备方法

一种NiCo2O4@MnO2/泡沫镍/MnO2超级电容器复合电极材料的制备方法

阅读:0发布:2020-06-06

专利汇可以提供一种NiCo2O4@MnO2/泡沫镍/MnO2超级电容器复合电极材料的制备方法专利检索,专利查询,专利分析的服务。并且本 发明 涉及一种NiCo2O4@MnO2/ 泡沫 镍/MnO2超级电容器复合 电极 材料的制备方法;包括将泡沫镍用 盐酸 和去离子 水 超声, 真空 干燥,将Ni(NO3)2·6H2O、Co(NO3)2·6H2O、CO(NH2)2加入无水 乙醇 和去离子水,搅拌得到粉色溶液;将泡沫镍和粉色溶液加入反应釜中,反应后洗涤、干燥、 热处理 得到NiCo2O4/泡沫镍,然后将NiCo2O4/泡沫镍和KMnO4水溶液依次置于聚四氟乙烯 内衬 反应釜中,将反应后的泡沫镍用无水乙醇和去离子水洗涤干燥得NiCo2O4@MnO2/泡沫镍/MnO2复合电极材料; 覆盖 在NiCo2O4 纳米线 表面和泡沫镍表面的超薄MnO2纳米片,不仅可以防止NiCo2O4纳米线在 氧 化还原反应过程中因为体积膨胀、收缩而发生脱落,还可以维持结构的 稳定性 ,增加活性物质的 比表面积 ,促进 电解 液与电极材料充分 接触 ,使活性物质可以被充分利用。,下面是一种NiCo2O4@MnO2/泡沫镍/MnO2超级电容器复合电极材料的制备方法专利的具体信息内容。

1.一种NiCo2O4@MnO2/泡沫镍/MnO2超级电容器复合电极材料的制备方法,其特征在于,包括以下步骤:
(1)将泡沫镍分别用2.5±0.5M的盐酸和去离子超声,然后真空干燥后备用;
(2)称取摩尔比为1∶2∶12的Ni(NO3)2·6H2O、Co(NO3)2·6H2O和CO(NH2)2备用;
(3)将步骤(2)称取的药品置于玻璃烧杯中并加入无水乙醇和去离子水,其中步骤(2)称取的药品与无水乙醇和去离子水的摩尔比为11.25∶429∶1389,使用磁搅拌器充分搅拌
5min,获得粉色溶液,备用;
(4)将步骤(1)的泡沫镍倾斜45°放入60mL的聚四氟乙烯内衬反应釜中,然后将步骤(3)中的粉色溶液加入反应釜中,密封后将反应釜放入恒温箱中升温至100℃,反应8~10h,自然冷却到室温后,将反应后的泡沫镍用无水乙醇和去离子水洗涤、干燥,然后热处理得到NiCo2O4/泡沫镍,备用;
(5)将步骤(4)得到的NiCo2O4/泡沫镍和0.01M的KMnO4水溶液依次置于聚四氟乙烯内衬反应釜中,反应釜中的KMnO4水溶液要完全覆盖NiCo2O4/泡沫镍,密封后将反应釜放入恒温箱升温至160~180℃,反应3~5h,自然冷却至室温后,将反应后的泡沫镍用无水乙醇和去离子水洗涤后干燥,得到最终产物为三明治结构的NiCo2O4@MnO2/泡沫镍/MnO2复合电极材料。
2.根据权利要求1所述的一种NiCo2O4@MnO2/泡沫镍/MnO2超级电容器复合电极材料的制备方法,其特征在于:步骤(1)中泡沫镍的大小为5cm×1cm,盐酸和去离子水超声的时间为
15min。
3.根据权利要求1所述的一种NiCo2O4@MnO2/泡沫镍/MnO2超级电容器复合电极材料的制备方法,其特征在于:步骤(4)中将反应后的泡沫镍用无水乙醇和去离子水洗涤3~5次,之后在60℃下干燥12h,然后在300℃的条件下热处理2h得到NiCo2O4/泡沫镍。
4.根据权利要求1所述的一种NiCo2O4@MnO2/泡沫镍/MnO2超级电容器复合电极材料的制备方法,其特征在于:步骤(5)反应后的泡沫镍用无水乙醇和去离子水洗涤3~5次,之后在
60℃的条件下干燥12h,得到最终产物为三明治结构的NiCo2O4@MnO2/泡沫镍/MnO2复合电极材料。

