首页 / 专利库 / 信号处理 / 采样频率 / 贯入组件用的将采样器锤击进入钻探孔中的土地内的设备

贯入组件用的将采样器锤击进入钻探孔中的土地内的设备

阅读:295发布:2024-01-07

专利汇可以提供贯入组件用的将采样器锤击进入钻探孔中的土地内的设备专利检索,专利查询,专利分析的服务。并且一种与撞击锤贯入组件如岩土工程中的标准贯入试验(SPT)一起使用的设备。所述撞击锤贯入组件包括贯入样品、一系列联接在一起的杆和撞击锤设备。所述锤自恒定高度下落并顺序地撞击所述联接的杆和 采样 器且使所述采样器受 力 以更深入土地。所述设备包括输出第一电 信号 的尖端深度换能器和采样器,所述第一 电信号 是所述采样器尖端 位置 的函数。冲击力换能器与所述杆中的轴向冲击力连通以输出第二电信号,所述第二电信号是所述杆的冲击力和锤击的函数。冲击贯入换能器与所述联接杆和采样器的移动连通以输出第三电信号,所述第三电信号是由于所述锤击所致的所述采样器贯入的函数。微处理 控制器 实时地监控和处理所述第一信号、所述第二信号和所述第三信号。,下面是贯入组件用的将采样器锤击进入钻探孔中的土地内的设备专利的具体信息内容。

1.一种与贯入组件一起使用的用于将采样器锤击进入钻探孔或钻孔中的土地内的设备,所述贯入组件具有:
采样器,所述采样器在一端处具有联接器以与杆相连;
多根杆,杆的每端具有用于将其自身串连在一起的联接器;
撞击锤设备,所述撞击锤设备可被串连连接至多个联接杆的顶端或与所述联接杆的顶端脱开连接且可使所述撞击锤设备自恒定高度下落以撞击所述联接杆的顶端;
举升装置,所述举升装置用于举升杆以进行联接、脱开联接、插入和收回或用于举升所述撞击锤设备从而下落以重复撞击底端具有所述采样器的所述联接杆的所述顶端;
所述设备包括:
输出第一电信号的尖端深度换能器,所述第一电信号是串连联接在一起的所述采样器和杆自身通过钻探孔的顶部上的固定参比点的总长度的函数;
输出第二电信号的冲击换能器,所述第二电信号是所述杆中且沿所述杆轴向的冲击力的函数;
输出第三电信号的冲击贯入换能器,所述第三电信号是由于从恒定高度下落的撞击锤设备的锤击所致的采样器的贯入深度的函数;和
控制器,所述控制器接收且监控所述第一电信号、所述第二电信号和所述第三电信号且产生所述采样器尖端位置、所述杆的冲击力和所述采样器冲击贯入深度的相应函数曲线图轨迹。
2.根据权利要求1所述的设备,其中所述控制器以第一预选采样频率监控、处理、获取和储存所述第一电信号,且产生所述采样器尖端深度的位置的第一曲线图轨迹。
3.根据权利要求1所述的设备,其中所述控制器以第二预选采样频率监控且处理所述第二电信号和所述第三电信号且利用所述第二电信号作为以所述第二预选采样频率获取且储存所述第二电信号和所述第三电信号的触发标准。
4.根据权利要求1所述的设备,其中所述控制器评测所述第二电信号和所述第三电信号且产生指示所述撞击锤状态完成的电信号。
5.根据权利要求1所述的设备,其中所述控制器产生所述杆的冲击力、所述采样器贯入深度的相应函数曲线图轨迹。
6.根据权利要求1所述的设备,其中所述控制器产生监控结果的汇总报告,所述监控结果包括锤击数、撞击锤时间、锤效率和相应的采样器贯入深度。
7.根据权利要求1所述的设备,其中装置在所述采样器插入过程、所述撞击锤设备撞击和采样器贯入过程和/或所述采样器收回过程中监控、获取且处理所述第一电信号、所述第二电信号和所述第三电信号且实时地产生所述曲线图轨迹。
8.根据权利要求1所述的设备,其中所述第一电信号和所述第三电信号是数字信号
9.根据权利要求1所述的设备,其中所述第二电信号是模拟信号
10.根据权利要求1所述的设备,其中所述尖端深度换能器包括:
