首页 / 专利库 / 复合材料 / 发光团 / 一类基于镧系金属与四苯乙烯基团的MOFs制备及应用

一类基于镧系金属与四苯乙烯基团的MOFs制备及应用

阅读:778发布:2020-05-08

专利汇可以提供一类基于镧系金属与四苯乙烯基团的MOFs制备及应用专利检索,专利查询,专利分析的服务。并且本 发明 涉及多孔材料的识别技术领域,一类基于镧系金属与四苯乙烯基团的MOFs材料的制备方法及应用,以四苯乙烯作为构筑主体,选用多种配位模式和高配位数的镧系金属为构筑 节点 ,利用 水 热合成方法,自组装得到一类镧系-四苯乙烯基的多孔MOFs材料;该目标材料中所具有的刚性骨架和孔道,对Fe3+具有选择性识别作用,利用结构中四 羧酸 四苯乙烯配体良好的 荧光 发光性能,作为识别输出 信号 ,可实现快速、简便、 可视化 的识别检测过程。与已有技术相比,本发明中所合成的化合物为第一例基于镧系-四苯乙烯基多孔MOFs材料,并通过性能评价将其用于金属阳离子的识别应用中,该工作在水中或其他溶液体系中的离子识别以及检测具有良好的应用前景。,下面是一类基于镧系金属与四苯乙烯基团的MOFs制备及应用专利的具体信息内容。

1.一类基于镧系金属与四苯乙烯基团的MOFs材料的制备方法及可视化离子识别应用,其特征包括以下几个步骤:
(1)将羧酸基团作为配位作用位点,设计合成一种以四苯乙烯基团为构筑基元的有机配体L;
(2)以稀土金属盐Ln中具有特定配位模式的La3+、Ce3+或Pr3+作为节点,通过调控有机配体L与稀土金属盐的比例,利用热-溶剂热合成法或分层扩散法制得一系列基于镧系金属与四苯乙烯基团的MOFs材料,其合成路线如下:
Ln + L → Ln-L;
(3)将所制备的MOFs材料用于选择性识别金属阳离子的应用,四苯乙烯分子自身良好的发光性能作为可视化输出信号,根据一系列金属阳离子与所选用基于四苯乙烯构筑的MOFs的荧光作用的差异,进行专一性识别过程;
所述稀土金属盐选自La(NO3)3、Ce(NO3)3或Pr(NO3)3中的一种;
所述有机连接配体L为四羧基四苯乙烯(H4TCPE),其分子结构式如附图1所示;
所述MOFs材料Ln-L分子式为La(TCPE)(CH3CH2O)、Ce(TCPE)(CH3CH2O)、Pr(TCPE)(CH3CH2O)中的一种。
2.根据权利要求1所述一类基于镧系金属与四羧基四苯乙烯的MOFs材料的制备方法,其特征在于包括以下步骤:
(1)将有机配体H4TCPE与稀土金属盐Ln按照1.0-1.5:1.25-3.0的摩尔比溶解在4 mL乙醇与水的混合溶剂中,体积混合比例范围为0.8-1.5:1.0-1.5,在室温下进行搅拌,搅拌时间控制在2 4 h;
