用于减少腔室微粒的关键腔室部件表面改良

申请号 CN201580010199.9 申请日 2015-01-30 公开(公告)号 CN106458769A 公开(公告)日 2017-02-22
申请人 应用材料公司; 发明人 段仁官; J·C·罗查-阿尔瓦雷斯; R·萨卡拉克利施纳;
摘要 本文描述的 实施例 大体而言涉及用于 热处理 在紫外线 半导体 处理腔室中使用的腔室部件的设备和方法。包含单式陶瓷或玻璃制品的腔室部件的热处理可以减少当腔室部件曝露于 腐蚀 性环境、诸如曝露于紫外光和臭 氧 /氧自由基时产生微粒的可能性。一种热处理腔室部件的方法包括:以可接受的变温速率将单式制品加热到期望的 温度 并持续期望的时间周期,并且随后以所述变温速率冷却所述单式制品。
权利要求

1.一种用于热处理UV腔室部件的方法,所述方法包含以下步骤:
提供单式陶瓷制品;
以介于约0.1℃/分钟与约20℃/分钟之间的第一变温速率将所述单式陶瓷制品加热到介于约1000℃与约1800℃之间的温度范围;
热处理所述单式陶瓷制品并持续介于约0.5小时与约24小时之间的持续时间;以及
以介于约0.1℃/分钟与约20℃/分钟之间的第二变温速率冷却所述单式陶瓷制品。
2.如权利要求1所述的方法,其中所述单式陶瓷制品包含选自由Al2O3、AlN、AlON、SiC、Si3N4、SiCN、Si-SiC、ZrO2、Y2O3、掺杂Y2O3的ZrO2、Y2O3类陶瓷、Er2O3及上述的组合所组成的组的材料。
3.如权利要求2所述的方法,其中在周遭空气环境中热处理含化物的单式陶瓷制品。
4.如权利要求2所述的方法,其中在无氧化环境中热处理非氧化物的单式陶瓷制品。
5.如权利要求1所述的方法,其中所述温度范围介于约1200℃与约1500℃之间。
6.如权利要求1所述的方法,其中热处理的所述持续时间介于约1小时与约3小时之间。
7.如权利要求1所述的方法,其中所述第一和第二变温速率经选择为防止所述单式陶瓷制品破裂。
8.一种热处理UV腔室部件的方法,所述方法包含以下步骤:
提供单式玻璃制品;
以介于约0.1℃/分钟与约20℃/分钟之间的第一变温速率将所述单式玻璃制品加热到介于约1000℃与约1800℃之间的温度范围;
热处理所述单式玻璃制品并持续介于约0.5小时与约24小时之间的持续时间;以及
以介于约0.1℃/分钟与约20℃/分钟之间的第二变温速率冷却所述单式玻璃制品。
9.如权利要求8所述的方法,其中所述单式玻璃制品包含选自由石英酸盐玻璃、硅酸盐玻璃、掺杂稀土元素的硅酸盐玻璃、氮化物玻璃、及上述的组合所组成的组的材料。
10.如权利要求9所述的方法,其中在周遭空间环境中热处理含氧化物的单式玻璃制
品。
11.如权利要求9所述的方法,其中在无氧化环境中热处理非氧化物的单式玻璃制品。
12.一种通过一工艺来制备的经热处理的UV腔室部件,所述工艺包含以下步骤:
提供单式陶瓷或玻璃制品;
以介于约0.1℃/分钟与约20℃/分钟之间的第一变温速率将所述单式陶瓷或玻璃制品加热到介于约1000℃与约1800℃之间的温度范围;
热处理所述单式陶瓷或玻璃制品并持续介于约0.5小时与约24小时之间的持续时间;
以及
以介于约0.1℃/分钟与约20℃/分钟之间的第二变温速率冷却所述单式陶瓷或玻璃制品。
13.如权利要求12所述的经热处理的UV腔室部件,其中所述单式陶瓷或玻璃制品选自由Al2O3、AlN、AlON、SiC、Si3N4、SiCN、Si-SiC、ZrO2、Y2O3、掺杂Y2O3的ZrO2、Y2O3类陶瓷、Er2O3、石英、铝硅酸盐玻璃、硼硅酸盐玻璃、掺杂稀土元素的硅酸盐玻璃、氮化物玻璃、及上述的组合所组成的组。
14.如权利要求12所述的经热处理的UV腔室部件,其中在周遭空气环境中热处理含氧化物的单式陶瓷或玻璃制品。
15.如权利要求12所述的经热处理的UV腔室部件,其中在非氧化环境中热处理非氧化物的单式陶瓷或玻璃制品。