安装在套壳的活动垂直轴上的第一轮、第二轮和第三轮;
所述第一轮、所述第二轮和所述第三轮能够围绕其相应的轴转动;
用于使所述第一轮受力靠在所述垂直轴上的至少一个弹簧
第一转动传感器,所述第一转动传感器被可操作地连接到所述垂直轴上以测量所述垂直轴的向上或向下移动所致的第一轮的转动;
其中第一转动传感器捕获所述第一电信号。
11.根据权利要求10所述的设备,其中所述第一轮、所述第二轮和所述第三轮被垂直且紧固地安放在所述套壳上方且在平平面上围绕所述垂直轴成120°间隔。
12.根据权利要求10所述的设备,其中所述第一轮承载用于输出作为通过长度的函数的所述第一电信号的所述第一转动传感器。
13.根据权利要求1所述的设备,其中所述冲击贯入换能器包括:
附接有四个滑轮的刚性直三角形金属框,所述角三角形金属框的两条直角边的其中一条被紧固地安装到固定在土地上的水平梁上从而垂直地竖立第二条直角边;
金属丝圈;
齿轮箱;
第二转动传感器;
齿条,所述齿条被固定在所述直角三角形金属框的斜边上以使所述齿条上的齿轮产生规则转动且使所述齿轮箱因此产生移动;
两根导杆,所述导杆被固定在所述直角三角形金属框的所述斜边上以导引所述齿轮箱在所述齿条上稳定地移动;和
承载臂;
其中所述金属丝圈靠置在所述直角三角形金属框的所述四个滑轮上且在所述四个滑轮上平滑地移动、且在所述齿条上方且平行于所述齿条串连地紧固所述齿轮箱、推动所述齿轮箱以沿所述两根导杆的方向在所述齿条上转动且移动。
14.根据权利要求13所述的设备,其中所述第二转动传感器与所述齿轮箱中的齿轮轴相连且与所述齿条上的所述齿轮的转动连通以输出所述第三电信号,所述第三电信号是所述齿条上的所述齿轮箱位置的函数。

说明书全文

贯入组件用的将采样器锤击进入钻探孔中的土地内的设备

技术领域

[0001] 本发明涉及改进的地下勘探方法,且更具体而言涉及一种用于执行标准贯入试验的自动设备和方法。
[0002] 背景技术
[0003] 标准贯入试验(SPT)是一种在地下勘探过程中在钻探孔(或钻孔)15的底端16驱动采样器20进入地面14中的现场试验技术。通过试验可测量在从恒定高度自由下落的锤击作用下对于采样器的土壤耐贯入阻
[0004] 由两个操作员实施试验操作。如图1和图2所示,第一操作员利用钻机10和钻塔11上的丝绳12的动力举升或降下升降机的吊钩13。第二操作员使升降机的吊钩与钻杆顶部(图1)或与撞击锤设备的钢链25(图2)相联或脱开联接。撞击锤设备包括钢链、X夹持器24、锤23和导杆26。导杆具有位于其底部的下部砧座28、位于其顶部的上部砧座27和钢链25。锤具有受到X夹持器夹持的盖部29。在以实时顺序进行下列三个过程后,在钻探孔的深度处进行试验。
[0005] 首先,串联联接至钻杆的采样器必须被插入到钻探孔内(图1)。采样器必须到达钻探孔底部。如果底端16与采样器相联21的钻杆22长度不能使得采样器20尖端到达钻探孔底部,则第二钻杆被添加至第一钻杆顶部以使采样器尖端到达钻探孔底部。相似地,如果采样器尖端仍不能到达钻探孔底部,则将添加并联接第三钻杆。重复这种添加、联接和插入过程直至采样器尖端到达钻探孔底部。该过程是采样器插入的第一过程。 [0006] 接下来,一旦采样器被置于试验深度处,则撞击锤设备将被添加至联接的钻杆和采样器系统的顶部。锤撞击设备将被用于使采样器在钻探孔底部处(图2)贯入土地内。升降机的吊钩将通过钢链向上举升X夹持器。X夹持器将夹持锤的盖部且沿导杆向上传送锤。一旦X夹持器撞击上部砧座,则位于锤的盖部处的夹持装置将受力以自动打开和释放锤。锤将沿导杆自由下落。所述锤的平的底表面将撞击下部砧座的平的顶表面。下部砧座的底部被联接至钻杆。在钻杆中导致产生的冲击力将使得采样器贯入到钻探孔底部下面的土地内。一旦锤在下部砧座上稳定下来,则第一操作员将使升降机吊钩下落以使得X夹持器沿导杆落到锤的盖部上。随后,操作员将上紧钢链以使得X夹持器与锤的盖部再次联接。
