用复合毒素防治昆虫

阅读:409发布:2020-08-25

专利汇可以提供用复合毒素防治昆虫专利检索,专利查询,专利分析的服务。并且本 发明 提供一种 加速 杀死 害虫 如鳞翅目的速率的方法。该方法包含用由至少一种重组 微 生物 表达的至少两种不同昆虫毒素处理害虫或其地点。已发现,这样的毒素对,它们彼此之间在相同的结合位点上无竞争而且在它们药理学上有差异,且提供增效防治。优选的杀虫微生物是杆状病毒。,下面是用复合毒素防治昆虫专利的具体信息内容。

1.一种防治昆虫、蜱螨和线虫害虫的方法,包含:
用至少两种不同的昆虫毒素处理所述害虫或其地点,毒素的来源是至 少一种重组生物或是多种重组微生物,毒素在昆虫细胞膜通道有非叠加 结合位点。
2.根据权利要求1的方法,其中毒素的来源是重组昆虫病毒。
3.根据权利要求1的方法,其中重组昆虫病毒的来源是杆状病毒。
4.根据权利要求3的方法,其中杆状病毒是核多体病毒。
5.根据权利要求3的方法,其中杆状病毒来源于苜蓿纹夜蛾 (Autographa californica),芹菜夜蛾(Anagrapha falcifera),黎豆夜蛾 (Anticarsia gemmatalis),油桐尺蠖(Buzura suppressuria),苹果蠹蛾 (Cydia pomonella),Helicoverpa zea,铃曳(Heliothis arrigera), Mariestia brassicae,小菜蛾(Plutella xylostella),甜菜夜蛾 (Spodoptera exigua),海灰翅夜蛾(Spodoptera littoralis)或斜纹夜蛾 (Spodoptera litura)。
6.根据权利要求1的方法,其中毒素是AaIT、LqhIT2、LqhαIT和 LqhIT3神经毒素的组合。
7.根据权利要求1的方法,其中的毒素包含一个JHE突变体。
8.根据权利要求6或7的方法,其中害虫是烟芽夜蛾(Heliothis virescens)或丽蝇(blow fly)。
9.一种在昆虫防治中使用的基本上纯的昆虫毒素,具有基酸序列 SEQ.ID NO:1或SEQ.ID NO:2。
10.一种重组微生物,它在用其感染的昆虫细胞中,表达至少两种对 昆虫细胞有毒的外源蛋白质,或其功能性衍生物,所述微生物基因组带有 分泌信号序列。
11.根据权利要求10的重组微生物,其中的微生物是核多角体病毒。
12.根据权利要求10或11的重组微生物,其中的至少一种外源蛋白 是蝎毒素。
13.根据权利要求10的重组微生物,其中外源蛋白是从蝎、黄蜂、蜗 、螨或蜘蛛毒液的遗传序列编码中得到的。
14.根据权利要求10、12或13的微生物,其中杆状病毒是苜蓿银纹 夜蛾(Autographa californica)核多角体病毒。
15.一种昆虫防治组合物,包含:第一和第二重组杆状病毒,第一和 第二重组杆状病毒分别表达第一和第二毒素,第一和第二毒素在昆虫细胞 膜通道上有非叠加结合位点。
16.一种昆虫防治组合物,包含:一种重组杆状病毒,它在用其感染 的昆虫细胞中,表达多种杀虫毒素

说明书全文

发明领域

本发明一般地说涉及昆虫毒素在昆虫防治中的使用,更具体地说,涉 及的是关于表达昆虫-选择性毒素的杀虫重组生物,它们是增效的组合, 用以提高杀死昆虫的速率。

本发明是在政府的支持下完成的,许可号为91-37302-6185,授权部 为美国农业部。美国政府在本发明中有一定的权利。 发明背景

鳞翅目夜蛾科包括一些很有破坏性的农业害虫,如铃虫属 (Heliothis)、Helicoverpa、斜纹夜蛾属(Spodoptera)和粉纹夜蛾属 (Trichoplusia)。例如在夜蛾科中还包括烟芽夜蛾(Heliothis virescens)、棉铃虫(Helicoverpa zea)、棉叶夜蛾(Alabama argillacea)、 八字纹地老虎(Ama thes niarum)、透明缓夜蛾(Crymodes devastator)、青 地老虎(Nephelodes emmedonia)、草地夜蛾(Laphygma frugiperda)、甜 菜夜蛾(Spodop tera exigua)和杂色地老虎(Peridroma saucia)。

农业害虫如夜蛾科昆虫(及其它)对农药的抗性,导致对环境和人类健 康危害。对杀虫剂的抗性问题导致使用更多无选择的和有毒化合物以克服 害虫的抗性,这就引起了破坏和恶性循环。

选择性天然毒素已被建议使用在昆虫防治中。这些毒素包括有毒动物 体内特殊的腺组织中产生的物质。毒液可例如借助于穿刺器官,导入被捕 获物或目标物的体内,麻痹和/或杀死它,以及其它的已知的释放毒物方 法。以蝎子为例,在它的毒液中含有大量的有毒的和作用于兴奋系统的蛋 白质或神经毒素。其中被建议用于昆虫防治的昆虫特异毒素是从苏金芽 孢杆菌(Bacillus thuringiensis)、蝎子如钳蝎(Buthu eupeus)和撒哈拉 蜂蝎(Androctonus australis),Leiurus quinqustriatus hebraeus、 Leiurus quinqustriatus quinqustriatus和螨(虱状蒲螨)(Pyemotes tritici)获取的毒素。

由属于钳蝎亚科(Buthinae)蝎子中得到的毒液,主要含有四个重要组 的调节轴突钠传导的多肽神经毒素。第一组蝎子神经毒素是α-毒素,它选 择地作用于哺乳动物,由于延缓或阻断钠通道失活,使动作电位极端延长 (Catterall,《科学》[Science],223:653-661(1984);Rochat等, 《细胞药理学进展》[Advances in Cytopharmacology],pp.325-334 (1979))。第二组毒素是β-毒素,损害钠通道的活性(Couraud和Jover,《自 然毒素手册》[Handbook of Natural Toxins]Tu,A.编,第二卷,pp.659- 678(1984)纽约:Marcel Dekker)。第三组神经毒素是抑制性昆虫选择 性毒素,由于抑制钠电流,从而它基本上阻断动作电位,导致昆虫逐渐软 弱麻痹(Lester等,《生物化学和生物物理学报》[Biochim.Biophys.Acta] 701:370-381(1982);Zlotkin等,[Arch.Biochem.Biophys],240: 877-887(1985))。第四组神经毒素是兴奋性昆虫选择性毒素,由于增加钠 峰电流和延缓其失活所依赖的电压,从而诱导反复点燃其运动神经,导致 昆虫即刻(击倒)的抽搐麻痹(Walther等,《昆虫生理学杂志》[J.Insect Physiol.],22:1187-1194(1976);Pelhate等,《生理学杂志》[J. Physiol.],30:318-319(1981))。