说明书全文

一种NiCo2O4@MnO2/泡沫镍/MnO2超级电容器复合电极材料的制

备方法

技术领域

[0001] 本发明涉及超级电容器的复合电极材料领域,具体涉及一种NiCo2O4@MnO2/泡沫镍/MnO2超级电容器复合电极材料的制备方法

背景技术

[0002] 超级电容器作为一种新型可以快速充放电的储能设备,因为其理论上高的能量密度、功率密度和长的循环使用寿命等特点,从而受到人们的广泛关注。以材料为代表的双电层电容,因为理论电容量(260   280 F g-1) 较低,所以发展受到阻碍;以过渡金属化~-1
物为代表的赝电容,因其具有高的理论电容量,如MnO2的理论电容量为1100   1300 F g ,~
NiO的理论电容量高达3750 F g-1,从而被诸多科研工作者深入研究。二元过渡金属氧化物NiCo2O4拥有比NiO和Co3O4更高的电容量和更小的本征电阻,所以,将NiCo2O4作为电极材料,在超级电容器的研究中具有得天独厚的优势。但循环稳定性倍率性能一直是NiCo2O4电极材料的劣势,许多科研工作者也正致于改善二元过渡金属氧化物NiCo2O4的这些不足。
[0003] 美国《先进功能材料》(Adv. Funct. Mater. 2012, 22, 4592-4597)曾报道:超薄多孔NiCo2O4纳米片在2 A g-1的电流密度下比电容量高达2010 F g-1,即使在20 A g-1的高电流密度下,电容量依旧保持了70 %以上。从而引出NiCo2O4是一种非常理想的超级电容器电极材料。
[0004] 美国《电化学学报》(Electrochemical Acta 2015, 157, 31-40)报道:通过简单的两步热法制备的核壳结构的NiCo2O4@MnO2纳米线阵列电极材料在循环2 000圈后电容量仅仅损失了7.4 %。
[0005] 英国《材料化学杂志》(J. Mate. Chem. A. 2017, 5, 3547-3557)报道了,以泡沫石墨烯为基底的多孔NiCo2O4/MnO2复合电极材料在电流密度为1 A g-1时,比电容为2577 F g-1;同时在循环5 000圈之后,电容量依旧保持在94 %以上。
[0006] 虽然在近些年里,科研工作者们在提高超级电容器的循环稳定性上做出了很多努力,但距离超级电容器的理论循环寿命(理论上可以使用无限次)还有很大差距。所以采用简单、易操作的合成方法制备结构新颖,性能优异的电极材料是一项极具挑战性的任务。

