首页 / 专利库 / 复合材料 / 莫来石 / / 一种有机-无机相结合的遥感相机用遮光罩的成型方法

一种有机-无机相结合的遥感相机用遮光罩的成型方法

阅读:443发布:2024-01-10

专利汇可以提供一种有机-无机相结合的遥感相机用遮光罩的成型方法专利检索,专利查询,专利分析的服务。并且本 发明 提供一种有机-无机相结合的遥感相机用遮光罩的成型方法,属于空间光学系统杂散光抑制领域。本发明解决现有遮光罩的分体式制备以及后续再 喷涂 处理所造成的结构 稳定性 差、尺寸精确度低和制备过程不连续等问题。以高性能有机 聚合物 为遮光罩本体材料,利用高吸光无机材料实现遮光罩更为优异的消杂散光能 力 ,3D打印头进行有机遮光罩本体成型,与之联动的 喷枪 同步喷出无机黑漆,在“边打边喷”过程中实现无机黑漆在粗糙有机吸光基体表面的均匀负载,借助打印件表面的余热使得无机黑漆分散液中的 溶剂 快速挥发并实现无机黑漆与有机基体的牢固结合,得到一种有机-无机相结合遮光罩,满足地球静止轨道遥感相机使用要求。,下面是一种有机-无机相结合的遥感相机用遮光罩的成型方法专利的具体信息内容。

1.一种有机-无机相结合的遥感相机用遮光罩的成型方法,其特征在于:包括以下步骤:
步骤一、将本色的高性能聚合物基体材料和炭黑加入到挤出机中充分混合,以实现对本色的高性能聚合物基体材料着色,其中炭黑的质量占本色高性能聚合物基体材料和炭黑总质量的0.5%-1.0%,用挤出机为3D打印机创建线材;
步骤二、制备无机黑漆,将黑色无机材料和溶剂充分混合,制备浓度为5~50mg/mL的无机黑漆;
步骤三、将制备完成的无机黑漆添加到喷枪中,设置相关参数:喷枪的喷涂流量为1~
10mL/h,喷涂度为30~45°;
步骤四、用绘图软件,根据遮光罩的结构图,对遮光罩进行等比例制图建模,得到格式为STL的遮光罩模型;
步骤五、将步骤四所得模型导入到3D切片软件中,设置相关参数:打印速度为5~40mm/s,打印头温度为380~460℃,成型挤出量为60%~140%,层厚0.05-0.2mm,填充密度20%-
80%,完成参数设置后导出格式为Gcode的3D打印机可识别的数据文件;
步骤六、将步骤五中的Gcode文件导入到熔融沉积成型3D打印机中,再将步骤一中已着色的高性能聚合物基体材料的线材加入到熔融沉积成型3D打印机中,同步启动打印头和喷枪,打印头和喷枪同步运动,逐层堆积,分层进行打印,得到内壁涂覆有机黑漆的遮光罩成品;
所述遮光罩为内壁均匀设有若干微小孔穴结构的一体式遮光罩,孔穴结构中孔穴的体积百分比为80%-90%,孔穴的边长尺寸为500-2000μm。
2.根据权利要求1所述的一种有机-无机相结合的遥感相机用遮光罩的成型方法,其特征在于:步骤一中,所述高性能聚合物基体材料为聚醚醚、聚醚酰亚胺或聚偏氟乙烯。
3.根据权利要求1或2所述的一种有机-无机相结合的遥感相机用遮光罩的成型方法,其特征在于:所述遮光罩的外形结构为方形、锥形或圆柱形。
4.根据权利要求3所述的一种有机-无机相结合的遥感相机用遮光罩的成型方法,其特征在于:所述遮光罩的内壁孔穴结构为蜂窝形孔穴、三角形孔穴或交叉型孔穴。
5.根据权利要求1所述的一种有机-无机相结合的遥感相机用遮光罩的成型方法,其特征在于:步骤二中,无机黑漆所用黑色无机材料为炭黑、石墨烯、纳米管或黑色二
6.根据权利要求5所述的一种有机-无机相结合的遥感相机用遮光罩的成型方法,其特征在于:步骤二中,无机黑漆所用溶剂为甲醇、乙醇或丙酮。
7.根据权利要求1或2所述的一种有机-无机相结合的遥感相机用遮光罩的成型方法,其特征在于:步骤五中设置的成型挤出量为80%~120%。
8.根据权利要求1或2所述的一种有机-无机相结合的遥感相机用遮光罩的成型方法,其特征在于:步骤五中设置的填充密度为40%-50%。
9.根据权利要求1或2所述的一种有机-无机相结合的遥感相机用遮光罩的成型方法,其特征在于:步骤五中设置的层厚为0.1mm。
10.根据权利要求1或2所述的一种有机-无机相结合的遥感相机用遮光罩的成型方法,其特征在于:步骤五中设置的打印速度为25mm/s。