除了蝎子和螨的毒素以外,在蜗、蜘蛛和若干其它节肢动物的毒液 中也已经鉴定出昆虫选择性毒素。(参见Zlotkin的综述,《综合昆虫生理 学、生物化学和药理学》[Comprehensive Insect Physiolopy, Biochemistry and Pharmacology],第10卷,第15章,pp.499-541 (1985))。茧蜂的毒液对鳞翅目幼虫具有很高的毒性。通过在昆虫神经肌肉 结合点诱发兴奋性谷酸能(glutaminergic)传导的前联合体间断,麦蛾茧 蜂(Bracon hebetor)的毒液引起鳞翅目幼虫软弱麻痹(Piek等,Comp. Biochem.Physiol.,72c:303-309(1982))。独居蜂(solitary wasp)对 很多不同目的昆虫和蜘蛛都表现出毒性  (Rathmeyer,Z.Vergl., Physiol.,45:453-462(1962))。这些毒液的一个例子是三泥蜂 (Philanthus triangulum)毒液,由于前联合体阻断神经肌肉的传输,这种 毒液诱发昆虫基本软弱麻痹;它对兴奋性和抑制性传输都产生影响(May 等,《昆虫生理学》[Insect Physiol),25:285-691(1979))。黑寡妇 蜘蛛(Latrodectus mactans)的毒液含有的一些对昆虫有神经毒性,但对哺 乳动物没有神经毒性的组分,而其它组分具有相反的选择性(Fritz等, Nature,238:486-487(1980);Ornberg等,Toxicon,14:329- 333(1976))。

最近,一种称为LqhαIT的毒素,它在一级结构和电生理学作用牢固地 重新装配α-毒素,已从L.quinquestriatus hebraeus的毒液分离出来并 表现出主要影响昆虫(Eitan等,《生物化学》[Biochemistry],29(1990), PP.5941-5947)。

有毒动物的毒液是由各种作用于被捕获物的兴奋系统中的不同靶位点 的毒素组成。比较毒素和其各自的天然毒液对鳞翅目幼虫的活性,以此数 据为基础,可以清楚地看到,天然毒液的效不能用单一毒素的活性来解 释。天然毒液的高效力可能涉及到毒液中的不同毒素在下述三个方面共同 协作的结果:同一离子通道不同靶位点(表3,Trainer等,JBC,268: 17114-17119(1993)),同一可兴奋细胞的不同离子通道(Olivera等,《科 学》[Science],249,257-263(1990)),和/或毗邻的可兴奋细胞(神经 和/或肌肉)的不同结合点(Olivera等,《科学》[Science],249,257- 263(1990))。

有抑制性和兴奋性作用的昆虫选择性毒素不会与α-昆虫毒素竞争其结 合点(Gordon和Zlotkin,FEBS.Lett.,315,(1993)pp.125-128)。 与蝗虫和蟑螂的神经膜相反,在鳞翅目幼虫的神经膜的结合点上,兴奋性 毒素不替代抑制性毒素(Gordon等,《生物化学》[Biochemistry],31 (1992),pp.7622-7628;Moskowitz等,《昆虫生物化学和分子生物学》 [Insect Biochem. Molec. Biol.],24(1994),pp.13-19)。

近来,属于杆状病毒科的苜蓿纹夜蛾(Autographa californica)核 多角体病毒(AcNPV),已通过表达昆虫选择性毒素作了遗传上的修饰,以提 高杀虫的速度。把昆虫选择性毒素引入昆虫病原病毒曾导致杀死昆虫宿主 的时间减少,正如在1994年4月15日申请的美国专利申请号08/229 417 中所描述的那样,上述美国专利申请是1990年12月19日申请的美国专利 申请号07/629 603的接续申请,它们与此(部分)共同转让。

Tomalski等的美国专利号5 266 317,1993年11月30日公布,讨论 表达昆虫捕食蜱螨的昆虫特异性麻痹神经毒素的重组杆状病毒的应用。 Barton等的美国专利号5 177 308,1993年1月5日公布,在创造表达由 蝎子得来的昆虫特异性毒素和/或土壤微生物毒素的转基因植物方面采用 了一种不同的途径。在一未决申请(它与此共同转让),Hammock和 McCutchen在1994年7月5日申请的美国专利申请号08/279956中,讨论 了用重组病毒与有机杀虫剂的增效组合来进行昆虫防治。

由于大范围出现害虫对有机杀虫剂如拟除虫菊酯害虫抗性已经开始造 成巨大的作物损失,因此这些新出现的使用重组的策略来进行害虫种群的 防治是非常有希望的。单就棉花来说,pyr-R棉铃虫种类的出现已经导致 每年数百万美元的损失。实际上,在一些案例中,拟除虫菊酯杀虫剂对棉 铃虫属幼虫侵害的防治已经完全失败,结果棉花全部被毁。 发明概述

本发明的一个方面是,通过遗传工程提供的杀虫微生物的应用,提供 一种防治各种害虫的方法。根据本发明防治的害虫是,例如昆虫、蜱螨和 线虫类。因此,本发明可适用于鳞翅目和其它目,以及夜蛾科和其它科。 这些害虫用一种或更多种重组微生物表达的毒素的增效组混合来处理(或 处理其位点)。

例如,这种方法可以使用表达第一种神经毒素的第一种重组病原体与 表达第二种神经毒素的第二种重组病原体组合,或者使用表达多种(如第一 种和第二种)神经毒素的单一重组病毒。本发明的方法加快了用病毒杀死害 虫的速率。 附表简述

附图中,表1阐明了合成基因LqhIV的核苷酸序列,SEQ ID NO:1, 它是一种实施本发明的优选毒素。 优选实施方案详述

本发明是遗传工程化的杀虫微生物组合在处理害虫如昆虫中的应用。 虽然重组杆状病毒将始终作为优选微生物的例证,但本发明也可用多种微 生物作为重组释放体系来实施本发明。因此,可用于本发明的微生物包括 DNA和RNA病毒如杆状病毒,真菌和细菌。