~
(2)将上述步骤制得的反应液加入到25 mL的高压反应釜中,烘箱温度设置为100-150℃之间,反应时间3-5天,然后关闭烘箱,冷却至室温后,有晶体析出即可制得目标材料;
(3)将上述步骤制得的晶体分离出来,用乙醇洗涤,除去孔道内的溶剂,低温烘干,得最终成品。
3.所述一类基于镧系金属与四羧基四苯乙烯的MOFs材料的结构特征分别如下:
(1)所述材料1的分子式C31.7H23LaO9,化学式为La(TCPE)(CH3CH2O);所述材料的晶体结构数据为:晶体为正交晶系,空间群为P2(1)2(1)2,晶胞参数为a=20.4082(2) Å,b=27.215(2) Å,c=5.4040(7) Å,α=90°,β=90°,γ=90°;
(2)所述材料2的分子式C31.7H23CeO9,化学式为Ce(TCPE)(CH3CH2O);所述材料的晶体结构数据为:晶体为正交晶系,空间群为P2(1)2(1)2,晶胞参数为a=20.377(2) Å,b=27.250(3) Å,c=5.4195(8) Å,α=90°,β=96.140(4)°,γ=90°;
(3)所述材料3的分子式C31.7H23PrO9,化学式为Pr(TCPE)(CH3CH2O);所述材料的晶体结构数据为:晶体为正交晶系,空间群为P2(1)2(1)2,晶胞参数为a=20.450(7) Å,b=27.382(10) Å,c=5.3704(18) Å,α=90°,β=90°,γ=90°。
4.根据权利要求1所述一类基于镧系金属与四羧基四苯乙烯的MOFs材料的制备,用于对金属阳离子的选择性识别,识别步骤如下:
(1)使用荧光光谱仪进行检测,将2 mg所制备的镧系-四苯乙烯基MOFs材料加入至8种不同溶剂中,分别测定该悬浊体系的荧光信号,并对荧光信号强度进行排序;
(2)选择荧光响应强度最大的溶剂用于研究金属阳离子识别作用,将2 mg所制备的镧系-四苯乙烯基MOFs材料以及浓度为1×10-3 mol/L的金属氯化盐,加入至10 mL所选溶剂中,制得悬浊液,在相同的激发条件下,记录荧光信号的变化以及拍摄可视化荧光强度变化图片;
(3)绘制归一化后荧光滴定曲线,对比不同金属阳离子对所选用镧系-四苯乙烯基MOFs材料的荧光作用的差异,判断专一选择性识别;
所述溶剂选自为水、甲醇、乙醇、乙腈、N,N-二甲基甲酰胺、二甲基亚砜、四氢呋喃以及丙的一种;
3+ 3+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ + +
所述金属阳离子选自为Cr ,Fe ,Co ,Mn ,Cd ,Cu ,Mg ,Ca ,Hg ,K 以及Li的一种。