随后,操作员将迅速举升锤。一旦X夹持器撞击上部砧座,则锤将再次自由下落。锤将撞击下部砧座以使得采样器再次贯入土壤。重复多次上面的操作过程直至满足试验标准。该过程是锤撞击和采样器贯入的第二过程。
[0007] 再次,一旦完成贯入阶段,操作员将从钻杆上去除锤撞击设备。随后,操作员将挨个从钻探孔中收回钻杆(图1)。钻杆和采样器将被举升。随后,顶部钻杆将与钻探孔中的其余钻杆脱开联接,且其将被安放在附近的土地上。随后将从钻探孔中去除剩余钻杆。第二顶部钻杆将脱开联接且被安放在附近的土地上。将会重复这种举升、脱开联接和安放过程直至从钻探孔中收回第一钻杆以及采样器。该过程是采样器收回的第三过程。随后将进行进一步的钻探作业直至钻探孔的底端到达随后的试验深度。随后,在进行上述三个过程后,将实施随后的试验。
[0008] 锤由钢制成且重63.5kg。自由下落高度为760mm。记录在贯入0至450mm之间每贯入75mm落在砧座上的锤击数。第一次贯入150mm被视作固定驱动(seating drive)。驱动采样器贯入土地中300mm所需的锤击数已公知为贯入阻力或N值。官方通常采用如何确定N值的技术规范以确定土壤剪切强度和承载能力。锤效率可被进一步定义为杆动能与锤下落高度的总势能(473焦)的百分比。根据具体公式如ASTM(1995)中的公式通过由于锤击而在钻杆中产生的轴向冲击力计算杆的动能。
[0009] 标准贯入试验被广泛使用且成为香港住宅和基础设施开发以及防止塌方措施项目中所选择的工具。标准贯入试验被包括在绝大多数土地勘测合同中。标准贯入试验具有下列优点:a)试验设备简单坚固;b)可在多种不同种类的土壤中实施试验;c)该试验在世界范围内被广泛采用作为例行的现场试验方法;和d)对于土工技术设计和构造而言已经积累了大量经验以及经验关系。
[0010] 然而,标准贯入试验的结果,且更具体而言N值和试验深度,完全是通过手动测量获得的。通常,手动测量是由两个订约方实施的。 对于绝大多数试验而言,没有充分的时间进行独立的监督或检查。此外,试验和钻探是破坏性、不可重复且耗时的。更重要的是,在香港,试验通常是在崩积层和化的岩石土壤中进行的。具有高强度和硬度的砂砾、粗砾和卵石可能在土壤中随意出现。它们可能显著改变N值。结果是,在香港的建造现场,N值可能在较大范围内变化。
[0011] 因此,手动试验结果的准确性和质量已总是成为香港的许多土工技术工程师和订约方所主要关注的问题。目前,还没有工具独立地检查和验证手动试验结果的准确性和质量。因此,人们相信实现对标准贯入试验测量的监控和记录的自动化可解决迫切问题且为独立地检查和验证手动试验结果提供了附加数据。
[0012] 发明内容
[0013] 由常规标准贯入试验的现场观察以及手动操作和测量的问题导致作出本发明以实现试验测量的自动化。插入过程、撞击锤和采样器贯入过程以及收回过程按时序顺序实施。本发明的第一个目的在于提供一种实时记录和评估杆和采样器进入钻探孔的插入工艺的自动数字标准贯入试验监控器,这使得能够评测和验证试验深度及其开始时间。本发明的第二个目的在于提供一种实时记录和评估撞击锤和采样器的贯入过程的自动数字标准贯入试验监控器,所述自动数字标准贯入试验监控器使得能够根据技术规范(在本构型中,该技术规范是香港住宅官方技术规范)评测土壤阻力且更具体而言评测N值和相关的锤效率。本发明的第三个目的在于提供一种实时记录和评测从钻探孔中收回杆和采样器的过程的自动数字标准贯入试验监控器,这使得能够评估和验证试验深度及其完成时间。 [0014] 为了实现上述目的,本发明提供了一种与现有标准贯入试验设备和操作过程相关的标准贯入试验的现场数字标准贯入试验监控器。数字标准贯入试验监控器包括尖端深度换能器、冲击力换能器、冲击贯入换能器和进行数据获取和处理的微处理控制器。所述微处理控制器包括笔记本式计算机、数据记录器和电池。数据记录器通过第一信号电缆、第二信号电缆和第三信号电缆与所述尖端深度换能器、所述冲击力换能器和所述冲击贯入换能器相连以分别传送第一电信号、第二电信号和第三电信号。所述第一电信号和所述第三电信号是数字信 号。所述第二电信号是模拟信号
[0015] 在插入过程即将开始之前,所述尖端深度换能器被安装到钻探孔套壳的顶部上并解。所述尖端深度换能器感测在插入过程中所述采样器和每个所述相联钻杆相对于土地上的固定位置(即所述套壳)进行的垂直移动(或不移动),并以第一预选采样速率实时地将所述第一电信号传入微处理控制器内以进行储存和显示。在插入过程完成时,所述尖端深度换能器被锁定且从所述套壳上被拆下来并被安放在附近的土地上。所述锁定使得所述第一电信号不会随时间而变化。
[0016] 随后,所述撞击锤设备与所述冲击力换能器和所述冲击贯入换能器一起被顺序安装到所述钻杆顶部上以进行撞击锤和采样器贯入的所述第二过程。所述冲击力换能器感测所述杆中的轴向力且所述冲击贯入换能器感测所述杆相对于土地上的固定位置产生的移置。他们通过所述第二电缆和所述第三电缆同时且实时地将所述第二电信号和所述第三电信号传送至所述微处理控制器。采用触发方法在预选持续时间内以第二预选采样速率在所述微处理控制器中获取并储存数据。触发标准在于冲击力等于或大于预选压缩幅度。预选的数据获取间隔小于锤举升和下落的时间间隔且大于锤回弹的时间间隔。同时,所述微处理控制器对锤击进行计数且记录一次锤击。对于每次锤击重复该自动监控和数据获取过程直至所述微处理控制器发现试验已经达到N值的一个预定标准。此时,所述微处理控制器的计算机向操作员发出警报。在完成所述第二过程后,从所述钻杆上去除所述撞击锤设备、所述冲击力换能器和所述冲击贯入换能器。
[0017] 在所述收回过程开始时,所述尖端深度换能器被重新安装到所述套壳上并解锁。所述尖端深度换能器感测在所述收回过程中所述采样器和每个所述联接钻杆相对于土地上的固定位置(即所述套壳)进行的垂直移动或不移动,并且继续以所述第一预选采样速率实时地将所述第一电信号传入所述微处理控制器内以储存和显示。在完成所述收回过程时,所述尖端深度换能器被再次锁定且从所述套壳上被拆下并被安放在附近的土地上。 [0018] 在本构型中,所述第一电信号的预选第一采样速率为100Hz且所述第二电信号和所述第三电信号的预选第二采样速率为50kHz;所述触发轴向力的所述预选幅值是50kN;
且所述第二电信号和所述第三电 信号的数据获取的预选持续时间是1秒。 [0019] 本发明是便携式的且适用于任何现有的标准贯入试验设备。本发明对三个试验过程进行实时监控。本发明进一步以实时顺序评测标准贯入试验的测量并对监控的数字数据的试验结果作出汇总报告。本发明可应用于多种土地条件,包括极硬(N>200)、正常(1<N<200)和极软(如N<1)土地条件中的任何试验深度。
[0020] 附图说明
[0021] 通过以下详细描述并结合附图将更清楚地理解本发明的上述及其它目的、特征和优点,在所述附图中:
[0022] 图1示出了将与钻杆串联联接的样品插入钻探孔内的第一过程(或从所述钻探孔中收回样品的第三过程)以在现场的给定试验深度条件下进行标准贯入试验的现有技术手动设备;
[0023] 图2示出了在钻探孔的底部处进行锤和采样器贯入以在现场确定土壤N值的现有技术设备;