大约40种核多角体病毒已从昆虫种类里分离出来。(参见例子,《无 脊椎动物病毒图集》[Atlas of Invertebrate Viruses],Adams和Bonami, 编辑,CRC Press,Inc.,1991)。各种杆状病毒包括那些感染如下昆虫的 杆状病毒:棉铃虫(Helicoverpa zea)、烟芽夜蛾、花旗松毒蛾(Orgia pseudotsugata)、舞毒蛾(Lymantria dispar)、苜蓿银纹夜蛾、松柏锯角 叶蜂(Neodiiprion sertifer)、苹果蠹卷蛾(Laspeyresia pomonella),它 们已经注册为杀虫剂,所有这些来自昆虫种类的杆状病毒都适合用来实施 本发明。

多数真菌都能使昆虫感染。把昆虫选择性毒素引入这些真菌的基因组 会提高它们作为杀虫剂的效力。例如,蚕白僵菌(Beauvaria bassania)和 Beauvaria brongniartii有很大的宿主范围,它们已被建议作为候选的微 生物杀虫剂(参见Miller的综述,《科学》[Science],219:715-721, 1983)。

已经作为昆虫防治剂的细菌(除苏云金芽孢杆菌(Bacillus thuringiensis)之外),包括日本甲虫芽孢杆菌(Bacillus popilliae)、缓 病芽孢杆菌(B.lentimorbus)和球状芽孢杆菌(B. sphaericus)。通过把昆 虫选择性毒素引入这些细菌的基因组来改善它们的效力从而提高它们作为 杀虫剂的潜力。

本发明的实施涉及两种在防治昆虫方面有增效作用的毒素的组合应 用。这两种毒素可通过其中已引入两种毒素基因的单一重组微生物的方式 来表达,或者可以通过制备两种重组微生物来实施,所述的二种重组衍生 物各可以通过把一个编码各自的昆虫毒素的基因克隆入基因组来完成构 建。选择的毒素对的组合可以通过几种方法来确定。如将在下文进行描述 的(如通过实施例6的筛选技术描述的),优选选择作用于同一细胞通道(典 型的是钠通道)但作用于非叠加位点的毒素,正如将在下文所进一步描述的 那样。

在前面提到,用来实施本发明的优选微生物是杆状病毒。用“杆状病 毒”是指杆状病毒科(Baculoviridae)的任何杆状病毒,如核多角体病毒 (NPV)。杆状病毒是一大组进化上相关的病毒,只感染节肢动物;实际上, 有些杆状病毒只感染那些有重要经济意义的农业和林业作物的害虫,而其 它的杆状病毒已知专门感染其它害虫。因为杆状病毒只感染节肢动物,因 而对人类、植物和环境很少或没有危害。

在适合的DNA病毒中,除了杆状病毒科(Baculoviridae)之外是昆虫痘 病毒外(EPV),如西方五月鳃角金龟子(Melolontha melonotha)痘病毒、桑 灯蛾(Amsacta moorei)痘病毒、亚洲飞蝗(Locusta migratotia)痘病毒、 血黑蝗(Melanoplus sanguinipes)痘病毒、沙漠蝗(Schistocerca gregaria)EPV、埃及伊蚊(Aedes aogypti)痘病毒和淡色摇蚊(Chironomus luridus)痘病毒。其它适合的DNA病毒是颗粒体病毒(GV)等。适合的RNA 病毒包括披膜病毒科、黄病毒属、小RNA病毒、质多角体病毒及类似的病 毒。双链DNA病毒Eubaculovirinae的亚科有两个属,NPVs和GVs,它们 在生物防治中特别有用是因为它们在其生命周期中产生包含体。GVs的例 子包括苹果蠹蛾(Cydia pomonella)颗粒体病毒,大菜粉蝶(Pieris brassicae)颗粒体病毒,粉纹夜蛾(Trichoplusia ni)颗粒体病毒, Artogeia rapae GV和印度谷螟(Plodia interpunctella)颗粒体病毒。

用来实施本发明的适合的杆状病毒可以是包含的或不包含的。核多角 体病毒(“NPV”)是杆状病毒亚组的一种,是“包含”的。那就是说, NPV组的一个特有特征是很多病毒粒子嵌在晶状蛋白的基质间,这就是所指 的“包含体”。NPV的例子包括舞毒蛾(Lymantria dispar)NPV、苜蓿银纹 夜蛾NPV、芹菜夜蛾(Anagragha falcifera)NPV,斜纹夜蛾(Spodoptera litturalis)NPV、草地贪夜蛾(Spodoptera frugiperda)NPV、棉铃虫 (Heliothis armigera)NPV、甘蓝夜蛾(Mamestra brassicae)NPV、枞色卷 蛾(Choristoneura fumiferana)NPV、粉纹夜蛾(Trichoplusia ni)NPV、 Helicoverpa zea NPV、刺金翅夜蛾(Rachiplusia ou)NPV。在田间经常优 先使用包含病毒是由于它们较好的稳定性,因为病毒的多角体蛋白外衣给 包含入的感染核衣壳提供很好的保护。

在例证中,在实施本发明中有用的杆状病毒是得自下列害虫的杆状病 毒:芹菜夜蛾(Anagrapha falcifera)、黎豆夜蛾(Anticarsia gemmatalis)、油桐尺蠖(Buzura suppressuria)、苹果蠹蛾(Cydia pomonella)、Helicoverpa zea、棉铃虫(Heliothis armigera)、甘蓝夜 蛾(Manestia brassicae)、小菜蛾(Piutella xylostella)、甜菜夜蛾 (Spodoptera exigua)、海灰翅夜蛾(Spodoptera littoralis)和斜纹夜蛾 (Spodoptera litura)。用来实施本发明的一个特别有用的“NPV”是 AcNPV,是来自苜蓿银纹夜蛾(autographa californica)的核多角体病毒。 对苜蓿银纹夜蛾(Autographa californica)有特别的兴趣,是因为在斜纹 夜蛾属(Spodoptera)、Trichoplusia和棉铃虫属(Heliothis)中多种主 要害虫种类对此病毒敏感。

表达的杀虫毒素特别是来自或类似于节肢动物或其它无脊椎动物毒素 的神经毒素,如蝎毒、黄蜂毒、蜗牛毒、螨毒或蜘蛛毒。一种有用的蝎毒 如来自撒哈拉蜂蝎(Androctonus australis)的AaIT。Zlotkin等,《生 物化学》[Biochimie],53,1073-1078(1971)。一种有用的蜗牛毒来自 蜗牛Conus querciones的毒液,用嘴释放出来,蜗牛毒中的某些个别的毒 素对节肢动物包括昆虫有选择性。参见例如,Olivera等,“Diversity of Conus Neuropeptides”,《科学》[Science],249:257-263(1990)。

