净化离子液体的方法和空气除湿方法

申请号 CN201511035959.X 申请日 2015-12-17 公开(公告)号 CN105732507A 公开(公告)日 2016-07-06
申请人 赢创德固赛有限公司; 发明人 O·策那科尔; B·维利; 王新明; R·施奈德; M-C·施奈德;
摘要 在100到200℃的 温度 和至多100mbar的压 力 下、在至少0.1h的期间内通过 解吸 挥发性化合物 净化 Q+A?结构的 离子液体 ,其中Q+为1,3?二烷基咪唑离子,其中烷基彼此独立地为直链C1?C4?烷基,和A?为pKa小于3的酸HA的阴离子。
权利要求

1.一种净化离子液体的方法,其特征在于,在100到200℃的温度和至多100mbar的压下、在至少0.1h的期间内从Q+A-结构的离子液体解吸挥发性化合物,其中Q+为1,3-二烷基咪唑 离子,烷基彼此独立地为直链C1-C4-烷基,和A-为pKa小于3的酸HA的阴离子。
2.根据权利要求1所述的方法,其特征在于,A-选自硫酸氢根、甲磺酸根、甲基硫酸根、乙基硫酸根、磷酸二氢根、二甲基磷酸根、二乙基磷酸根和硝酸根。
3.根据权利要求1或2所述的方法,其特征在于,Q+为1,3-二甲基咪唑 阳离子或1-乙基-3-甲基咪唑 阳离子。
4.根据权利要求1到3其中一项所述的方法,其特征在于,在0.5h到100h期间发生解吸。
5.根据权利要求1到4其中一项所述的方法,其特征在于,在解吸过程中使所述离子液体经过填充材料床或规整填料。
6.根据权利要求1到4其中一项所述的方法,其特征在于,在降膜式设备上发生所述解吸。
7.离子液体用于空气除湿的用途,其中所述离子液体使用根据权利要求1到6中任一项所述的方法净化。
8.一种空气除湿方法,其中将空气与包含Q+A-结构的离子液体的吸收介质相接触,其特征在于,
Q+为1,3-二烷基咪唑 离子,其中烷基彼此独立地为直链C1-C4-烷基,
A-为pKa小于3的酸HA的阴离子且不为卤素离子,
在80℃温度下95重量%的Q+A-离子液体和5重量%的的混合物具有小于100mbar的蒸汽压力,
和Q+A-离子液体在与空气相接触之前已使用根据权利要1到6中任一项所述的方法净化。
9.根据权利要求8所述的方法,其特征在于,所述离子液体选自1,3-二甲基咪唑硫酸氢盐、1,3-二甲基咪唑甲磺酸盐、1,3-二甲基咪唑乙基硫酸盐、1,3-二甲基咪唑二乙基磷酸盐、1,3-二甲基咪唑硝酸盐、1-乙基-3-甲基咪唑硫酸氢盐、1-乙基-3-甲基咪唑甲磺酸盐、
1-乙基-3-甲基咪唑乙基硫酸盐、1-乙基-3-甲基咪唑二乙基磷酸盐、1-乙基-3-甲基咪唑硝酸盐。
10.根据权利要求8或9所述的方法,其特征在于,所述吸收介质在与空气相接触之前包含至少80重量%的Q+A-结构的离子液体。