[0024] 图3是本发明的采样器插入的第一过程或样品收回的第三过程的测量、自动化和记录的总示意图;
[0025] 图4是根据本发明的撞击锤和样品贯入的第二过程的测量、自动化和记录设备的总示意图;
[0026] 图5是本发明的采样器插入的第一过程或样品收回的第三过程的测量、自动化和记录的详细示意图;
[0027] 图6是本发明的尖端深度换能器的详细示意图;
[0028] 图7是本发明的尖端深度换能器在样品插入的第一过程和样品收回的第三过程中以实时顺序作出的实际测量结果的实例;
[0029] 图8是本发明的撞击锤和样品贯入的第二过程的测量、自动化和记录的详细示意图;
[0030] 图9是通过冲击力换能器在1秒时间内现场测得的由于锤下落的撞击而在钻杆中产生的轴向冲击力;
[0031] 图10是图9所示的冲击力结果在其最初的0.05秒持续时间内的详细视图; [0032] 图11是本发明的冲击贯入换能器的详细示意图;
[0033] 图12是在本发明的冲击贯入换能器的齿条上且沿两根导杆设置 的齿轮箱的详细示意图;
[0034] 图13是与图9所示的冲击力曲线图同时进行的通过冲击贯入换能器感测到的位于齿条上的齿轮箱的位置变化的曲线图;
[0035] 图14是图13所示的冲击贯入换能器在其最初的0.05秒持续时间内的典型结果的详细视图;和
[0036] 图15是在图7所示的试验深度处进行的锤撞击和样品贯入的第二过程的测量自动化的总结报告。
[0037] 具体实施方式
[0038] 将通过实例并结合附图对本发明进行进一步详细地描述。如图3至图8所示,根据本发明的实现标准贯入试验测量自动化的数字标准贯入试验监控器10包括微处理控制器30、尖端深度换能器40、冲击力换能器60和冲击贯入换能器70。微处理控制器30包括数据记录器32、电池33和笔记本式计算机31。数据记录器32利用电源电缆34与电池33附接且利用防火墙电缆35与计算机31连通。电池33被用于供应数据记录器32和笔记本式计算机31所需的少量动力。微处理控制器30进一步利用第一信号电缆36与尖端深度换能器40连通、利用第二信号电缆37与冲击力换能器70连通并且利用第三信号电缆38与冲击贯入换能器60连通。
[0039] 参见图5和图6,尖端深度换能器40具有下列部件:具有第一转动传感器42和锁定装置的第一圆轮41、第二圆轮(未示)和第三圆轮41″、中空圆柱体43、中心具有圆孔的底板44、四个螺栓45、四个支柱46、内部圆柱体47、具有圆孔的底座板48、两个弹簧49和行进轴50。第一轮41、第二轮和第三轮41″被垂直放置在底座板48上且在平平面上围绕共同的中心成120°间隔。行进轴50的支脚还被焊接在底座板48上。底座板48的底表面与下面的中空圆柱体43焊接在一起。中空圆柱体43的基底与底板44焊接在一起。底板44的上面被焊接且与内部圆柱体47和四个支柱46焊接在一起。底座板和底板中的圆孔直径大于钻杆22和采样器的直径。中空圆柱体43的内径大于套壳的直径。内部圆柱体47的内径大于钻杆和采样器的直径且小于套壳的直径。
[0040] 尖端深度换能器40利用底板44被置于套壳上且利用四个螺栓45 将四个支柱夹持到套壳上。因此,尖端深度换能器40可被紧固地安装到钻探孔中的套壳顶部上或可从所述顶部上被完全去除。联接的采样器和钻杆可被插入尖端深度换能器40内或从所述尖端深度换能器中被收回,如图5和图6所示。在本构型中,套壳用于支承尖端深度换能器。还可研发出支承尖端深度换能器40的其它装置。