甚至是通常出现在昆虫生命发育期间的多肽可以也作为一种杀虫毒 素,且可依据本发明使用。例如,保幼激素酯酶(JHE)的早熟特征会减少宿 主昆虫保幼激素的滴度,这样会不可逆转地结束取食阶段,试图蛹化,而 使害虫死亡。JHE的氨基酸序列已知,且基因已被克隆。本发明优选的实 施方案包括表达保幼激素酯酶(JHE)突变的重组微生物,制备这种JHE突变 或缺失的示范方法,几种有用的JHE突变和在昆虫防治中使用的重组表达 载体(含有JHE或突变的JHE编码序列)。正如在1994年2月17日公布的 发明人为Hammock等的WO94/03588中所描述的,该文并入本文作为参考。

在Hammock等的WO 94/03588中描述的两个突变体是双赖氨酸突变体 (K29R,K522R),其中在JHE位置29和位置522通过定点诱变用精氨酸代 替普通赖氨酸。所描述的另一个突变体为其中丝氨酸201变成甘氨酸,该 突变体被称为“S201G”。JHE的催化缺陷S201G突变体的杀虫活性与试 验昆虫对蝎毒的50%死亡率在时间上相近(当用AcNPV基因工程处理时)。 因此,自然产生的JHE昆虫蛋白,一般没有毒性,可以通过如定点诱变(或 其它)而修饰为有毒的媒介物。除了氨基酸残余物的改变,其它JHE突变体 可以通过例如缺失N-末端的19个氨基酸(它们是新合成蛋白质进入分泌通 道的信号序列)而制备,变成糖基化,然后离开细胞。

同JHE一样,来自撒哈拉蜂蝎的兴奋性毒素(AaIT)的氨基酸序列已经 确定,该序列已经发表(Darbon 1982),AaIT基因已被克隆且插入表达载 体用来防治昆虫。(参见WO 92/11363,1992年7月9日公布,发明人 Belagaje等)。AaIT毒素对昆虫表现出毒性,而对等足类和哺乳动物没有 毒性。

实施本发明的另一种适合的毒素作用于昆虫钠通道,它与α-毒素作用 于哺乳动物的钠通道的方式非常相似。这种神经毒素是从一种黄蝎 (Leuirus quinquestriatus hebraeus)得到,该神经毒素在此称为LqhαIT。 这种毒素的鉴别和纯化在(“一种使钠电流失活的麻痹昆虫的蝎子神经毒 素:纯化、一级结构和作用方式”,Eitan等,《生物化学》[Biochemistry], 29:5941-5947(1990))一文中作了描述。

实施本发明的两种优选的分离和纯化的形式的毒素是新颖的,并在下 文作较为详细的描述。简而言之,这两种毒素被称为“LqhIV”和 “LqhVI”。这两种毒素产生于(Leuirus quinquestriatus hebraeus)的 毒液中,在天然形式的混合物中这种毒液包含大量的个别毒素。LqhIV毒 素是一种很有效力的鳞翅目毒素,当注入鳞翅目幼虫体内时,它与其它蝎 毒共同表现出正协同性,对哺乳动物没有或有很弱的毒性。在图1中阐明 LqhIV毒素的合成基因,SEQ ID NO:1。

因此,这两种优选毒素的基因可以合成(由于肽的序列大小足够的小, 使得合成DNA成为可能)。此外,这些基因可以被克隆,之后编码序列可以 被克隆入一个转移载体,如在下文中将进一步举例说明的。

我们已经在丽蝇幼虫和棉铃虫幼虫两者体内,用毒素AaIT和LqhoIT 增效组合证明了本发明的各个方面。这些昆虫选择性神经毒素组合使用时 的杀虫活性增加5-10倍。说明本发明的其它组合和实验细节将在下文详细 讨论。

各种其它蝎毒(例如钳蝎类(Buthoid scorption)也可以为增效组合 使用,如LqqIT2,是一种来自Leiurus quinquestriatus quinquestriatus 的抑制性昆虫毒素。获得这种神经毒素的纯化方法由Zlotkin等发表于(《生 物化学和生物物理档案》[Archiyes of Biochem. Biophys],240:877- 887(1985))中。

BjIT2是另一种来自钳蝎(Buthotus judaicus)的抑制性昆虫毒素。纯 化方法已经由Lester等发表,《生物物理学报》[Biochim.Biophys.Acta), 701:370-381(1982)。BjIT2存在于位置15上的氨基酸序列不同的两个 同种型中。形态1在此位置为异亮氨酸,形态2在此位置为缬氨酸。

LqhIT2是另一种来自Leuirus quinquestriatus hebraeus的抑制性 昆虫毒素,用反相HPLC进行纯化。

此外,从chactoid蝎子(Scorpio maurus palmatus)的毒液纯化的其 它毒素也可以使用。例如,SmpIT2,来自chactoid蝎子(Scorpio maurus palmatus),是一种抑制性昆虫毒素。它的纯化方法由Lazarovici等发表 于《生物和化学杂志》[J.Biol.Chem.],257:8397-8404(1982)。

还可以从chactoid蝎子(Scorpio maurus palmatus)的毒液纯化得到 的其它毒素是SmpCT2和SmpCT3,和crustacean毒素,其纯化方法已经在 耶路撒冷希伯来大学的Lazarovici博士在其博士论文(1980)“Studies on the Composition and Action of the Venom of the Scorpion Scorpio maurus palmatus (Scorpionidae)”中描述。

表1中列出实施本发明的优选毒素以及其纯化方法和鉴别的引证。

                              表1 引证的        参考文献 毒素 AaIT          Zoltkin等,《生物化学》[Biochim.],53,1075-1078

          (1971). AaIT1        Loret等,《生物化学》[Biochem.],29,1492-1501

          (1990). AaIT2        Loret等,《生物化学》[Biochem.],29,1492-1501

          (1990). LqqIT1       Zlotkin等,《生物化学和生物物理档案》[Arch.f

          Biochem. & Biophys.],240,877-887(1985). BjIT1        Lester等,《生物化学生物物理学报》[Biochem.

          Biophys.Acta.],701,370-387(1982). LqhIT2       Zlotkin等,《生物化学》[Biochem.],30,4814-4821

          (1991). LqqIT2       Zlotkin等,《生物化学和生物物理档案》[Arch.f

          Biochem. & Biophys.],240,877-887(1985). BjIT2        Lester等,《生物化学生物物理学报》[Biochem.

