首页 / 专利库 / 建筑材料 / 建筑材料 / 绝热材料 / 玻璃棉 / 一种耐辐射陶瓷纤维棉复合材料

一种耐辐射陶瓷纤维复合材料

阅读:189发布:2023-12-26

专利汇可以提供一种耐辐射陶瓷纤维复合材料专利检索,专利查询,专利分析的服务。并且一种耐 辐射 陶瓷 纤维 棉 复合材料 ,其特征在于:按 质量 百分比包括55~58%的 氧 化 铝 、5~8%的 二氧化 硅 、8~10%的氧化5~ 铁 21、%6的~1氧0%化的锆二;氧所化述 钛 的、中3~空5%玻的璃中微空珠玻的璃密微度珠为、20~.43%~的0.结5g合/cm剂3、,粒径在40~80μm,漂浮率为91~93%有效提高陶瓷棉对红外线的反射能 力 ,同时降低体积 密度 ;所述的氧化铝、氧化铁和 二氧化硅 以 煤 矸石为原料制得,绿色环保;所述的二氧化钛为 纳米级 ,粒径为15~30nm,长径比为3~5,有效提高陶瓷 纤维棉 对热辐射的反射率,进一步改善陶瓷纤维棉的 隔热 性能。所述的纳米级氧化锆是由ZrO2、Y2O3、H2O2形成。本 发明 利用纳米级二氧化钛和中空玻璃微珠对热辐射的反射,制备一种耐高温辐射、低成本、高寿命的陶瓷纤维棉,具有广泛的市场应用价值。,下面是一种耐辐射陶瓷纤维复合材料专利的具体信息内容。

1.一种耐辐射陶瓷纤维复合材料,其特征在于:按质量百分比包括55 58%的、~
5 8%的二氧化、8 10%的氧化、6 10%的二氧化、3 5%的中空玻璃微珠、2 4%的结合剂、~ ~ ~ ~ ~
5 21%的氧化锆;所述的中空玻璃微珠的密度为0.3 0.5g/cm3,粒径在40 80μm,漂浮率为91~ ~ ~
93%;所述的氧化铝、氧化铁和二氧化硅矸石为原料制得;所述的二氧化钛为纳米级,~
粒径为15 30nm,长径比为3 5。
~ ~
2.根据权利要求1所述的陶瓷纤维棉复合材料,其特征在于所述的结合剂为聚合氯化铝、聚丙烯酞胺、氧化铝溶液的一种或多种,浓度为5 10%。
~
3.根据权利要求1所述的陶瓷纤维棉复合材料,所述的陶瓷纤维棉芯材的体积密度
90 110kg/m3,抗拉强度为0.08 0.12Mpa,纤维平均直径为1 3μm,含率≤1,渣球含量≤~ ~ ~
10%。
4.根据权利要求1所述的陶瓷纤维棉复合材料,其特征在于纳米级氧化锆是由ZrO2、Y2O3、H2O2形成,ZrO2 与Y2O3的质量比为85 95:4,ZrO2 与 H2O2的质量比为 1:3 5。
~ ~
5.一种耐辐射陶瓷纤维棉复合材料的制备方法,其特征在于包括以下制备步骤:
(1)配比组成陶瓷纤维棉的原料:氧化铝、二氧化硅、氧化铁、二氧化钛、中空玻璃微珠和氧化锆;所述的中空玻璃微珠的密度为0.4g/cm3,粒径为60μm,漂浮率为92%;所述的纳米级二氧化钛粒径为20nm,长径比为4;结合剂选择聚合氯化铝和聚丙烯酞胺的混合溶液,配比为4:6,浓度为8%;
(2)将原料加入搅拌器,混合搅拌,调节制浆过程中浆料的pH值至中性,直至搅拌均匀;
(3)将搅拌均匀的原料加入到电加热炉内,调节电加热炉内的温度至1800 2000℃;
~
(4)在喷吹装置口高压的作用下,加入结合剂,喷吹形成絮状陶瓷纤维棉;
(5)将陶瓷纤维棉下落到传送带上,得到陶瓷纤维棉。