说明书全文

一类基于镧系金属与四苯乙烯基团的MOFs制备及应用

技术领域

[0001] 本发明涉及一类基于镧系金属与四苯乙烯基团的MOFs材料的制备方法及应用,属于多孔材料的识别技术领域。

背景技术

[0002] 聚集诱导发光现象(aggregation-induced emission, AIE)的发现有效的解决了传统材料聚集后的荧光淬灭问题,因此为有机荧光材料领域进一步拓宽了研究思路。近年来,大量具有聚集诱导发光现象的有机分子被相继报道,其中最具代表性且发光机理相对明确的明星分子为四苯乙烯(Tetraphenylethylene, TPE)分子及其衍生物,在化学传感、生物探针以及发光器件等多个领域广泛应用。从结构上看,四苯乙烯分子结构简单,具有D2h对称性,四个苯环可像螺旋桨一样旋转既可与烯处于同一平面又可分别有一定的扭转,同时,苯环还可以烯烃的原子顶点进行一定的摆动,表现出多种多样的空间构型,并且稳定性好,最大的特点是具有的多芳香环的主体结构易于被修饰,可将研究领域范围进一步拓展。其中的研究热点之一为利用四苯乙烯分子独特的结构以及光学性能引入到金属-有机框架(metal-organic frameworks, MOFs)材料的体系中,用于构筑具有良好发光性能的MOFs材料。
[0003] 基于配位作用的MOFs材料,是多孔材料中的一类重要分支。它们由金属离子或金属团簇与有机配体的定向组装而成,具有周期性及网格结构特点。MOFs材料具有高度有序的孔道结构,作为类分子筛材料展现出大的表面积和孔隙率、形状及尺寸可调的孔道和结构易于修饰等特性,并且作为晶态材料,其内部结构明确利于探究作用机制,因此在气体存储、离子交换、固相催化和分离提纯等领域展现出广阔的应用前景。将四苯乙烯分子用于构筑MOFs材料时,其苯环的多种旋转和振动模式为构筑丰富的结构类型的MOFs提供了更多可能。与此同时,配位后展现出刚性特性的MOFs材料又在一定程度上阻碍四苯乙烯分子的自旋,从而产生聚集诱导发光现象,有效拓展其发光特性,提高发光效率,为这一类MOFs材料赋予更加丰富的光学性能。
[0004] 尽管目前基于功能基团修饰的四苯乙烯配体构筑的MOFs材料已有报道,已制备出的相关材料被应用于荧光传感、有机催化等领域。然而,由调研可知,已报道的该类MOFs材料中的金属节点均为Ni(II)、Cu(II)、Zn(II)等过渡金属离子,由于其较低的配位数和较少配位构型,极大限制了所构筑的MOFs材料的结构类型。镧系金属具有4f电子层的多样的电子排布形式,通常展现出多种配位模式和高配位数,然而到目前为止,此类基于镧系金属与四苯乙烯基团的MOFs材料还未见报道。因此,在本发明中,选用镧系金属为金属节点与修饰上羧酸配位基团的四苯乙烯四羧酸为有机配体,在合适的反应条件下,探寻更加丰富的MOFs结构类型。MOFs材料中四苯乙烯骨架上的多芳环结构有利于与小分子间形成多种弱相互作用进入到不同尺寸及形状的孔道中,从而实现对多种底物分子的捕集,并结合其良好的发光性能,在对溶液中金属阳离子的快速、可视化检测等方面具有重要的研究意义。