          Biophys.Acta.],701,370-387(1982). LqhαIT       Eitan等,《生物化学》[Biochem.],29,5941-5947

          (1990). TSVII        Bechis等,《生物化学生物物理研究》[Biochem.

          Biophys.Res.Comm.],122,1146-1153(1984). 螨毒素        Tomalski等,《毒素》[Toxicon],27,1151-1167

          (1989). α-芋螺毒素   Gray等,(JBC),256,4734-4740(1981);Gray等,

          《生物化学》[Biochem.],23,2796-2802(1984). μ-芋螺毒素   Gruz等,(JBC),260,9280-9288(1989);Grus等,

          《生物化学》[Biochem.],28,3437-3442(1989). chlorotoxin   Debin等,《美国生理学杂志》[Am.J.Physiol.],264,

          361-369(1993). ω-芋螺毒素   Olivera等,《生物化学》[Biochem.],23,5087-5090

          (1984);Rivier等,(JBC),262,1194-1198(1987). PLTX1          Branton等,《神经科学协会文摘》[Soc.Neurosci.

           Abs.],12,176,(1986). PLTX2          Branton等,《神经科学协会文摘》[Soc.Neurosci.

           Abs.],12,176(1986). PLTX3          Branton等,《神经科学协会文摘》[Soc.Neurosci.

           Abs.],12,176,(1986). Ag1            Kerr等,《神经科学协会文摘》[Soc.Neurosci.Abs.],

           13,182(1987);Sugimori等,《神经科学协会文摘》

           [Soc.Neurosci.Abs.],13,228,(1987). Ag2            Kerr等,《神经科学协会文摘》[Soc.Neurosci.Abs.],

           13,182(1987);Jackson等,《神经科学协会文摘》

           [Soc.Neurosci.Abs.],13,1078(1987)。 ω-Agatoxin    Adams等,JBC,265,861-867,(1990). μ-Agatoxin    Adams等,JBC,265,861-867,(1990). Ho1            Bowers等,PNAS,84,3506-3510(1987). α-Laterotoxin Grasso等,《神经化学中的神经毒素》[Neurotoxins in

           Neurochemistry),Dolly编辑,67-79(1988) Steatoda毒素   Cavalieri等,《毒素》[Toxicon],25,965-974

           (1987). Bom III        Vargas等,《欧洲生物化学杂志》[Eur.J.Biochem.],

           162,589-599(1987).

表1的说明性毒素可由之纯化的许多生物体的cDNA库可按下列文献中 的描述得到:Zilberberg等(1992),《昆虫生物化学分子生物学》[Insect Biochem.Molec.Biol.],22(2),199-203 (Leiurus quinquestriatus hebraeus);Gurevitz等,(1990)Febs Lett.,269(1),229-332 (Buthus judaicus);Bougis等(1989),JBC,264(32),19259-19256 (Androctonus australis);Martin-Euclaire等(1992)Febs Lett., 302(3),220-222(Tityus serrulatus);Woodward等(1990)EMBO J., 9(4),1015-1020(Conus textile);和Colledge等(1992),《毒素》 [Toxicon],30(9),1111-11116(Conus geographus)。对于其它的毒 素,用类似于实施例7所示范的方式,可以构建编码这些毒素的合成基因。

在前面曾提到,适合实施本发明的两种分离和纯化形态的毒素是新颖 的。其中之一称为“LqhIV”,具有氨基酸序列SEQ ID NO:2:GVRDAYIADD KNCVYTCGAN SYCNTECTKN GAESGYCQWF GKYGNACWCI KLPDKVPIRI PGKCR。SEQ ID NO:2的65个氨基酸的肽将在实施例5中进一步描述。

另一个新颖的毒素,称为“LqhVI”,具有氨基酸序列SEQ ID NO:3: GVRDGYIAQP ENCVYHCFPG SPGCDTLCKG DGASSGHCGF KEGHGLACWC NDLPDKVGII VEGEKCH。这个67个氨基酸的肽也将在实施例5中进一步描述。

毒素,如表1所列出的或是SEQ ID NOS:2和3优选的毒素,通过首 先将具有不同药理的毒素实验性组合可以非常容易地被选择来形成增效的 组合。例如,AaIT是一种兴奋性昆虫毒素,而LghIT2是一种抑制性毒素。 通过常规结合方案(参见Gordon等,《生物化学生物物理学学报》[Biochim. Biophys.Acta.],778 349-358(1984),对于AaIT、BjIT1和BjIT2而言, 用亚洲飞蝗(Locusta migratoria)膜小泡),可以筛选出对感兴趣的昆虫在 同一通道但非重叠位点上的活性。这是因为,正如本领域所知,各种昆虫 的神经膜有可变性。例如,最近有几篇论文报导,与蝗虫或蟑螂的神经膜 不同,鳞翅目幼虫神经膜可以在同一时间与抑制性和兴奋性昆虫毒素结 合。

在前面提到的AaIT和LghαIT增效组合的例子中,该组合对于丽蝇幼 虫增效效力是对棉铃虫(Heliothis)幼虫的两倍。相反,AaIT和LghIT2的 组合,应用于棉铃虫(Heliothis)幼虫时,是一个增效组合(5倍的效力), 但当单独使用任何一种毒素对丽蝇幼虫效力都没有增加,这些毒素的组合 可以用于在昆虫种群中以提高选择性。

为了生产重组微生物,如杆状病毒,为防治昆虫的目的,优选包含一 个的分泌信号序列。分泌信号序列可以从细菌、酵母菌、真菌或高级真核 生物(包括所有动物和植物)的蛋白质提取(如参见Watson,Nucl.Ac.Res. 12:5145-5164(1984))。更优选的是来自昆虫源蛋白的分泌信号序列, 如那些来自Hyalophora cecropia的杀菌肽B(van Hofster等,PNAS, 82:2240-2243(1985)),来自烟草天蛾(Manduca sexta)的蜕壳激素 (Horodyski等,PNAS,86:8123-8127(1989))。同样优选的是与蝎毒 自然关联的分泌信号序列,这可以通过mRNA,cDNA或基因DNA的分析来确 定。更优选的是AaIT的天然分泌信号序列(Bougis等,《生物学化学杂志》 [J.Biol.Chem.],264:19259-19265(1989))。