[0041] 在插入或收回过程中,采样器或钻杆22与三个轮产生摩擦接触且导致它们围绕其转动轴产生转动。第一轮41的转动轴被螺栓连接到行进轴50上。第一轮41和行进轴50一起可在底座板上方水平移动。两个弹簧49使行进轴和第一轮受力靠在钻杆22或样品上。当第一轮被关闭时,锁定装置使第一轮41停止围绕其轴进行转动。当第一轮被打开时,第一轮可围绕其轴自由转动。
[0042] 第一电信号测量第一轮41围绕其轴的转动程度。第一转动传感器42捕获第一电信号且通过第一信号电缆36以第一预选采样频率实时地将所述第一电信号传入微处理控制器内。微处理控制器30进一步实时地将第一电信号转变成与杆相联的采样器通过第一轮位置的长度量并在笔记本屏幕上显示所述长度量。
[0043] 图7示出了来自第一数字信号的本发明的实际结果的第一曲线图,其中第一预选采样频率为100Hz。第一曲线图表示采样器插入的第一过程和采样器收回的第三过程。试验是在2005年6月29日下午15:14至15:29之间进行的。第一过程介于15:14至15:17之间。其曲线图随实际时间呈向下阶梯形状,表示4根杆与采样器相联以逐个将采样器插入钻探孔内。被插入穿过尖端深度换能器的四根杆和采样器的总长度为10.625m。在15:17至15:25之间,曲线图是水平线,表示当尖端深度换能器的第一轮被锁定时,第一电信号在第二过程中没有变化。第三过程在15:25至15:29之间进行。其曲线图随实际时间呈向上阶梯形状,表示四根杆和采样器被举升且逐个与钻探孔脱开联接。被举升穿过尖端深度换能器的四根杆和采样器的总长度为11.033m。
[0044] 参见图4和图8,冲击力换能器60通过上部联接器52被连接至下部砧座28且在承载臂81处通过下部联接器51被连接至钻杆22。冲击力换能器60捕获第二电信号且通过第二信号电缆37以第二预选采样频率实时地将第二电信号传入微处理控制器内。第二电信号是电 压输出。微处理控制器30进一步将第二电信号变为由于锤撞击而在钻杆22中产生的轴向力的量且在个人计算机31的屏幕上实时显示所述轴向力的量。 [0045] 图9示出了来自第二数字信号的本发明的实际结果的第二曲线图,其中第二预选采样频率为50kHz且总采样周期为1秒。第二曲线图表示紧接着锤撞击在下部砧座上之后钻杆中的冲击力的时间变化量。图10中的第三曲线图详细示出了图9所示的第二曲线图的第一个0.05秒内的轴向冲击力。从图9和图10的第二曲线图和第三曲线图中,可观察到下列情况:(a)轴向冲击力开始时迅速增加且在小于0.001秒的时间处达到最大值;(b)轴向冲击力在约0.05秒处消失为零;和(c)轴向冲击力具有最大值。
[0046] 参见图8、图11和图12,冲击贯入换能器70具有下列主要部件:具有四个滑轮72、73、74和75的直三角形钢框71、钢丝圈76、具有第二转动传感器的齿轮箱77、倾斜齿条
78、两根倾斜导杆79、承载臂81和其它附件。在监控过程中,冲击贯入换能器60通过承载臂81的承载部分被联接至钻杆22,如图8和图11所示。冲击贯入换能器60置靠在支承梁
82上,所述支承梁被夹持170在钻机的两条轨枕17上,如图4所示。
[0047] 承载臂81通过螺栓80被联结至钢丝圈76且将杆的纵向移动传递至钢丝圈76。钢丝圈76受到第一滑轮72、第二滑轮73、第三滑轮74和第四滑轮75的支承,且可在四个滑轮上平滑地滑动。四个滑轮受到直角三角形钢框71的支承。钢丝圈76还与倾斜齿条78上的齿轮箱77相连。齿轮箱77的齿轮与齿条的齿轮配合。两根钢质导杆79导引齿轮箱
77在齿条78上向上或向下移动。齿条78和两根钢质导杆79与直角三角形钢框71固定在一起。
[0048] 当承载臂在第一滑轮72和第四滑轮75之间移动时,承载臂81利用钢丝圈76使齿轮箱77在第二滑轮73与第三滑轮74之间的齿条上产生相应滑动。承载臂81与齿轮箱77之间的第一滑轮72和第二滑轮73上的钢丝圈76的上部出于防止齿轮箱77由于齿轮箱