说明书全文

一种耐辐射陶瓷纤维复合材料

技术领域

[0001] 本发明涉及一种陶瓷纤维棉复合材料的生产加工技术,尤其涉及一种耐辐射陶瓷纤维棉复合材料。

背景技术

[0002] 陶瓷纤维棉又称棉,是硅酸铝棉中的一种。广泛应用于船舶、工厂、建材、石油、化工等等。具有质轻、防火、导数系数低、吸引系数高、抗化学腐蚀等性能。而且可以通过不同的密度和成型工艺科制成板、条、带、绳、毡、毯、席、垫、管等。安全使用温度大于1000℃高温。
[0003] 保温绝热,是实现节约能源、保障经济可持续发展的重要措施之一。高温工业的发展,对保温隔热材料提出了更高要求,如高效、节能、高强、低导和防等。为此,人们一直在寻求与研究具有低导热系数、高红外反射率和微孔化的高温工业用新型保温隔热材料。陶瓷纤维是一种纤维状轻质耐火材料,由其制成的保温隔热材料具有耐高温、热稳定性好、导热率低和耐机械震动等优点,因而在机械、冶金、石化、建材和电子等行业都得到了广泛的应用。陶瓷纤维组成和结构的差异直接决定了纤维的高低温强度、抗蠕变性、弹性模量等,纤维的长度决定了纤维制品的最终形式,有些纤维可纺布、可制毯、可造纸,有些纤维就不行,最终决定了不同纤维制品各自专有的应用领域。现有的陶瓷纤维材料并不能够满足使用需要,因此,需要陶瓷纤维的性能进一步提高。
[0004] 申请公开号为CN105347798A的中国发明专利公开了一种陶瓷纤维隔热板,公开了一种陶瓷纤维隔热板,所述陶瓷纤维隔热板由以下重量份数的原料制成 :纳米二 35 份,纳米级氧化铝 4 9 份,五氧化二 2 8 份,纳米级化硅 5 7 份,微米级碳化硅~ ~ ~ ~
35 45 份,分散剂 1 5 份,锆乳胶 3 4 份,白石粉4 8 份,微米级氧化铝 30 40 份。发~ ~ ~ ~ ~
明的陶瓷纤维隔热板,在满足耐高温的前提下,具有高的高红外反射率,其体积密度和高温导热系数低,具有优异的隔热性能,同时,其优良的抗折强度可长期用于高温隔热领域。所述的陶瓷纤维隔热板隔热保温性能虽然得到大大提高,但是其加工程序繁琐、抗收缩、抗翘曲以及复杂环境下抗龟裂能较低。
[0005] 申请号为CN205475770U的中国实用新型专利公开了一种陶瓷纤维棉定向复合竖丝岩棉板  ,该实用新型公开了一种陶瓷纤维棉定向复合竖丝岩棉板,其目的在于提供一种板面平整光洁、不起尘、不掉渣、耐火温度高、耐水性好、抗拉拔强度高、耐久性好、导热系数低、保温效果好的陶瓷纤维棉定向复合竖丝岩棉板,该实用新型包括相互粘接的竖丝岩棉板层和陶瓷纤维棉层,所述竖丝岩棉板层包括竖丝岩棉基板,所述竖丝岩棉基板由岩棉切割而成,所述岩棉块包括若干顺丝岩棉板,相邻所述顺丝岩棉板之间为粘接剂层,所述竖丝岩棉基板表面填充有粘接剂,所述陶瓷纤维棉层表面喷涂有陶瓷纤维棉固化剂。所述的陶瓷纤维棉定向复合竖丝岩棉板耐水性好、抗拉拔强度高、耐久性好、导热系数低、保温效果好,但是其高温保温性能较差。
[0006] 当前市场上存在很多陶瓷纤维棉,质量良莠不齐、制造成本较高、寿命较短尤其是耐辐射、高温保温隔热性能较差,因此研究耐辐射、耐高温、低成本、寿命长的陶瓷纤维棉是当今新材料开发的技术前沿,选用新材料,逐一解决这些难题是可靠的。