重组微生物毒素可以被表示为毒素的功能衍生物。毒素的“功能衍生 物”是一种具有生物活性的化合物(或是功能上的或是结构上的),大体上 与毒素的生物活性相似。术语“功能性衍生物”意指包括分子的“片段”、 “变体”、“相似物”或“化学衍生物”。如毒素的分子的“片段”就是 指分子的任何多肽子集合。如毒素的分子的“变体”就是指在结构和功能 上不是与整个分子就是与它的片段大体上相似的一种分子。如果两个分子 在结构上大体相似或如果两个分子拥有相似的生物活性,那么就说这个分 子与另一个分子大体上相似。因此,只要两个分子具有相似的活性,在此 就把它们当作那个术语变体使用,即使一种分子的结构不能在另一个分子 中找到,或即使氨基酸残余的序列不相同。如毒素的分子的“相似物”就 是指分子在功能上不是与整个分子就是与它的片段大体上相似。在此处使 用时,当分子包含不是正常分子的一部分的额外化学部分时,该分子被说 成是另一个分子的“化学衍生物”。

这个部分可以改善分子的溶解性、吸附性、生物半衰期等。能够调节 这些效果的部分公开于Remington′s Pharmaceutical Sciences(1980)中。 耦联这个部分到一个分子的步骤在技术上是众所周知的。

通常,毒素(或这些毒素)的表达包括足以指导RNA合成开始的启动子 区。一个杆状病毒启动子基因是编码多角体蛋白的基因,因为多角体蛋白 质是已知的高度表达的真核生物基因,不过也可以使用其它启动子和杂合 启动子的序列,例如p10。

表达一个毒素的重组杆状病毒可以通过本领域已知的方案来制备(例 如Tomalski等,美国专利号5,266,317,由来自昆虫寄生螨的神经毒素的 作例证;McCutchen等,《生物学技术》[Bio/Technology),9,848-854 (1991)和Maeda等,“重组杆状病毒表达的昆虫特异性神经毒素的杀虫效 果”,《病毒学》[Virology],184,777-780(1991),说明了表达AaIT 的重组杆状病毒的构建)。

能够表达两个不同的毒素的单一杆状病毒的制备,可以通过类似于下 列的方案来完成:Belayev和Roy,《核酸研究》[Nucleic Acid Research], 21:5,1219-1223(1993);Wang等,《基因》[Gene],100,131-137 (1991),作适当的改进。实施例1阐明了这一类似的方案。

                        实施例1

使用标准分子克隆技术可以把两个昆虫毒素基因克隆入转移载体如 PacUW51P2中。这种转移载体是苜蓿银纹夜蛾(AcNPV)多角体蝗虫基的载 体,该载体包含一前一后插入的AcNPV p10启动子和SV40转录终止信号的 拷贝。该拷贝在多角体基因启动子的上游,但是以相反的方向。这会有利 于在多角体启动子控制下在Bam HI位点维持一个外来基因编码区域,以及 在p10启动子控制下在BglII克隆位点维持第二个外来基因编码区域。因 此,产生的重组病毒表达两个外来蛋白质。由此制备的重组AcNPV可以通 过繁殖草地贪叶蛾(Spodoptera frugiperda)细胞(Sf21)而分离,而Sf21 是通过沉淀而与重组质粒共转染的。多角体感染的细胞可以在感染后被 鉴别和收集,重组病毒噬斑可以通过筛选纯化。通过标准方案纯化重组病 毒,得到的结果进行纯的重组培养并贮存,如在4℃和-80℃。标准方案例 如描述于O′Reilly,Miller和Luckow的《杆状病毒表达载体,实验室手 册》[Baculovirus Expression Vectors,A Laboratory Manual)。

                         实施例2

四种不同昆虫毒素对两种不同昆虫和小鼠的活性已经测定(因为从们 喜欢使用对哺乳动物作用很小或没有影响的昆虫毒素)。通过已确立的方 法,这些毒素已从各自原生毒液中纯化出来。通过Reed和Muench的方法 (1938)已经测定它们对老鼠、丽蝇幼虫和鳞翅目昆虫的毒性。

表2表明毒素对昆虫和小鼠的活性,以50%终点计(各自的麻痹或致 死剂量PU50,LD50)。毒素对于丽蝇幼虫的PU50值与以前已经发表过的结果 一致(Zlotkin等, 《生物化学》[Biochim.],53,1075-1078(1971); 和Eitan等,《生物化学》[Biochem.],29,5941-5947(1990))。这些毒 素对于鳞翅目烟芽夜蛾幼虫的毒性和它们对海灰翅夜蛾幼虫的毒性相差不 大。LqhαIT对小鼠(Swiss Webster)表现较高的毒性,但其它毒素对哺乳动 物无毒性(3μg/g b.w注入皮下没有效果,与哺乳动物毒素AaHII的LD50- 0.018μg/20g b.w相反(DeLima等,1986)。毒素LqhIV和LqhVI是值得考 虑的,因为LqhIV是从蝎毒中分离出来的至今最有效力的鳞翅目毒素而毒 素LqhVI有微弱的哺乳动物毒素。

                                          表2 毒素   对Sarcophaga   fatculata幼虫的   PU50(μg/100mg   b.w.)a 对烟芽夜蛾幼虫的 PU50(μg/100mg b.w.)b 对Swiss Webster小鼠 的LD50(μg/20g b.w.)c  AaIT     0.0025     2.5     >60  LqhIT3     0.050     2.5     >60  LqhIT2     0.025     2.5     >60  LqhαIT     0.0025     2.5     8.0  LqhIV     0.1     0.5     12  LqhVI     0.006     3.0     >60 a.25-40只丽蝇幼虫分别被注入每一种毒素(三次重复)并测定PU50。当注   射后立即导致收缩性麻痹时测定兴奋性毒素AaIT、LqhVI和LqhIT3的   PU50。在注射后软弱麻痹5分钟时测定抑制性毒素LqhIT2的PU50。在注   射后延迟和维持收缩性麻痹5分钟时测定α昆虫毒素LqhαIT和LqhIV   的PU50。 b.25-40只鳞翅目幼虫分别被注入每一种毒素(三次重复),并测定经注射   后24小时没有能力移动或当掀翻它没有能力翻转回来时的PU50。 c.8只老鼠(两次重复)皮下注射,在注射后24小时测定对小鼠的LD50。

                           实施例3

同时注入毒素的组合,并测定毒性,结果概括于表3中。毒性组合包 括相应于每种毒素的一个PU50单位的量及其稀释度。不在同一结合点相互竞 争且在其药理学上有差异的一对毒素是增效的。如表3中所示,协同的程 度不仅取决于毒素的组合,而且取决于试验动物。