77的重量而在齿条78上向下滑动的原因,因而总是直的且处于拉伸状态。齿轮箱77通常重1至2公斤。位于第三滑轮74和第四滑轮75上且介于齿轮箱77与承载臂81之间的钢丝圈76的下部被用于迅速阻抑 和消除位于齿条78上的齿轮箱77由于锤的撞击作用而产生的自由振动。
[0049] 与齿轮箱77相关联的第二转动传感器获得第三电信号且以第二预选采样频率实时地通过第三信号电缆38将所述第三电信号传入微处理控制器30内。第三电信号是齿轮箱77的齿轮在齿条78上的转动程度。微处理控制器30进一步将第三电信号变为齿轮箱在齿条上的位置且在笔记本的屏幕上实时显示所述位置。齿轮箱在其稳定状态产生的向上移动等于采样器由于来自锤下落的一次撞击而产生的永久贯入。
[0050] 图13示出了来自第三数字信号的本发明的典型结果的第四曲线图,其中第二预选采样频率为50kHz且总采样周期为1秒。该第四曲线图表示在紧接锤击到下部砧座上之后齿条上的齿轮箱位置的时间变化量。图14所示的第五曲线图详细示出了在图13的第四曲线图的第一个0.05秒内齿轮箱的位置。从图13所示的第四曲线图和图14所示的第五曲线图中,可观察到下列情况:(i)由于锤击所致的齿轮箱位置的变化在0.2秒内消失;(ii)起初,齿轮箱在0.045与0.005秒之间的时间处单调上升至最大值;(iii)随后,齿轮箱进行第一次向下移动;(iv)随后,齿轮箱经历幅值小于2mm的微小振动;和(v)在约0.2秒后,齿轮箱的位置不随时间变化且停置在初始位置上方22mm的位置处。 [0051] 图9所示的第二曲线图中的时间与图13所示的第四曲线图中的时间完全相同。图
10所示的第三曲线图中的时间与图14所示的第五曲线图中的时间完全相同。微处理控制器30以实时顺序以第二预选时间采样频率同时收集第二电信号和第三电信号。微处理控制器30还以年、日、小时、分和秒的形式记录图9、10、13和14所示的曲线图中的实际开始时间(即时间零点),所述实际开始时间在这些图中被省略。
[0052] 此外,本发明的微处理控制器30具有用于实时地对第二和第三电信号进行数据获取和储存的触发机理。触发机理的标准是来自冲击力换能器60的冲击力等于或大于预选压缩幅度(在本构型中为50kN)。一旦冲击力达到预选或预定标准,微处理控制器30在预选时期(在本构型中为1秒)内以第二预选采样频率(在本构型中为50kN)获取、 储存和显示第二信号和第三信号。与此同时,微处理控制器30记录一次锤击和数据获取的实际开始时间,并通过预定规范检查积累的永久贯入和积累的锤击数以发出试验完成的警报。对于每次锤击重复该自动监控和数据获取过程直至微处理控制器30发现试验已经达到预定规范。在这一点上,微处理控制器30向操作员发出试验完成的警报。 [0053] 图15示出了实现在图7所示的试验深度处进行的锤击和采样器贯入的第二过程的测量自动化的本发明的汇总报告。一旦试验完成,微处理控制器30产生并显示该汇总报告。在图15中,报告试验的第二过程实际日期、开始和结束时间。表中示出了150mm固定驱动和随后的每个75mm主动驱动所用的锤击数。列出了N值、总锤击数和总贯入深度。 [0054] 图15还示出了第六曲线图、第七曲线图和第八曲线图。第六曲线图和第七曲线图中示出的结果分别同时获取自第二电信号和第三电信号。微处理控制器30被触发27次以在该试验深度处获取数据并进行评测。每次触发表示图4所示的下部砧座上受到的锤击。
数据获取的总时间是27秒,所述总时间是第六曲线图和第七曲线图的横座标。因此,图15中总计有27次锤击。