说明书全文

一种有机-无机相结合的遥感相机用遮光罩的成型方法

技术领域

[0001] 本发明属于空间光学系统杂散光抑制领域,尤其是涉及一种有机-无机相结合的遥感相机用遮光罩的成型方法。

背景技术

[0002] 地球静止轨道(GEO)遥感相机需具备极高的时间分辨率和中等的空间分辨率,以及多光谱成像能,以便满足减灾、林业和气象等用户的广泛需求,然而杂光的存在致使其灵敏度受到极大干扰。杂光,是指光学系统中除了目标光线外,扩散于探测器表面上的其它非目标光线辐射能量。杂光的存在会使目标成像的信噪比下降,使目标成像模糊,对比度下降,进而降低了整个系统的识别和探测能力,严重时甚至会使被探测目标湮没在背景噪声中,导致整个系统的失效。
[0003] 遮光罩是遥感相机抑制视场外杂光的关键部件,既可遮挡部分地气光和除地气光之外的其他杂散光进入光学系统中,又可利用遮光罩内的特殊构造及表面材料特性最大限度地吸收已进入遮光罩的杂散光,对遥感相机成像起到至关重要的作用。现有遮光罩大多采用铸造、锻压等方法成型,且随着空间技术的发展,遮光罩的结构形式也变得更加复杂和多样化,一般只能采用分体式成型后焊接而成。此外,还需在所得遮光罩内表面喷涂无机黑漆,以进一步提高其光吸收的效果。但某些细小或复杂曲面结构的后续喷涂处理较为困难甚至会对原结构造成不可逆的损伤。上述制备过程繁琐且所得结构尺寸稳定性较差,极大地限制了此类遮光罩的长效稳定使用。