发明内容

[0005] 为了克服现有技术中存在的不足,本发明目的是提供一类基于镧系金属与四苯乙烯基团的MOFs材料的制备方法及应用,采用本发明制备方法得到的镧系-四苯乙烯基MOFs材料采用一步合成,简单易操作,得到的功能材料化学性质稳定,光学性能良好,并具有特定的疏空腔,为溶液中金属阳离子的快速、可视化检测提供了可能。
[0006] 为了实现上述发明目的,解决现有技术中所存在的问题,本发明采取的技术方案是:一类基于镧系金属与四苯乙烯基团的MOFs材料的制备方法,将羧酸基团作为配位作用位点,设计合成一例以四苯乙烯基团为构筑基元的有机配体L,以具有特定配位模式的稀土金属盐Ln作为节点,通过调控有机配体L与稀土金属盐的比例,利用水热-溶剂热合成法制得一系列基于镧系金属与四苯乙烯基团的MOFs材料,其合成路线如下:Ln + L → Ln-L;
所述稀土金属盐选自La(NO3)3、Ce(NO3)3或Pr(NO3)3中的一种;
所述有机连接配体L为四羧基四苯乙烯(H4TCPE),分子结构式如附图1所示;
所述MOFs材料Ln-L分子式为La(TCPE)(CH3CH2O)、Ce(TCPE)(CH3CH2O)、Pr(TCPE)(CH3CH2O)中的一种。
[0007] 所述一类基于镧系金属与四羧基四苯乙烯的MOFs材料的制备方法,包括以下步骤:(1)将有机配体H4TCPE与稀土金属盐Ln按照1.0:1.25的摩尔比溶解在4 mL体积混合比例范围为1:1的乙醇与水的混合溶剂中,在室温下进行搅拌,搅拌时间控制在3小时;
(2)将上述步骤制得的反应液加入到25 mL的高压反应釜中,烘箱温度设置为120℃,反应时间3天,然后关闭烘箱,冷却至室温后,有晶体析出即可制得目标材料;
(3)将上述步骤制得的晶体分离出来,用乙醇洗涤,除去孔道内的溶剂,低温烘干,得最终成品。
[0008] 所述一类基于镧系金属与四羧基四苯乙烯的MOFs材料的结构特征分别如下:(1)所述材料1的分子式C31.7H23LaO9,化学式为La(TCPE)(CH3CH2O);所述材料的晶体结构数据为:晶体为正交晶系,空间群为P2(1)2(1)2,晶胞参数为a=20.4082(2) Å,b=27.215(2) Å,c=5.4040(7) Å,α=90°,β=90°,γ=90°;
(2)所述材料2的分子式C31.7H23CeO9,化学式为Ce(TCPE)(CH3CH2O);所述材料的晶体结构数据为:晶体为正交晶系,空间群为P2(1)2(1)2,晶胞参数为a=20.377(2) Å,b=27.250(3) Å,c=5.4195(8) Å,α=90°,β=96.140(4)°,γ=90°;
(3)所述材料3的分子式C31.7H23PrO9,化学式为Pr(TCPE)(CH3CH2O);所述材料的晶体结构数据为:晶体为正交晶系,空间群为P2(1)2(1)2,晶胞参数为a=20.450(7) Å,b=27.382(10) Å,c=5.3704(18) Å,α=90°,β=90°,γ=90°。
[0009] 将所制备的MOFs材料用于选择性识别金属阳离子的应用,四苯乙烯分子自身良好的发光性能作为可视化输出信号,根据一系列金属阳离子与所选用基于四苯乙烯构筑的MOFs的荧光作用的差异,用于对金属阳离子的选择性识别,识别步骤如下:(1)使用荧光光谱仪进行检测,将2 mg所制备的镧系-四苯乙烯基MOFs材料加入至8种不同溶剂中,分别测定该悬浊体系的荧光信号,并对荧光信号强度进行排序;
(2)选择荧光响应强度最大的溶剂用于研究金属阳离子识别作用,将2 mg所制备的镧系-四苯乙烯基MOFs材料以及浓度为1×10-3 mol/L的金属氯化盐,加入至10 mL所选溶剂中,制得悬浊液,在相同的激发条件下,记录荧光信号的变化以及拍摄可视化荧光强度变化图片;
(3)绘制归一化后荧光滴定曲线,对比不同金属阳离子对所选用镧系-四苯乙烯基MOFs材料的荧光作用的差异,判断专一选择性识别;
所述MOFs材料选自所制备La(TCPE)(CH3CH2O)、Ce(TCPE)(CH3CH2O)、Pr(TCPE)
(CH3CH2O);
所述溶剂选自为水、甲醇、乙醇、乙腈、N,N-二甲基甲酰胺、二甲基亚砜、四氢呋喃以及丙的一种;
所述金属阳离子选自为Cr3+,Fe3+,Co2+,Mn2+,Cd2+,Cu2+,Mg2+,Ca2+,Hg2+,K+以及Li+的一种。
[0010] 本发明的有益成果本发明的优点在于:以四苯乙烯作为构筑主体,选用多种配位模式和高配位数的镧系金属为构筑节点,利用水热合成方法,自组装得到一类镧系-四苯乙烯基的多孔MOFs材料;
其刚性的骨架和孔道,可在一系列金属阳离子中,选择性识别Fe3+,通过四苯乙烯配体良好的荧光发光性能,将荧光发射作为相应信号,实现可视化的识别检测过程;并进一步将此识别过程设计为离子检测试纸,为更加方便、快速的Fe3+检测提供便利条件;与已有技术相比,本发明中所合成的化合物为第一例基于镧系-四苯乙烯基多孔MOFs材料,并通过性能评价将其用于金属阳离子的识别应用中,该工作在水中或其他溶液体系中的离子识别以及检测具有良好的应用前景。