[0055] 每个1秒采样周期的实际开始时间被记录但未在第六曲线图和第七曲线图中示出。介于时间的任何两个邻近整数秒之间的图15所示的第六曲线图的部分(即,[0,1][1,2],...,[26,27])表示对于27次锤击中的每次锤击而言,在1秒的预选采样周期期间的轴向冲击力的时间变化。相似地,介于时间的任何两个邻近整数秒之间的图15所示的第七曲线图的部分(即,[0,1][1,2],...,[26,27])表示对于27次锤击中的每次锤击而言,在1秒的预选采样周期期间的齿轮箱的位置的相应时间变化。轴向力在27个1秒数据获取周期的每个周期期间的时间变化可表示为图9的第二曲线图和图10的第三曲线图中所示的那些变化。相应的齿轮箱位置在27个1秒数据获取周期的每个周期期间的时间变化还可分别表示为图13的第四曲线图和图14的第五曲线图中所示的那些变化。所有这些曲线图可在微处理控制器中产生。
[0056] 微处理控制器还由第六曲线图中获取的冲击力计算每次锤击的能 量效率(%)、在第八曲线图中表示对应于相应锤击数的锤击能量效率并将其显示在计算机屏幕上。 [0057] 参考文献
[0058] 以下参考文献作为对本技术领域的说明通过引用而被结合到本文中: [0059] 1.ASTM,1995.Soil and Rock(1),Vol.04.08:Standard Test Method forPenetration Test and Split-Barrel Sampling of Soils,D 1586-84,1916 RaceStreet,PhiladeIphia,U.S.A.,129-133
[0060] 2.ASTM,1995.Soil and Rock(1),Vol.04.08:Standard Test Method for StressWave Energy Measurement for Dynamic Penetrometer Testing Systems,D4633-86,1916 Race Street,Philadelphia,U.S.A.,775-778.
[0061] 3.GEO,1996.Section 21.2 Standard Penetration Test,in Guide to SiteInvestigation,Geoguide 2,Geotechnical Engineering Office(GEO)CivilEngineering Department,Hong Kong,pp.111-113.
[0062] 4.HKHA,2003.HKHA General Specifications for GroundInvestigationContracts,2003 Edition (Revision A),Hong Kong Housing Authority (HKHA),Hong Kong.p.2.
[0063] 5.Yue,Z.Q.,Lee,C.F.,Law,K.T.and Tham,L.G.,2004.Automaticmonitoring of rotary-percussive drilling for ground characterization-illustratedby a case example in Hong Kong,lnternational Journal of Rock Mechanics &Mining Science,41:573-612.
[0064] 6.U.S.Patent No.6,637,523 B2 (Lee)
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