说明书全文

净化离子液体的方法和空气除湿方法

技术领域

[0001] 本发明涉及净化离子液体的方法和使用净化过的离子液体对空气除湿的方法。

背景技术

[0002] 在用于通和调节建筑物或车辆空气的空调系统中,空气通常不仅要被制冷,由于在要被制冷的空气冷到期望温度时其露点被降低,要被制冷的空气常常还需要被除湿。因此在传统空调系统中,空气除湿占用了大部分消耗的电量。
[0003] 减少建筑物空调系统电量消耗的一种选择方法是利用干燥介质通过吸附或吸收来进行除湿,通过将载有水的干燥介质加热到水可被再次解吸收的温度而进行再生。相较在固体吸附剂上的吸附,在液体吸附介质上吸附的优点在于,可以降低的设备复杂性和用较少的干燥介质执行空气的干燥,和利用太阳能加热的载水干燥介质的再生更容易操作。
[0004] 目前被用作商用空调系统液体吸收介质的溴化锂、氯化锂、氯化水溶液具有的缺点在于,它们对典型用于空调系统结构的金属材料具有腐蚀性,和因此它们需要使用昂贵的特殊结构材料。这些解决方案另外可能导致从吸收介质结晶出盐的问题。
[0005] Y.Luo等的Appl.Thermal Eng.31(2011)2772-2777提出用离子液体1-乙基-3-甲基咪唑四氟酸盐代替溴化锂水溶液进行空气干燥。
[0006] Y.Luo等的Solar Energy(太阳能)86(2012)2718-2724提出用离子液体1,3-二甲基咪唑醋酸盐作为1-乙基-3-甲基咪唑四氟硼酸盐的替代物进行空气干燥。
[0007] 在US 2011/0247494A1的第[0145]段中提出将三乙基醋酸铵或1-乙基-3-甲基咪唑醋酸盐作为代替氯化锂水溶液的液体干燥剂。实施例3比较一系列进一步的离子液体从潮湿空气中吸收水。
[0008] CN 102335545A描述了将离子液体水溶液作为吸收介质以用于空气涂湿。离子液体可包含阴离子[BF4]-、[CF3SO3]-、[CH3COO]-、[CF3COO]-、[C3F7COO]-、[(CF3SO2)2N]-、[(CH3)2PO4]-、[C4F9SO3]-、[(C2F5SO2)N]-和[(CF3SO2)3C]-。
[0009] 现已发现市场销售的离子液体通常包括杂质,在使用离子液体对空气除湿时,杂质导致进入被除湿的空气有强烈的气味或对健康有害的物质。而且,已发现在从含有性阴离子的离子液体解吸水期间,例如形成气味强烈的分解产物羧酸根离子,其在接下来使用离子液体对空气除湿时会进入被除湿的空气中。而且,已发现通过在100-200℃和低于100mbar的压下解吸挥发性化合物,可从具有非碱性或弱碱性阴离子的离子液体产生净化的离子液体,用这种离子液体在不会将有强烈气味或对健康有害的物质引入被除湿空气的情况下对空气除湿。