说明书全文

用于减少腔室微粒的关键腔室部件表面改良

背景

技术领域

[0001] 本文所述的实施例大体而言涉及用于紫外线(UV)半导体处理腔室的单式陶瓷制品的热处理

背景技术

[0002] 在半导体工业中,器件由若干制造工艺制成,这些制造工艺生产尺寸不断减小的结构。一些制造工艺(诸如UV固化工艺和臭(O3)清洁工艺)使各种腔室部件曝露于可能侵蚀处理腔室或腔室部件表面的腐蚀性环境。腐蚀可能产生微粒,这些微粒经常会污染正在生产的器件。
[0003] 随着器件几何尺寸缩小,对于缺陷的敏感性提高,并且微粒污染物要求变得更加严格。因此,可能降低了允许的微粒污染物平。为了最少化由UV和臭氧曝露引入的微粒污染物,已经开发出通常对腐蚀性UV和臭氧环境有抵抗性的腔室材料。这种材料的示例包括由Al2O3、AlN、SiC、Y2O3、石英、ZrO2等组成的陶瓷。然而,这些陶瓷材料的耐腐蚀性对于某些微粒污染物在器件功能性上扮演显著色的应用可能是不足的。各种用以从腔室部件去除微粒的清洁技术(诸如使用酸的湿清洁)在去除微粒并进一步防止微粒产生到确保无缺陷器件制造所需的程度上也可能是无效的。
[0004] 因此,本技术领域中需要的是使腔室部件具有在腐蚀性环境中减少微粒产生的期望性质的设备和方法。发明内容
[0005] 在一个实施例中,提供一种热处理UV腔室部件的方法。该方法包含提供单式陶瓷制品并且以介于约0.1℃/分钟与约20℃/分钟之间的第一变温速率将该单式陶瓷制品加热到介于约1000℃与约1800℃之间的温度范围。热处理该单式陶瓷制品并持续介于约0.5小时和约24小时之间的持续时间,并且以介于约0.1℃/分钟与约20℃/分钟之间的第二变温速率冷却该单式陶瓷制品。
[0006] 在另一个实施例中,提供一种热处理UV腔室部件的方法。该方法包含提供单式玻璃制品并且以介于约0.1℃/分钟与约20℃/分钟之间的第一变温速率将该单式玻璃制品加热到介于约1000℃与约1800℃之间的温度范围。热处理该单式玻璃制品并持续介于约0.5小时与约24小时之间的持续时间,并且以介于约0.1℃/分钟与约20℃/分钟之间的第二变温速率冷却该单式玻璃制品。
[0007] 在又另一个实施例中,提供经热处理的UV腔室部件。该经热处理的UV腔室部件通过一种工艺来制备,该工艺包含提供单式陶瓷或玻璃制品并且以介于约0.1℃/分钟与约20℃/分钟之间的第一变温速率将该单式陶瓷或玻璃制品加热到介于约1000℃与约1800℃之间的温度范围。热处理该单式陶瓷或玻璃制品并持续介于约0.5小时与约24小时之间的持续时间,并且以介于约0.1℃/分钟和约20℃/分钟之间的第二变温速率冷却该单式陶瓷或玻璃制品。附图说明
[0008] 因此,为了详细理解本公开的上述特征的方式,可参照实施例(其中一些在附图中示出)而对以上简要概述的本公开作更具体的描述。然而,应注意的是,附图仅示出本公开的典型实施例,因此不应被视为限制本公开的范围,因为本公开可认可其他等同有效的实施例。
[0009] 图1示出依据本文描述的一个实施例的紫外线半导体处理腔器的示意性剖面图。
[0010] 图2示出依据本文描述的一个实施例的方法图。
[0011] 图3示出依据本文描述的各种实施例的来自以不同温度的热处理之前和之后的UV腔室部件的胶带微粒收集的显微照片。
[0012] 图4A-4E示出依据本文描述的各种实施例的来自在曝露于腐蚀性环境之前和之后的以不同温度的经热处理的UV腔室部件的胶带微粒收集的显微照片。
[0013] 图5示出依据本文描述的各种实施例的以不同温度的热处理之前和之后的UV腔室部件的表面形态显微照片。
[0014] 图6A-6E示出依据本文描述的各种实施例的在曝露于腐蚀性环境之前和之后的以不同温度热处理的UV腔室部件的表面形态显微照片。
[0015] 为了便于理解,已在可能处使用相同的附图标记来指定附图共有的相同元件。构想到,可以将一个实施例的元件和特征有益地并入其他实施例中而无需进一步详述。