发明内容

[0007] 本发明为解决如何采用水热法制备循环性能和倍率性能优异的三明治结构的NiCo2O4@MnO2/泡沫镍/MnO2复合电极材料,进而提供这种电极材料的制备方法。
[0008] 为解决上述技术问题,本发明所采用的技术方案为:一种NiCo2O4@MnO2/泡沫镍/MnO2超级电容器复合电极材料的制备方法,其特征在于,包括以下步骤:
[0009] (1)将泡沫镍分别用2.5±0.5 M的盐酸和去离子水超声,然后真空干燥后备用;
[0010] (2)称取摩尔比为1:2:12的Ni(NO3)2·6H2O、 Co(NO3)2·6H2O和CO(NH2)2备用;
[0011] (3)将步骤 (2) 称取的药品置于玻璃烧杯中并加入无水乙醇和去离子水,其中步骤 (2) 称取的药品与无水乙醇和去离子水的摩尔比为11.25   22.5:429:1389,使用磁力~搅拌器充分搅拌5 min,获得粉色溶液,备用;
[0012] (4)将步骤 (1) 的泡沫镍放入聚四氟乙烯内衬反应釜中,然后将步骤 (3) 中的粉色溶液加入反应釜中,密封后将反应釜放入恒温箱中升温至90   120 ℃,反应8   10 ~ ~h,自然冷却到室温后,将反应后的泡沫镍用无水乙醇和去离子水洗涤、干燥,然后热处理得到NiCo2O4/泡沫镍,备用;
[0013] (5)将步骤 (4) 得到的NiCo2O4/泡沫镍和0.01 M的KMnO4水溶液依次置于聚四氟乙烯内衬反应釜中,反应釜中的KMnO4水溶液要完全覆盖NiCo2O4/泡沫镍,密封后将反应釜放入恒温箱升温至160  180 ℃,反应3   5 h,自然冷却至室温后,将反应后的泡沫镍用无~ ~水乙醇和去离子水洗涤后干燥,得到最终产物为三明治结构的NiCo2O4@MnO2/泡沫镍/MnO2复合电极材料。
[0014] NiCo2O4@MnO2/泡沫镍/MnO2超级电容器复合电极材料的制备方法是通过两步水热法来实现的。首先以Ni(NO3)2·6H2O,Co(NO3)2·6H2O和CO(NH2)2为原料并将三种物质的摩尔比控制在1:2:12,进行第一步水热反应,随后热处理得到生长在泡沫镍上的NiCo2O4纳米线,用NiCo2O4/泡沫镍表示。这种纳米线的直径大约为30 nm。第二步水热反应以第一步水热反应的产物NiCo2O4/泡沫镍和KMnO4水溶液为原料,得到最终产物:NiCo2O4@MnO2/泡沫镍/MnO2。这种材料中的NiCo2O4纳米线用来贡献主要电容量,而覆盖在NiCo2O4纳米线表面和泡沫镍表面的超薄MnO2纳米片,不仅可以防止NiCo2O4纳米线在氧化还原反应过程中因为体积膨胀、收缩而发生脱落,还可以维持三明治结构的稳定,使这种材料在具有较高电容量的前提下,依然表现出令人满意的循环稳定性和优异的倍率性能。这种制备纳米复合材料的方法为改善超级电容器电极材料的循环稳定性提供了新思路。
[0015] 与现有技术相比本发明具有以下有益效果:
[0016] 与现有方法所制备的核壳结构的NiCo2O4@MnO2或异质结构的NiCo2O4/MnO2电极材料相比,其有益效果在于本方法所制备的这种三明治结构的电极材料中的NiCo2O4纳米线用来贡献主要电容量,而覆盖在NiCo2O4纳米线表面和泡沫镍表面的超薄MnO2纳米片,不仅可以防止NiCo2O4纳米线在氧化还原反应过程中因为体积膨胀、收缩而发生脱落,还可以维持这种三明治结构的稳定性,同时,增加活性物质的比表面积,促进电解液与电极材料充分接触,使活性物质可以被充分利用。通过电化学工作站对材料进行电化学性能测试:这种三明治结构的电极材料在20 mA cm-2的电流密度下循环30 000圈电容量依然保持在90 % 以上,表现出优异的循环稳定性;当电流密度为2 mA cm-2时,电极材料的比电容量为3.09 F cm-2,电流密度为20 mA cm-2时,材料的比电容为2.42 F cm-2,电流密度从2 mA cm-2增加到20 mA cm-2,电容量依旧保持在78 %以上,展现了出色的倍率性能。这种安全、简单、高效的制备纳米复合材料的方法为改善电极材料的稳定性提供了新思路。附图说明
[0017] 图1为本发明制备的NiCo2O4/泡沫镍及NiCo2O4粉末的XRD图。
[0018] 图 2 为本发明制备的NiCo2O4/泡沫镍的扫描电子显微镜照片,插图为NiCo2O4的透射电子显微镜照片。
[0019] 图 3中(a)为本发明制备的NiCo2O4@MnO2/泡沫镍/MnO2复合材料的XPS图,(b)、(c)、(d)、(e)分别为Ni,Co,Mn和O这四种元素的高分辨图。
[0020] 图 4 为本发明制备的NiCo2O4@MnO2/泡沫镍/MnO2复合材料两面(编号为A, B)的扫描电子显微镜照片,其中图(a)和(b)为A面,图(c)和(d)为B面。
[0021] 图 5 (a)为NiCo2O4/泡沫镍电极在不同扫描速率下的循环伏安曲线图,(b)为NiCo2O4@MnO2/泡沫镍/MnO2复合电极在不同扫描速率下的循环伏安曲线图。
[0022] 图 6 为NiCo2O4@MnO2/泡沫镍/MnO2复合电极在不同电流密度下的恒电流充放电图。
[0023] 图 7 为NiCo2O4@MnO2/泡沫镍/MnO2复合电极在不同电流密度下的电容量对比图。
[0024] 图 8 为NiCo2O4@MnO2/泡沫镍/MnO2复合电极在20 mA cm-2的电流密度下测得的循环效率图。