附图说明

[0011] 图1是所用有机连接配体L结构示意图。
[0012] 图2是实施例1的目标材料沿a轴结构示意图。
[0013] 图3是实施例2的目标材料沿b轴结构示意图。
[0014] 图4是实施例3的目标材料沿c轴结构示意图。
[0015] 图5是实施例1的目标材料与四羧基四苯乙烯配体的荧光曲线。
[0016] 图6是实施例1的目标材料与在不同溶剂中的荧光曲线。
[0017] 图7是实施例1的目标材料与在不同溶剂中荧光拍摄照片。
[0018] 图8是实施例1的目标材料加入不同金属阳离子的荧光曲线。
[0019] 图9是实施例1的目标材料加入不同金属阳离子的荧光拍摄照片。

具体实施方式

[0020] 下面结合实施例对本发明作进一步说明。
[0021] 实施例1 (La-TCPE的合成)称取配体H4TCPE (30 mg, 0.06 mmol)和La(NO3)3 6H2O (0.033 g, 0.075 mmol)溶解于4 mL 体积比为1:1的乙醇与水的混合溶剂中,在室温下进行搅拌,搅拌时间控制在3小时,将反应液转移至25 mL的高压反应釜中,并置于烘箱中,烘箱温度设置为120℃,反应时间3天,然后关闭烘箱,冷却至室温后,收集所制得黄色晶体,并用乙醇洗涤,低温烘干并称重,产率为10%,Anal. calcd. for C31.7H23LaO9: C 55.43, H 3.37, La 20.22 %. Found: C 56.74, H 3.40, La 21.35 %。
[0022] 实施例2 (Ce-TCPE的合成)制备方法同实施例1,仅将稀土金属盐更改为Ce(NO3)3 6H2O (0.033 g, 0.075 mmol),产率为18%,Anal. calcd. for C31.7H23CeO9: C 55.34, H 3.37, Ce 20.36 %. Found: C 
57.12, H 3.23, Ce 20.86 %。
[0023] 实施例3(Pr-TCPE的合成)制备方法同实施例1,仅将稀土金属盐更改为Pr(NO3)3 6H2O (0.033 g, 0.075 mmol),产率为11%,Anal. calcd. for C31.7H23PrO9: C 55.27, H 3.36, Pr 20.45 %. Found: C 
55.76, H 3.48, Pr 21.38 %。
[0024] 实施例4(目标材料1与配体的荧光响应)分别测试目标材料1与四羧基四苯乙烯配体在固态下的荧光响应,都在390 nm的激发波长下,目标材料1在479 nm波长处观察有一个荧光信号,而配体四羧基四苯乙烯在488 nm处出现一个荧光信号,将二者的出峰位置相比较可知,由于配位作用的影响,目标材料1的荧光信号发生明显蓝移,并伴随有一定程度的强度减弱。
[0025] 实施例5(不同溶剂的荧光响应)称取2 mg实施例1所制备的化合物,分别加入至10 mL的水、甲醇、乙醇、乙腈、N,N-二甲基甲酰胺、二甲基亚砜、四氢呋喃以及丙酮中,超声震荡30 min并浸泡24 h,将上述悬浊液分别在390 nm波长的激发下,测定其荧光光谱,并按照荧光信号强度依次排序,不同溶剂下的荧光强度从高到低依次为:四氢呋喃 >> N,N-二甲基甲酰胺 > 丙酮 > 乙腈 >乙醇 > 甲醇 > 水 > 二甲基亚砜,并拍摄其不同荧光响应照片。
[0026] 实施例6(不同金属阳离子的荧光响应)选取实施例5中荧光信号强度最高的四氢呋喃为溶剂,称取2 mg实施例1所制备的化合物于10 mL四氢呋喃中,分别向其中加入1.0 × 10-3 mol/L的金属盐MClx (M = Cr3+, Fe3+, Co2+, Mn2+, Cd2+, Cu2+, Mg2+, Ca2+, Hg2+ K+ 和Li+),超声震荡30 min后,在相同的测试条件下,对上述悬浊液体系进行荧光测试,可观察到其荧光发射强度均不同程度降低,按照荧光信号强度依次排序,加入不同金属阳离子后的荧光强度从高到低依次为:Li+ > Mg2+ > Mn2+ > Ca2+ > Cd2+ > Co2+ > Cr3+ > Hg2+ > K+ > Cu2+ >> Fe3+,对Fe3+的荧光淬灭效应最显著,拍摄其不同荧光响应照片。
[0027] 实施例7(Fe3+的荧光滴定)根据实施例6的测试结果,将Fe3+配制为3.0 × 10-2 mol/L的四氢呋喃溶液,向含有2 mg实施例1所制备的化合物的溶液中分别滴加5、10、20、30、60、80、100、160、200 μL的Fe3+溶液,在390 nm波长的激发下,可观察到其荧光发射强度逐渐降低,与不加入金属盐溶液时相比,当加入200 μL的Fe3+溶液后,其荧光强度降低为之前的4.38 %,荧光几乎被淬灭,因此具有灵敏的检测效果。
[0028] 实施例8(Fe3+检测试纸的制备)3+
为实现快速、简便的可视化检测溶液中Fe ,将滤纸条浸泡在含有2 mg实施例1所制备的化合物的四氢呋喃溶液中,24 h后取出晾干,制为检测试纸,向试纸分别滴加浓度梯度依次为1.0 × 10-6 mol/L、1.0 × 10-5 mol/L、1.0 × 10-4 mol/L、1.0 × 10-3 mol/L以及
1.0 × 10-2 mol/L的Fe3+溶液,将试纸荧光信号变色作为比色卡,可用于对溶液中Fe3+浓度大小的定性分析。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