发明内容

[0007] 本发明的目的在于克服现有技术的不足,提供一种耐辐射陶瓷纤维棉复合材料,综合利用不同材料的性能优势,提供一种能够耐高温辐射、密度小、低成本、高寿命的陶瓷纤维棉。
[0008] 为了实现本发明的目的,所采用的技术方案是:一种耐辐射陶瓷纤维棉复合材料,其特征在于:按质量百分比包括55 58%的氧化铝、5 8%的二氧化硅、8 10%的氧化、6 10%~ ~ ~ ~的二氧化钛、3 5%的中空玻璃微珠、2 4%的结合剂、5 21%的氧化锆;所述的中空玻璃微珠的~ ~ ~
密度为0.3 0.5g/cm3,粒径在40 80μm,漂浮率为91 93%;所述的氧化铝、氧化铁和二氧化硅~ ~ ~
矸石为原料制得;所述的二氧化钛为纳米级,粒径为15 30nm,长径比为3 5。
~ ~
[0009] 所述的陶瓷纤维棉复合材料,其特征在于所述的结合剂为聚合氯化铝、聚丙烯酞胺、氧化铝溶液的一种或多种,浓度为5 10%。~
[0010] 所述的陶瓷纤维棉复合材料,所述的陶瓷纤维棉芯材的体积密度为90 110kg/m3,~抗拉强度为0.08 0.12Mpa,纤维平均直径为1 3μm,含水率≤1,渣球含量≤10%。
~ ~
[0011] 所述的陶瓷纤维棉复合材料,其特征在于纳米级氧化锆是由ZrO2、Y2O3、H2O2形成,ZrO2 与Y2O3的质量比为85~95:4,ZrO2 与 H2O2的质量比为 1:3~5。
[0012] 该耐辐射陶瓷纤维棉复合材料的制备方法如下:(1)配比组成陶瓷纤维棉的原料:氧化铝、二氧化硅、氧化铁、二氧化钛、中空玻璃微珠和氧化锆;所述的中空玻璃微珠的密度为0.4g/cm3,粒径为60μm,漂浮率为92%;所述的纳米级二氧化钛粒径为20nm,长径比为4;结合剂选择聚合氯化铝和聚丙烯酞胺的混合溶液,配比为4:6,浓度为8%;
(2)将原料加入搅拌器,混合搅拌,调节制浆过程中浆料的pH值至中性,直至搅拌均匀;
(3)将搅拌均匀的原料加入到电加热炉内,调节电加热炉内的温度至1800 2000℃;
~
(4)在喷吹装置口高压的作用下,加入结合剂,喷吹形成絮状陶瓷纤维棉;
(5)将陶瓷纤维棉下落到传送带上,得到陶瓷纤维棉。
[0013] 与现有技术相比,本发明具有如下有益效果:(1)原料中加入纳米级二氧化钛不仅能够调整陶瓷纤维结构、提高使用温度还可以提高陶瓷纤维棉对热辐射的反射率,进一步改善陶瓷纤维棉的隔热性能;
(2)陶瓷纤维棉中加入中空玻璃微珠,与纳米级二氧化钛相混合,进一步提高对红外线的反射能力,同时降低陶瓷纤维棉的体积密度,提高抗收缩、抗翘曲和抗龟裂的能力;
(3)陶瓷纤维棉中部分原料从煤矸石中获取,降低了生产成本,绿色环保;氧化锆的加入进一步提高陶瓷纤维棉的保温隔热能力;
(4)陶瓷纤维棉中的复合材料提高了陶瓷纤维棉板的使用寿命。

具体实施方式

[0014] 下面结合具体实施例,进一步阐明本发明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定。
[0015] 实施例1一种耐辐射陶瓷纤维棉复合材料,其特征在于:按质量百分比包括55 58%的氧化铝、5~ ~
8%的二氧化硅、8 10%的氧化铁、6 10%的二氧化钛、3 5%的中空玻璃微珠、2 4%的结合剂、5~ ~ ~ ~ ~
21%的氧化锆;所述的中空玻璃微珠的密度为0.3 0.5g/cm3,粒径在40 80μm,漂浮率为91~ ~ ~
93%;所述的氧化铝、氧化铁和二氧化硅以煤矸石为原料制得;所述的二氧化钛为纳米级,粒径为15 30nm,长径比为3 5。
~ ~
[0016] 所述的陶瓷纤维棉复合材料,其特征在于所述的结合剂为聚合氯化铝、聚丙烯酞胺、氧化铝溶液的一种或多种,浓度为5 10%。~
[0017] 所述的陶瓷纤维棉复合材料,所述的陶瓷纤维棉芯材的体积密度为90 110kg/m3,~抗拉强度为0.08 0.12Mpa,纤维平均直径为1 3μm,含水率≤1,渣球含量≤10%。
~ ~
[0018] 所述的陶瓷纤维棉复合材料,其特征在于纳米级氧化锆是由ZrO2、Y2O3、H2O2形成,ZrO2 与Y2O3的质量比为85~95:4,ZrO2 与 H2O2的质量比为 1:3~5。
[0019] 该耐辐射陶瓷纤维棉复合材料的制备方法如下:(1)配比组成陶瓷纤维棉的原料:氧化铝55%、二氧化硅6%、氧化铁8%、二氧化钛8%、中空
3
玻璃微珠5%、氧化锆14%;所述的中空玻璃微珠的密度为0.4g/cm ,粒径为60μm,漂浮率为
92%;所述的纳米级二氧化钛粒径为20nm,长径比为4;结合剂选择聚合氯化铝和聚丙烯酞胺的混合溶液,配比为4:6,浓度为8%;
(2)将原料加入搅拌器,混合搅拌,调节制浆过程中浆料的pH值至中性,直至搅拌均匀;
(3)将搅拌均匀的原料加入到电加热炉内,调节电加热炉内的温度至1800 2000℃;
~
(4)在喷吹装置口高压风的作用下,加入结合剂4%的聚合氯化铝,喷吹形成絮状陶瓷纤维棉;
(5)将陶瓷纤维棉下落到传送带上,从而得到耐辐射的陶瓷纤维棉。
[0020] 上述仅为本发明的两个具体实施方式,但本发明的设计构思并不局限于此,凡利用此构思对本发明进行非实质性的改动,均应属于侵犯本发明保护的范围的行为。但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何形式的简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