具体实施方式

[0025] 以下结合具体实施例对本发明作进一步说明。
[0026] 实施例1
[0027] 一种NiCo2O4@MnO2/泡沫镍/MnO2超级电容器复合电极材料的制备方法,包括以下步骤:
[0028] (1)将泡沫镍将泡沫镍裁剪成5 cm × 1 cm的长方形,分别用2.5±0.5 M的盐酸和去离子水超声15 min,真空干燥后备用;
[0029] (2)依次称量0.75 mmol的Ni(NO3)2·6H2O,1.5 mmol的Co(NO3)2·6H2O和9 mmol的CO(NH2)2,备用;
[0030] (3)将步骤 (2) 称取的药品置于100 mL的玻璃烧杯中并加入25 mL的无水乙醇和25 mL的去离子水,使用磁力搅拌器充分搅拌5 min,获得粉色溶液,备用;
[0031] (4)将步骤 (1) 的泡沫镍倾斜45°放入60 mL的聚四氟乙烯内衬反应釜中,然后将步骤 (3) 中的粉色溶液加入反应釜中,密封后将反应釜放入恒温箱中升温至100 ℃,反应8 h,自然冷却到室温后,将反应后的泡沫镍用无水乙醇和去离子水洗涤3 次,之后在60 ℃下干燥12 h,随后在300 ℃的条件下热处理2 h得到NiCo2O4/泡沫镍,备用;
[0032] (5)将步骤 (4) 得到的NiCo2O4/泡沫镍和40 mL,0.01 M的KMnO4水溶液依次置于60 mL的聚四氟乙烯内衬反应釜中,密封后将反应釜放入恒温箱升温至160 ℃,反应5 h,自然冷却至室温后,将反应后的泡沫镍用无水乙醇和去离子水洗涤3 次,之后在60 ℃的条件下干燥12 h,得到最终产物为三明治结构的NiCo2O4@MnO2/泡沫镍/MnO2复合电极材料。
[0033] 实施例2
[0034] 一种NiCo2O4@MnO2/泡沫镍/MnO2超级电容器复合电极材料的制备方法,包括以下步骤:
[0035] (1)将泡沫镍将泡沫镍裁剪成5 cm × 1 cm的长方形,分别用2.5±0.5 M的盐酸和去离子水超声15 min,真空干燥后备用;
[0036] (2)依次称量1.5 mmol的Ni(NO3)2·6H2O,3.0 mmol的Co(NO3)2·6H2O和18 mmol的CO(NH2)2,备用;
[0037] (3)将步骤 (2) 称取的药品置于100 mL的玻璃烧杯中并加入25 mL的无水乙醇和25 mL的去离子水,使用磁力搅拌器充分搅拌5 min,获得粉色溶液,备用;
[0038] (4)将步骤 (1) 的泡沫镍倾斜45°放入60 mL的聚四氟乙烯内衬反应釜中,然后将步骤 (3) 中的粉色溶液加入反应釜中,密封后将反应釜放入恒温箱中升温至90 ℃,反应10 h,自然冷却到室温后,将反应后的泡沫镍用无水乙醇和去离子水洗涤3 次,之后在60 ℃下干燥12 h,随后在300 ℃的条件下热处理2 h得到NiCo2O4/泡沫镍,备用;
[0039] (5)将步骤 (4) 得到的NiCo2O4/泡沫镍和40 mL,0.01 M的KMnO4水溶液依次置于60 mL的聚四氟乙烯内衬反应釜中,密封后将反应釜放入恒温箱升温至160 ℃,反应5 h,自然冷却至室温后,将反应后的泡沫镍用无水乙醇和去离子水洗涤3 次,之后在60 ℃的条件下干燥12 h,得到最终产物为三明治结构的NiCo2O4@MnO2/泡沫镍/MnO2复合电极材料。
[0040] 实施例3
[0041] 一种NiCo2O4@MnO2/泡沫镍/MnO2超级电容器复合电极材料的制备方法,包括以下步骤:
[0042] (1)将泡沫镍将泡沫镍裁剪成5 cm × 1 cm的长方形,分别用2.5±0.5 M的盐酸和去离子水超声15 min,真空干燥后备用;
[0043] (2)依次称量0.75mmol的Ni(NO3)2·6H2O,1.50 mmol的Co(NO3)2·6H2O和9 mmol的CO(NH2)2,备用;