                                        表3 毒素 对Sarcophaga fatculata幼虫的 PU50(μg/100mg b.w.)a 对烟芽夜蛾幼虫的 PU50(μg/100mg b.w.)b 对Swiss Webster小鼠的 LD50(μg/20g b.w.)c 剂量                效力的                     变化* 剂量                  效力的                       变化* 剂量              效力的                   变化* AaIT + LqhIT2  0.0025(AaIT)    0.5X  0.025(LqhIT2) 0.25(AaIT)            5X 0.25(LqhIT2) 60(AaIT)          无效果 + 60(LqhIT2) AaIT + LqhαIT  0.000125(AaIT)  10X  0.000125(LqhαIT) 0.25(AaIT)            5X + 0.25(LqhαIT) 60(AaIT)          8.0 + 8.0(LqhαIT) LqhIT3 + LqhIT2 未测定 0.25(LqhIT3)          5X + 0.25(LqhIT2) 60(LqhIT3)       无效果 + 60(LqhIT2) LqhIT3 + LqhαIT  0.005(LqhIT3)   5X  0.00025(LqhαIT) 0.25(LqhIT3)          5X + 0.25(LqhαIT) 60(LqhIT3)       8.0 + 8.0(LqhαIT) a.25-40只丽蝇幼虫每一只被注入组合毒素(三次重复),在注射后一分内   幼虫迅速萎缩时测定PU50。 b.25-40只鳞翅目幼虫每一只被注入组合毒素(三次重复),并测定经注射   后24小时没有能力移动或当掀翻它没有能力翻转回来时的PU50。 c.8只小鼠(两次重复)皮下注射,在注射后24小时测定对小鼠的LD50。 *由一定数量的毒素蛋白(以各种稀释度使用1∶1比率的毒素)所产生的效果 与每一种毒素单独的PU50相比较来评价效力。

如表3中阐明的,大于单一效力的组合是大于增强的剂量反应。因此, 这些组合增加了杀虫率,也阐明了本发明优选的实施方案。

                        实施例4

实施本发明时,要防治的害虫是用表达这些重组杆状病毒来处理(和/ 或处理其地点)。在这个例子中,表达两种不同组合的毒素的两种病毒的组 合施用,与应用每一个病毒单独施用相比较,显示出减少杀死昆虫宿主所 需的时间。因此,如表4所示,组合施用重组AcAaIT和重组AcLqhαIT会 大大减少杀死时间。

                       表4  重组体的应用 LT10  LT50 LT90 AcLqhαIT(单独) 62 73 87 AcAaIT(单独) 55 68 82 AcAaIT+AcLqhαIT(组 合,发明的实施方案) 45 60 80

致死时间(LT)是在三龄烟芽夜蛾幼虫对AcAaIT(10000 PIB′S)、 AcLqhαIT(10000 PIB′S)和AcAaIT(5000 PIB′S)与AcLqhαIT(5000 PIB′s) 的组合施用的响应的基础上获得的。将小的食物塞分别放置于微量滴定盘 的各个小孔中,同时接入任何一种相应的病毒。把三龄烟芽夜蛾幼虫加到 盘上并保持27℃。每隔5-10分种记录死亡率。用概率分析程序分析致死 时间。

因此,表4的数据是用致死时间(LT)表示的对杀死速率的研究,且类 似的方法可以用来确定致死剂量,而致死剂量大概会有主要的经济重要 性。例如,有了50%幼虫死亡的致死时间,可见,实施本发明方法中的毒素 组合与施用单个重组体相比,大约减少12%-18%杀死宿主幼虫所需要的 时间。当人们认为与野生型AcNPV相比较,使用重组AcAaIT的处理代表大 约减少40%杀死宿主幼虫所需要的时间时,可见,本发明的实施造成基本 上减少昆虫取食损害且明显减少被损伤的植物。另外,用重组微生物感染 的幼虫,典型的是在死亡前数小时,开始显示麻痹特征且停止取食。这就 进一步增加了本发明方法的实际杀虫效果。

                        实施例5 LqhIV和LqhVI的纯化 蝎子(L.quinqestriatus hebraeus)的毒液是从Sigma(USA)获得的。 冻干的L.quinqestriatus hebraeus毒液(50mg)于2ml 10mM pH=6.4 的乙酸铵中悬浮并匀浆。在27000g下离心20分钟去除不溶物质。收集上 清液并且将粒状沉淀重新悬浮于另外的2ml 10mM pH=6.4的乙酸铵中,匀 浆并再次离心。此提取法做4次,以期最大量地从毒液中提取蛋白质。把 所有离心过程的上清液收集起来,装在阳离子交换柱上(10ml的CM-52) 并用线性梯度为0.01-0.5M pH=6.4的乙酸铵在流速为10ml/hr下洗脱。在 280nm监测吸光度且相应地收集峰值。来自阳离子交换色谱的级分CM-III 和CM-VI进一步在RP-HPLC的Vydac C4柱上纯化。从CM-VI上纯化LqhIV 可依照以下步骤:缓冲液A是5%的ACN和0.1%的TFA,缓冲液B是95%的 ACN和0.1%的TFA。柱子用缓冲液A平衡,并用线性梯度为0-60%的缓冲 液B洗脱70分种,流速为0.6毫升/分种。在214nm监测吸光度且相应地 收集峰值,从CM-III纯化LqhVI可依照以下步骤:缓冲液A是5%的ACN 和0.1%的HFBA,缓冲液B是95%的ACN和0.1%的HFBA。柱子用缓冲液 A平衡并用线性梯度为0-90%的缓冲液B洗脱105分种,流速为0.6毫升/ 分种。在214nm监测吸光度且相应地收集峰值。收集洗脱的级分,并测试 其活性(表2)和纯度。 毒素的纯度

LqhIV和LqhVI的均一性和纯度用Free Solution Capillary Electrophoresis测试(Applied Biosystems Model 270A)。用20mM pH=2.9 的柠檬酸钠使毛细管平衡且使用真空装载样品(0.02mg/ml蛋白质)2秒钟。 流动缓冲液是20mM pH=2.9的柠檬酸钠,电压力为20KV。 序列测定

使用已经确立的方法(Fernandez等,《蛋白质化学的技术》[Techniques in Protein Chemistry],第5卷,第215页),把每种毒素20μg还原和羧 甲基化。使用HP序列分析仪,通过自动化Edman降解,测定N-末端的序列。 使用内蛋白酶Asp-N消化还原的和羧甲基化的LqhIV,产生肽。在使用聚 合柱的微孔HPLC(Ultrafast Microprotein分析仪-Michrom BioResources Inc.)上分离消化的肽。缓冲液A是5%的ACN和0.1%的 TFA,缓冲液B是95%的ACN和0.1%的TFA。柱子用缓冲液A平衡,并用 线性梯度为0-50%的缓冲液B洗脱50分种,流速为0.05毫升/分种。在 214nm监测吸光度且相应地收集峰值。为了确定这种毒素的完整氨基酸序 列,对肽P2进行测序。