发明内容

[0004] 鉴于此,本发明旨在提出一种有机-无机相结合的遥感相机用遮光罩的成型方法,简单高效、可靠性高,“3D打印一体化”以及“3D打印技术与喷涂技术同步制备”实现了有机–无机杂化高吸光遮光罩的一体快速成型,有效解决了分体式制备过程所带来的结构稳定性差以及尺寸精度较低等缺陷,也有效避免了遮光罩成型后喷漆造成的结合不牢固以及额外的成本增加等问题,可满足地球静止轨道(GEO)遥感相机的使用要求。
[0005] 为达到上述目的,本发明的技术方案如下:
[0006] 一种有机-无机相结合的遥感相机用遮光罩的成型方法,包括以下步骤:
[0007] 步骤一、将本色的高性能聚合物基体材料和炭黑加入到挤出机中充分混合,以实现对本色的高性能聚合物基体材料着色,其中炭黑的质量占本色高性能聚合物基体材料和炭黑总质量的0.5%-1.0%,用挤出机为3D打印机创建线材;
[0008] 步骤二,制备无机黑漆,将黑色无机材料和溶剂充分混合,制备浓度为5~50mg/mL的无机黑漆;
[0009] 步骤三、将制备完成的无机黑漆添加到喷枪中,设置相关参数:喷枪的喷涂流量为1~10mL/h,喷涂度为30~45°;
[0010] 步骤四、用绘图软件,根据遮光罩的结构图,对遮光罩进行等比例制图建模,得到格式为STL的遮光罩模型;
[0011] 步骤五、将步骤四所得模型导入到3D切片软件中,设置相关参数:打印速度为5~40mm/s,打印头温度为380~460℃,成型挤出量为60%~140%,层厚0.05-0.2mm,填充密度
20%-80%,完成参数设置后导出格式为Gcode的3D打印机可识别的数据文件;
[0012] 步骤六、将步骤五中的Gcode文件导入到熔融沉积成型3D打印机中,再将步骤一中已着色的高性能聚合物基体材料的线材加入到熔融沉积成型3D打印机中,同步启动打印头和喷枪,打印头和喷枪同步运动,逐层堆积,分层进行打印,得到内壁涂覆有机黑漆的遮光罩成品;
[0013] 所述遮光罩为内壁均匀设有若干微小孔穴结构的一体式遮光罩,孔穴结构中孔穴的体积百分比为80%-90%,孔穴的边长尺寸为500-2000μm。
[0014] 进一步的,步骤一中,所述高性能聚合物基体材料为聚醚醚、聚醚酰亚胺或聚偏氟乙烯。
[0015] 进一步的,所述遮光罩的外形结构为方形、锥形或圆柱形。
[0016] 进一步的,所述遮光罩的内壁孔穴结构为蜂窝形孔穴、三角形孔穴或交叉型孔穴。
[0017] 进一步的,步骤二中,无机黑漆所用黑色无机材料为炭黑、石墨烯、纳米管或黑色二
[0018] 进一步的,步骤二中,无机黑漆所用溶剂为甲醇、乙醇或丙酮。
[0019] 进一步的,步骤五中设置的成型挤出量为80%~120%。
[0020] 进一步的,步骤五中设置的填充密度为40%-50%。
[0021] 进一步的,步骤五中设置的层厚为0.1mm。
[0022] 进一步的,步骤五中设置的打印速度为25mm/s。
[0023] 相对于现有技术,本发明所述的一种有机-无机相结合的遥感相机用遮光罩的成型方法具有以下优势:
[0024] 1、采用3D打印技术与喷涂技术同步制备有机–无机杂化高吸光遮光罩,3D打印头与喷枪同轴联动,在“边打边喷”过程中实现无机黑漆在微表面粗糙的有机吸光基体表面的均匀负载,借助打印件表面的余热使得无机黑漆分散液中的溶剂快速挥发并实现无机黑漆与有机基体的牢固结合,通过调控、优化打印工艺参数改变遮光罩内表面微观形貌进而显著提升遮光罩的消杂散光能力,产品具有较高的尺寸精度及力学性能,综上,“3D打印一体化”以及“3D打印技术与喷涂技术同步制备”,一方面有效避免了分体式制备过程所带来的结构稳定性差以及尺寸精度较低等缺陷,另一方面也有效避免了在遮光罩成型后喷漆造成的结合不牢固以及额外的成本增加等问题,可满足地球静止轨道(GEO)遥感相机的使用要求。
[0025] 2、本发明为制备新型高性能遥感相机用遮光罩提供了新的途径,同时也为今后开发新型高性能有机–无机杂化高吸收提供了新的思路与探索,使得本发明在学术上具有创新研究价值,在实际应用中具有广泛的社会经济效益和战略价值。
[0026] 采用此成型方法制备的遮光罩,具有如下优点:
[0027] 1.采用3D打印方式进行一体化遮光罩的制备,快速成型,制备得到的遮光罩无界面连接结构,整体结构一体化,无需进一步的零件装配工序,具有高效、稳定的制备工艺特性。
[0028] 2.采用PEEK材料作为遮光罩的主体材料,遮光罩主体材料采用PEEK材料,相比于传统金属材料具有更轻的质量及良好的物理强度,成型之后遮光罩呈黑色且具有粗糙表面,有利于光线吸收,轻质特性也能够满足光学系统遮光罩轻量化发展方向的要求。
[0029] 3.在遮光罩内壁形成大量的“光陷”孔穴,有利于杂散光的抑制;“光陷”孔穴结构主要靠低反射率和消除光线的二次散射来抑制杂散光,改变遮光罩内表面微观形貌进而显著提升遮光罩的消杂散光能力。
[0030] 4、采用3D打印方式对一体化遮光罩内壁进行各种几何结构设计,其设计出来的几何内壁结构形状自由度高,大小厚度高度可控,可制备出多种优质的杂散光抑制内壁结构,如蜂窝形内壁结构、四边形内壁结构、三角形内壁结构、或交叉型内壁结构。附图说明
[0031] 构成本发明的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
[0032] 图1为内壁为蜂窝形结构的且喷涂无机黑漆的遮光罩的制备过程示意图;
[0033] 图2本发明制备的内壁为蜂窝形结构的且喷涂无机黑漆的遮光罩的立体结构示意图;
[0034] 图3为图1的断面图;
[0035] 图4为遮光罩的内壁孔穴结构示意图,其中A为三角形孔穴,B为正方形孔穴,C为蜂窝形孔穴,D为交叉型孔穴;
[0036] 图5为无内壁结构的遮光罩的光路图;
[0037] 图6为内壁为蜂窝结构的遮光罩的光路图;
[0038] 图7为无炭黑溶液时成型的遮光罩的吸光度曲线图;
[0039] 图8为炭黑溶液浓度为40mg/mL时成型的遮光罩的吸光度曲线图;
[0040] 图9为炭黑溶液浓度为30mg/mL时成型的遮光罩的吸光度曲线图。
[0041] 附图标记说明:
[0042] 1-喷涂喷头,2-3D打印喷头。