[0044] (3)将步骤 (2) 称取的药品置于100 mL的玻璃烧杯中并加入25 mL的无水乙醇和25 mL的去离子水,使用磁力搅拌器充分搅拌5 min,获得粉色溶液,备用;
[0045] (4)将步骤 (1) 的泡沫镍倾斜45°放入60 mL的聚四氟乙烯内衬反应釜中,然后将步骤 (3) 中的粉色溶液加入反应釜中,密封后将反应釜放入恒温箱中升温至120 ℃,反应8 h,自然冷却到室温后,将反应后的泡沫镍用无水乙醇和去离子水洗涤3 次,之后在60 ℃下干燥12 h,随后在300 ℃的条件下热处理2 h得到NiCo2O4/泡沫镍,备用;
[0046] (5)将步骤 (4) 得到的NiCo2O4/泡沫镍和40 mL,0.01 M的KMnO4水溶液依次置于60 mL的聚四氟乙烯内衬反应釜中,密封后将反应釜放入恒温箱升温至180 ℃,反应3 h,自然冷却至室温后,将反应后的泡沫镍用无水乙醇和去离子水洗涤4 次,之后在60 ℃的条件下干燥12 h,得到最终产物为三明治结构的NiCo2O4@MnO2/泡沫镍/MnO2复合电极材料。
[0047] 实施例4
[0048] 一种NiCo2O4@MnO2/泡沫镍/MnO2超级电容器复合电极材料的制备方法,包括以下步骤:
[0049] (1)将泡沫镍将泡沫镍裁剪成5 cm × 1 cm的长方形,分别用2.5±0.5 M的盐酸和去离子水超声15 min,真空干燥后备用;
[0050] (2)依次称量1.5mmol的Ni(NO3)2·6H2O,3.0 mmol的Co(NO3)2·6H2O和18 mmol的CO(NH2)2,备用;
[0051] (3)将步骤 (2) 称取的药品置于100 mL的玻璃烧杯中并加入25 mL的无水乙醇和25 mL的去离子水,使用磁力搅拌器充分搅拌5 min,获得粉色溶液,备用;
[0052] (4)将步骤 (1) 的泡沫镍倾斜45°放入60 mL的聚四氟乙烯内衬反应釜中,然后将步骤 (3) 中的粉色溶液加入反应釜中,密封后将反应釜放入恒温箱中升温至120 ℃,反应8 h,自然冷却到室温后,将反应后的泡沫镍用无水乙醇和去离子水洗涤3 次,之后在60 ℃下干燥12 h,随后在300 ℃的条件下热处理2 h得到NiCo2O4/泡沫镍,备用;
[0053] (5)将步骤 (4) 得到的NiCo2O4/泡沫镍和40 mL,0.01 M的KMnO4水溶液依次置于60 mL的聚四氟乙烯内衬反应釜中,密封后将反应釜放入恒温箱升温至180 ℃,反应5 h,自然冷却至室温后,将反应后的泡沫镍用无水乙醇和去离子水洗涤3 次,之后在60 ℃的条件下干燥12 h,得到最终产物为三明治结构的NiCo2O4@MnO2/泡沫镍/MnO2复合电极材料。
[0054] 实施例5
[0055] 一种NiCo2O4@MnO2/泡沫镍/MnO2超级电容器复合电极材料的制备方法,包括以下步骤:
[0056] (1)将泡沫镍将泡沫镍裁剪成5 cm × 1 cm的长方形,分别用2.5±0.5 M的盐酸和去离子水超声15 min,真空干燥后备用;
[0057] (2)依次称量0.75 mmol的Ni(NO3)2·6H2O,1.50 mmol的Co(NO3)2·6H2O和9 mmol的CO(NH2)2,备用;
[0058] (3)将步骤 (2) 称取的药品置于100 mL的玻璃烧杯中并加入25 mL的无水乙醇和25 mL的去离子水,使用磁力搅拌器充分搅拌5 min,获得粉色溶液,备用;
[0059] (4)将步骤 (1) 的泡沫镍倾斜45°放入60 mL的聚四氟乙烯内衬反应釜中,然后将步骤 (3) 中的粉色溶液加入反应釜中,密封后将反应釜放入恒温箱中升温至100 ℃,反应9 h,自然冷却到室温后,将反应后的泡沫镍用无水乙醇和去离子水洗涤3 次,之后在60 ℃下干燥12 h,随后在300 ℃的条件下热处理2 h得到NiCo2O4/泡沫镍,备用;