                         实施例6 结合方案 昆虫神经元膜的制备

昆虫神经元组织的所有解剖和制备都是在如下组份的冷缓冲液中进行 的:0.25M甘露醇、10mM pH=7.4的EDTA、5mM HEPES(用Tris调至pH为 7.4)、50μg/ml苯甲基磺酰氟、1μM胃蛋白酶抑制剂A、1mM碘乙酰胺和 1mM 1,10-菲咯啉(1,10-phenantroline)。昆虫神经组织在冷缓冲液中解 剖和匀浆,碎片通过1000g离心分离10分钟去除。上清液在27000g下离 心45分钟并收集膜(P2)。P2悬浮于缓冲液中且调节至10%Ficoll(在缓冲 液中),并在10000g离心75分钟。收集所产生的代表富含突触体碎片的漂 浮表皮,接着用低渗透压介质(5nM Tris-HCl pH=7.4、1mM EDTA、50μg/ml 苯甲基磺酰氟、1μM胃蛋白酶抑制剂A、1mM碘乙酰胺和1mM 1,10-菲咯啉) 处理,形成膜小泡。这种膜小泡在使用前经27000g离心分离45分钟后, 收集在少量解剖缓冲液内,并在-80℃贮藏。 毒素的放射性碘标记

毒素由用0.5毫居里无载体Na125I(-0.3nmol)(Amersham)和5毫克(~ 0.7nmol)毒素的iodogen(Pierce Chemical Co.,Rockville,MD)碘化。 此单碘化毒素在使用Beckman Ultrapore C3 RPSC柱(4.6×75毫米)的HPLC 上纯化,得到的级分用流速为0.5毫升/分钟,梯度为10-80%的溶剂B(溶 剂A=0.1%TFA,溶剂B=50%ACN,50%2-丙醇和0.1%TFA)洗 脱。单碘化毒素的洗脱在天然毒素的峰(大约28%的溶剂B)之后为放射性 蛋白质的第一个峰(大约30%的溶剂B)。依据125I的特异放射性估计放射 性同位素标记的毒素的浓度和相应于2424dpm/fmol单碘化毒素。 结合试验

竞争结合试验是在标记毒素的恒定浓度存在下,在平衡的条件下使用 增加未标记毒素浓度来进行。所有结合试验的分析是使用迭代计算机程序 LIGAND(P.J.Munson和D.Rodbard,由G.A.McPherson改进,1985)进行 的。昆虫膜小泡悬浮于含有0.13M胆盐酸盐、1mM EDTA pH=7.4、20mM HEPES/Tris pH=7.4和5mg/ml BSA的结合介质中。接着与毒素温育一小 时,此反应混合物用2ml冰冷洗涤缓冲液(150mM胆碱盐酸盐、5mM HEPES/Tris pH=7.4、1mM EDTA pH=7.4和5mg/ml BSA)稀释并在真空下用 GF/F过滤器(Whatman,U.K.)过滤,接着每一次用2ml的洗涤缓冲液再冲 洗过滤器两次。在1μM未标记的毒素存在下,测定非特异性毒素结合。

                        实施例7 合成基因的构建(图1,SEQ ID NO:1)

采用一个杆状病毒的优选密码子使用把一个毒素的蛋白质序列变换成 一个核苷酸序列。毒素基因与前导序列的核苷酸序列(家蚕素,天然前导序 列或其它)和适当的限制酶位点被用来设计和合成寡核苷酸的5个互补对。 通过使用外部寡核苷酸作为引物的PCR,使寡核苷酸被磷酸化退火、连 接和扩增。PCR产品被平端连接入PCRscript质粒,并通过测序证实正确 的序列。BamHI限制片断在一个杆状病毒启动子作用下,从此克隆入一个 杆状病毒转移载体的质粒中获救(P10,多角体蛋白,Basic,IE1等)。 一个包括基因的正确序列和前导序列的质粒通过测序确定。使用产生的转 移载体和标准的程序构建出一个表达毒素的重组病毒。 表达AaIT和LqhIV的病毒的构建

家蚕素的前导序列和编码毒素LqhIV的基因如上所述被设计和合成。 确定正确序列,并将基因克隆入已包含AaIT基因的双表达的转移载体。 pAcUW51P2转移载体是一有两个克隆位点的多角体蛋白阳性载体,Bg1II位 点和有家蚕素的前导序列的LqhIV基因克隆入BamHI位点。使用Lipofectin 程序,将Sf21细胞用所得的转移载体和传染病毒颗粒共转染。重组病毒在 标准噬菌斑试验中被选作一个多角体蛋白阳性表现型。依据标准程序将 Sf21细胞用重组病毒AcAaLq接种。从病毒感染细胞中得到的蛋白质提取液 在15%SDS-PAGE凝胶上分离并随后电洗脱到硝化纤维素膜上。膜用AaIT 和LqhIV抗体探查,结合的抗体使用兔子IgG HRP共轭体检测。

综上所述,依据本发明生产出来的遗传工程处理过的杀虫微生物,可 应用于防治各种害虫。在此运作中,可以应用单一的表达许多种神经毒素 的重组病毒。通过选择作用在相同细胞通道(典型的钠通道)但在非重叠位 点上的毒素来决定毒素的组合。此外,可采用两种(或更多)各表达不同毒 素的重组杀虫微生物。再者,几种表达的毒素如已描述的已被选择出。这 些表达的毒素的组合加速杀死害虫的速率,其效果远非简单的“加合”所 能比。例如,毒素AaIT和LqhαIT的组合使用使丽蝇幼虫和棉铃虫属幼虫 的致死率增加5-10倍。另外毒素的组合可用于增加对昆虫组群的选择性。

重组微生物的常规施用方法(喷雾、弥雾、喷粉、撒施和浇泼)可采用 以下剂型如粉剂、粉尘、颗粒,以及如在聚合物中的胶囊。为了使用表达 杀虫毒素的增效组合的重组微生物,组合物典型地包括惰性载体如粘土、 乳糖、脱脂大豆粉和类似的应用辅助剂。

本发明上面描述的关于优选的特别实施方案应理解为,描述和实施例 意欲说明和而不限制发明范围,其发明范围是由所附权利要求书来限定。

高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