发明内容

[0010] 因此本发明提供一种净化离子液体的方法,其中在100-200℃的温度和至多100mbar的压力下、在至少0.1h的期间内从Q+A-结构的离子液体解吸挥发性化合物,其中Q+为1,3-二烷基咪唑 离子,其中烷基彼此独立地为直链C1-C4-烷基,和A-为pKa小于3的酸HA的阴离子。
[0011] 而且,本发明提供一种空气除湿方法,其中将空气与吸收介质相接触,吸收介质包括使用根据本发明方法净化且具有Q+A-结构的离子液体,其中Q+为1,3-二烷基咪唑 离子,其中烷基彼此独立地为直链C1-C4-烷基,和A-为pKa小于3的酸HA的阴离子且不是卤离子,和其中95重量%的离子液体Q+A-和5重量%的水的混合物在80℃下具有小于100mbar的蒸汽压力。
[0012] 用Q+A-结构的离子液体执行根据本发明的方法。Q+为1,3-二烷基咪唑 离子,烷基彼此独立地为直链C1-C4-烷基。适合的1,3-二烷基咪唑 离子为1,3-二甲基咪唑 1-乙基-3-甲基咪唑 1-丙基-3-甲基咪唑 1-丁基-3-甲基咪唑 1,3-二乙基咪唑 1-乙基-3-丙基咪唑 1-丁基-3-乙基咪唑 1,3-二丙基咪唑 1-丁基-3-丙基咪唑 和
1,3-二丁基咪唑 离子。优选地,Q+为1,3-二甲基咪唑阳离子或1-乙基-3-甲基咪唑阳离子和特别优选地为1,3-二甲基咪唑阳离子。带有直链烷基的1,3-二烷基咪唑 离子优于带有支链烷基的1,3-二烷基咪唑 离子之处在于,在根据本发明方法期间避免了脱烷基化。带有C1-C4-烷基的1,3-二烷基咪唑 离子优于带有长链烷基的1,3-二烷基咪唑 离子之处在于,它们在空气除湿期间在吸收介质上达到更高的水吸收能力。
[0013] Q+A-结构的离子液体包括pKa小于3的酸HA的阴离子作为A-阴离子。pKa于此处指在25℃下的酸HA的水溶液。A-阴离子可为有机酸无机酸的阴离子。优选地,A-阴离子为硫酸氢根、甲磺酸根、甲基硫酸根、乙基硫酸根、磷酸二氢根、二甲基磷酸根、二乙基磷酸根或硝酸根。特别优选地,二乙基磷酸根为A-阴离子。通过使用pKa小于3的酸HA的A-阴离子,可避免在根据本发明净化期间和在接来下使用用于除湿空气的离子液体期间形成气味强烈的杂质,而带有弱酸阴离子、更具体地带有羧酸根离子的离子液体可在根据本发明净化期间和使用用于除湿空气的离子液体时形成气味强烈的杂质。
[0014] 在根据本发明的离子液体净化方法中,在100-200℃的温度和至多100mbar的压力下、在至少0.1h的期间内从离子液体解吸挥发性化合物。在120-180℃和特别优选地在从140-160℃的温度下解吸挥发性化合物。压力于此处优选地为0.01-20mbar和特别优选地从
0.01-10mbar。优选地在从0.5-100h、特别优选地从1-10h期间执行对挥发性化合物的解吸。
根据在使用的离子液体中挥发性化合物的量和类型选择解吸的温度、压力和持续时间,对于较大量和不易挥发的化合物,选择较高温度、较低压力和/或较长持续时间。可通过对被净化的离子液体进行如气味的感官测试方式、和通用被净化的离子液体的顶空-GC确定用于解吸挥发性化合物的适当处理条件。
[0015] 通过扩大离子液体的表面积来增大挥发性化合物的解吸率。优选地,为达此目的,在解吸期间使所述离子液体经过填充材料床或规整填料。适用于该目的填充材料或规整填料是本领域技术人员从现有技术中已知的所有用于蒸馏和用于吸收处理的填充材料或规整填料。或者,可在降膜设备中进行解吸。合适的降膜设备是从现有技术可知的用于蒸馏的降膜蒸发器。
[0016] 而且,通过在最多100mbar压力下使惰性气体通过离子液体、或者使其以与离子液体顺流或逆流方式离子液体、通过填充材料床、规整填料或降膜设备来增大挥发性化合物的解吸率。适当的惰性气体为氮气、CO2、水蒸汽、氩气和氦气,其中优选的是氮气。
[0017] 使用根据本发明方法净化的离子液体可被用于对空气除湿。优选地,在空气除湿方法中执行所述方法,其中如前面所定义的,将空气与包含Q+A-结构的离子液体的吸收介质相接触,其中,在80℃温度下95重量%的Q+A-离子液体和5重量%的水的混合物具有小于100mbar的蒸汽压力。可用本领域技术人员从现有技术可知的用液体吸收剂吸收气体方法的或用氯化锂或溴化锂的水溶液干燥空气的领域的所有设备执行所述接触。例如,适当的是将空气顺流或优选地逆流通过填充材料床或通过规整填料至吸收介质。适当的也是吸收介质滴流或流过空气循环的冷却管或散热片。优选地,在降膜设备中将空气与吸收介质相接触。通过使用降膜设备,可避免空气夹带吸收介质的液滴。
[0018] 通过常规实验优选从如下离子液体选择离子液体,其中在80℃温度下具有5重量%的水的混合物具有小于100mbar的蒸汽压力,离子液体具有选自由硫酸氢根、甲磺酸根、甲基硫酸根、乙基硫酸根、磷酸二氢根、二甲基磷酸根、二乙基磷酸根和硝酸根组成的组中的阴离子。特别适合的离子液体为1,3-二甲基咪唑硫酸氢盐、1,3-二甲基咪唑甲磺酸盐、1,3-二甲基咪唑乙基硫酸盐、1,3-二甲基咪唑二乙基磷酸盐、1,3-二甲基咪唑硝酸盐、1-乙基-3-甲基咪唑硫酸氢盐、1-乙基-3-甲基咪唑甲磺酸盐、1-乙基-3-甲基咪唑乙基硫酸盐、
1-乙基-3-甲基咪唑二乙基磷酸盐、1-乙基-3-甲基咪唑硝酸盐。
[0019] 在根据本发明的空气除湿方法中,吸收介质在与空气相接触之前优选地包括至少为80重量%和特别优选地超过85重量%的Q+A-结构的离子液体。优选地,吸收介质中Q+A-结构的离子液体和水的总含量超过90重量%、特别优选地超过98重量%。
[0020] 在空气除湿过程中载有水的吸收介质可通过水蒸汽再生和再次用于空气除湿。为此,优选地加热载水的吸收介质,优选地加热到70到120℃的温度,且水蒸汽被冷凝或与空气流一起被带走。可通过用水或空气冷却执行水的冷凝。优选地,在降膜蒸发器中完成水的蒸发,蒸发的水被与空气流一起带走,空气流特别优选地为来自被空气调节的建筑物或车辆的废空气流。
[0021] 使用根据本发明的方法,带有少量吸收介质的空气可被除湿到对于空调设备的操作所要求的程度,不会导致来自吸收介质的吸收剂结晶的问题、或导致被从吸收介质释放到已除湿空气中的有强烈气味或有害于健康的物质。

具体实施方式

[0022] 在140℃的温度和10mbar的压力下、在24h期间内、在旋转蒸发器中从离子液体解吸挥发性化合物。在关于气味的感官处理之前和之后和对挥发性杂质使用顶空-GC分析离子液体。对于顶空-GC分析,在通过气相色谱法分析离子液体上方的空气之前,在顶空样本容器中将离子液体加热到70℃为时20min。气味的感官评价和通过顶空-GC在空气中检测到的物质被列于表2和3中。除了来自实施例4的离子液体是从Iolitec获得的离子液体之外,通过描述于WO 2009/074535中的方法以1∶1∶2∶1的摩尔比浓缩乙二、甲醛、甲胺和表1所列的酸来制备离子液体。
[0023] 在实施例6中,在实验期间大部分离子液体分解以得到1-甲基咪唑和乙酸甲酯。
[0024] 表1所研究的离子液体
QQ群二维码
意见反馈