[0060] (5)将步骤 (4) 得到的NiCo2O4/泡沫镍和40 mL,0.01 M的KMnO4水溶液依次置于60 mL的聚四氟乙烯内衬反应釜中,密封后将反应釜放入恒温箱升温至170 ℃,反应4 h,自然冷却至室温后,将反应后的泡沫镍用无水乙醇和去离子水洗涤5 次,之后在60 ℃的条件下干燥12 h,得到最终产物为三明治结构的NiCo2O4@MnO2/泡沫镍/MnO2复合电极材料。
[0061] 对本发明实施例1中获得的三明治结构的NiCo2O4@MnO2/泡沫镍/MnO2复合电极材料经过XRD,XPS和SEM表征结果如下:
[0062] 如附图 1 是制备的NiCo2O4/泡沫镍及NiCo2O4粉末的XRD图,两者的衍射峰与尖晶石类型的NiCo2O4的峰位置基本一致。
[0063] 如附图 2 是制备的NiCo2O4/泡沫镍的SEM图片,插图为NiCo2O4的TEM图片。从图片中可以观察到这种NiCo2O4纳米线为多孔结构,纳米线的直径大约为30 nm。
[0064] 如附图 3 是制备的NiCo2O4@MnO2/泡沫镍/MnO2复合材料的XPS图。从全谱图中可以看出材料中所含元素为:Ni,Co,Mn和O。结合这四种元素的高分辨图并对谱图进行相应的拟合,可以确定这种复合材料中含有NiCo2O4和MnO2两种物质,说明纳米材料被成功合成。
[0065] 附图 4 是制备的NiCo2O4@MnO2/泡沫镍/MnO2复合材料A、B两面( (a,b)为A面;(c,d)为B面))的SEM图片。A,B两面的形貌存在一些差异,这是因为A面的MnO2是基于NiCo2O4纳米线生长的,而B面的MnO2是直接生长在泡沫镍上的。这两种不同形貌的MnO2纳米片将NiCo2O4纳米线紧密包裹,所以在SEM图中很难观察到NiCo2O4纳米线。
[0066] 对本发明实施例1中获得NiCo2O4@MnO2/泡沫镍/MnO2复合材料作为超级电容器的电极材料,在三电极体系下,以6 M的KOH作为电解液,Hg/HgO电极作为参比电极,Pt电极作为对电极,进行电化学性能测试。
[0067] 如附图 5 是NiCo2O4/泡沫镍电极和NiCo2O4@MnO2/泡沫镍/MnO2复合电极在不同扫描速率下的循环伏安曲线图。两张图通过对比可以发现:当电极材料中含有MnO2时,循环伏安曲线更接近矩形,说明,材料中引入MnO2后,电极材料表现出了更多的电容行为。
[0068] 如附图 6 是NiCo2O4@MnO2/泡沫镍/MnO2复合电极不同电流密度下的恒电流充放电图。从图中可以得出:随着电流密度的增加,放电时间逐渐减小,即电容量呈减小趋势。当电流密度分别为2,4,8,10和20 mA cm-2时,比容量分别为3.09,2.99,2.83,2.63和2.42 F·cm-2。
[0069] 如附图 7 是上述电极在不同电流密度下的电容量对比图,从图中可以看出当电流密度从2 mA cm-2增加到20 mA cm-2后,电容量由3.09 F·cm-2降至2.42 F·cm-2,电容量保持在78 %以上,表现出优异的倍率性能。
[0070] 如附图 8 是上述电极在20 mA cm-2的电流密度下测得的循环效率图。从图中可以看出:循环30 000圈后电容量依旧保持在90 %左右。说明其具有优异的电化学稳定性。
[0071] 本发明所制备的三明治结构的电极材料中NiCo2O4纳米线用来贡献主要电容量,而覆盖在NiCo2O4纳米线表面和泡沫镍表面的超薄MnO2纳米片,不仅可以防止NiCo2O4纳米线在氧化还原反应过程中因为体积膨胀、收缩而发生脱落,还可以维持这种三明治结构的稳定性,同时,增加活性物质的比表面积,促进电解液与电极材料充分接触,使活性物质可以被充分利用。NiCo2O4和MnO2的协同作用,使得这种材料在具有较高电容量的前提下,还表现出令人满意的循环稳定性和优异的倍率性能。这种安全、简单、高效的制备纳米复合材料的方法为改善电极材料的稳定性提供了新思路。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