具体实施方式

[0043] 需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
[0044] 下面将参考附图并结合实施例来详细说明本发明。
[0045] 如图1-图4所示,一种有机-无机相结合的遥感相机用遮光罩的成型方法,包括以下步骤:
[0046] 步骤一、将本色的高性能聚合物基体材料和炭黑加入到挤出机中充分混合,以实现对本色的高性能聚合物基体材料着色,其中炭黑的质量占本色高性能聚合物基体材料和炭黑总质量的0.5%-1.0%,高性能聚合物基体材料为聚醚醚酮PEEK、聚醚酰亚胺PEI或聚偏氟乙烯PVDF,用挤出机为3D打印机创建线材;
[0047] 步骤二,制备无机黑漆,将黑色无机材料和溶剂充分混合,无机黑漆所用黑色无机材料为炭黑、石墨烯碳纳米管或黑色二氧化钛;无机黑漆所用溶剂为甲醇、乙醇或丙酮;制备浓度为5~50mg/mL的无机黑漆;
[0048] 步骤三、将制备完成的无机黑漆添加到喷枪中,设置相关参数:喷枪的喷涂流量为1~10mL/h,喷涂角度为30~45°;此处喷涂角度是指喷枪的中轴线与3D打印机喷头的中轴线的夹角;且喷枪和3D打印喷头都朝向遮光罩的内壁设置;
[0049] 步骤四、用绘图软件,根据遮光罩的结构图,对遮光罩进行等比例制图建模,得到格式为STL的遮光罩模型;
[0050] 步骤五、将步骤四所得模型导入到3D切片软件中,设置相关参数:打印速度为5~40mm/s,打印头温度为380~460℃,成型挤出量为60%~140%,具体的,成型挤出量可以为
80%~120%;层厚0.05-0.2mm,填充密度20%-80%,完成参数设置后导出格式为Gcode的
3D打印机可识别的数据文件;
[0051] 步骤六、将步骤五中的Gcode文件导入到熔融沉积成型3D打印机中,再将步骤一中已着色的高性能聚合物基体材料的线材加入到熔融沉积成型3D打印机中,同步启动打印头和喷枪,打印头和喷枪同步运动,逐层堆积,分层进行打印,得到内壁涂覆有机黑漆的遮光罩成品;
[0052] 所述遮光罩为内壁均匀设有若干微小孔穴结构的一体式遮光罩,孔穴结构中孔穴的体积百分比为80%-90%,孔穴的边长尺寸为500-2000μm;所述遮光罩的外形结构为方形、锥形或圆柱形;所述遮光罩的内壁孔穴结构为三角形孔穴、正方形孔穴、蜂窝形孔穴或交叉型孔穴,如图4中A-D所示。
[0053] 如图5所示,光入射至遮光罩内壁直接形成漫反射,形成大量角度不一的反射光线,导致产生大量杂散光。如图6所示,光照射到遮光罩上,遮光罩内壁的几何结构可在遮光罩内壁形成大量的“光陷”孔穴,依靠较低的反射率和消除光线的二次散射达到抑制杂散光的效果。因此,带有几何结构内部的遮光罩具有较好的遮光效果。
[0054] 下面给出具体的示例:
[0055] 示例一:无喷枪喷涂形成的PEEK遮光罩,有机基材选用PEEK,控制成型温度420℃、速度为25mm/s、挤出量为120%,在此条件下得到了吸收率为95.83%的遮光罩,如图7所示。
[0056] 示例二:有机遮光罩基体材料选用PEEK,无机黑漆为以乙醇为溶剂的炭黑溶液(40mg/mL),3D打印头与喷枪同轴联动制备内壁四面蜂窝结构的方形遮光罩,控制成型温度420℃、速度为25mm/s、挤出量为120%,喷涂流量8mL/h,喷涂角度35°,在此条件下制得微观表面粗糙且均匀牢固负载有炭黑的高吸收且高力学稳定性的一体式高性能遮光罩,在此条件下得到了吸收率为98.21%的遮光罩,如图8所示。此外,所得遮光罩具有高的尺寸精度,可满足地球静止轨道(GEO)遥感相机的使用要求。
[0057] 示例三:有机基材选用PEEK,无机黑漆为以乙醇为溶剂的炭黑溶液(30mg/mL),控制成型温度420℃、速度为25mm/s、挤出量为120%,喷涂流量8mL/h,喷涂角度35°,在此条件下得到了吸收率为97.15%的遮光罩,如图9所示。
[0058] 本发明采用3D打印技术与喷涂技术同步制备遮光罩,快速成型,结构稳定性好,尺寸精度较高,遮光罩与无机黑漆结合牢固,遮光性能好。
[0059] 以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