具体实施方式

[0016] 本文描述的实施例大体而言涉及用于热处理在紫外线半导体处理腔室中使用的腔室部件的设备和方法。包含单式陶瓷或玻璃制品的腔室部件的热处理可以减少当腔室部件曝露于腐蚀性环境(诸如曝露于紫外光和臭氧/氧自由基)时产生微粒的可能性。一种热处理腔室部件的方法包括:以可接受的变温速率将单式制品加热到期望的温度且持续期望的时间周期,并且随后以该变温速率冷却该单式制品。
[0017] 腔室部件的热处理可以最小化或消除腔室部件上的表面微粒。热处理可以减少高能键(断键)在腔室部件的表面处或附近的发生率,并且在用于存在光子或氧自由基的UV半导体工艺时产生明显较低的微粒污染物量。因此,使用经热处理的腔室部件制造的半导体可以具有较少的缺陷数。
[0018] 虽然关于UV半导体工艺描述了本文提供的实施例,但构想到,腔室部件可以在各种其他类型的腔室中提供减少的微粒污染物,诸如化学气相沉积(CVD)腔室、物理气相沉积(PVD)腔室、等离子体增强化学气相沉积(PECVD)腔室、等离子体增强物理气相沉积(PEPVD)腔室、等离子体增强原子层沉积(PEALD)腔室等。
[0019] 图1示出UV半导体处理腔器100的示意性剖面图。UV腔室100包含腔室主体102、气源110、以及UV源112。UV源112可配置为处理基板,例如通过执行固化或灰化工艺,以及气源110可配置为将清洁气体(诸如臭氧)输送到腔室100。气源110也可配置为将其他的气体(诸如处理气体和运载气体)提供到腔室100。可以将从气源110提供的气体经由气体输送装置
106提供到腔室100的处理区域114,气体输送装置106诸如喷淋头、气体端口、输送喷嘴等。
[0020] 由腔室主体102界定的处理区域114经受腐蚀性环境108。腐蚀性环境108可以被定义为促进微粒从腔室部件104产生的环境。例如,来自UV源112的光子以及来源于自气源110提供的臭氧的氧自由基可能促进腐蚀性环境108形成。腔室部件104可以包括底座、基座、升举销、衬垫、加热器、静电夹盘、屏蔽件、边缘环、喷淋头、圆顶、腔室壁、或其他腔室部件。
[0021] 适当的处理腔室的示例包括都可从加利福尼亚州圣克拉拉的应用材料公司购买到的 NANOCURETM 3UV CURE系统和 ONYXTM系统。构想到,来自其他制造商的其他适当适配的腔室和系统也可从本文描述的实施例中获益。
[0022] 图2示出用于热处理腔室部件的方法200。在操作210,提供包含单式陶瓷或玻璃制品的UV腔室部件。如本文定义的单式制品可以是其上没有设置涂层的单件陶瓷或玻璃。用语“UV腔室部件”和“单式陶瓷或玻璃制品”可以在以下的全部描述中互换使用。
[0023] 在操作210,腔室部件可以被提供到诸如窑的炉中。该炉包括能够在被插入其中的UV腔室部件上施加受控温度的绝热腔室、或烘箱。在一个实施例中,该炉的绝热腔室可以被不透气地密封。该炉可以包括将空气送出绝热腔室的泵,从而在绝热腔室内创建真空。此外,该炉可以包括进气口,以将诸如氩气、氮气、氦气等气体泵送到绝热腔室中。该炉可以能够执行工艺配方,该工艺配方控制升温速率、降温速率、工艺时间、温度、压、气体流量等。
[0024] 包含单式陶瓷或玻璃制品且被提供到炉的UV腔室部件可以由各种状材料形成。在一个示例中,单式陶瓷制品被提供并且可由诸如Al2O3、AlN、AlON、SiC、Si3N4、SiCN、Si-SiC、ZrO2、Y2O3、掺杂Y2O3的ZrO2、Y2O3类陶瓷、Er2O3及上述的组合之类的陶瓷形成。在另一个示例中,单式玻璃制品被提供并且可由诸如石英、酸盐玻璃、硅酸盐玻璃、掺杂稀土元素的硅酸盐玻璃、氮化物玻璃、及上述的组合之类的玻璃形成。可以在炉中、在周遭空气环境中热处理包含氧化物的陶瓷和玻璃单式制品,该周遭空气环境可以是氧化性环境。可以在炉中、在非氧化性环境中热处理包含诸如化物或氮化物之类的非氧化物的陶瓷和玻璃单式制品。例如,氮气、氦气、氩气、及上述气体的组合可以被提供到炉中以创建非氧化性环境,从而防止非氧化物单式陶瓷或玻璃制品的氧化。
[0025] 也可以在将UV腔室部件提供到炉中前对UV腔室部件进行加工。加工的示例包括表面研磨抛光、钻孔、磨擦、切割、喷珠、或以其他方式处理UV腔室部件。UV腔室部件在热处理之前的加工可能导致微粒存在于UV腔室部件的表面上。在将腔室部件插入炉中之前,存在于UV腔室部件的表面上的微粒可以被从表面清除或保持在表面上。在一个实施例中,单式陶瓷或玻璃制品的可能由加工形成的表面粗糙度Ra(μin,微英寸)小于约65μin,诸如约40μin。构想到,单式陶瓷或玻璃制品的表面粗糙度Ra与热处理结合可以进一步降低微粒创建的发生率。
[0026] 在操作220,将UV腔室部件以介于约0.1℃/分钟至约20℃/分钟之间的第一变温速率加热到介于约1000℃与约1800℃之间的温度范围。单式陶瓷或玻璃制品可能是脆弱的,而且可能在曝露于极端温度变化时破裂。因此,变温速率足够慢,以防止单式陶瓷或玻璃制品破裂或以其他方式失去结构完整性。构想到,对于某些单式陶瓷或玻璃制品来说,可以使用大于约20℃/分钟的变温速率。因此,在一些实施例中,可以使用超出20℃/分钟且不引起破裂的变温速率。
[0027] 使单式陶瓷或玻璃制品破裂的温度变化可能取决于单式陶瓷或玻璃制品的组成物。例如,可以将Al2O3以10℃/分钟或更大的速率加热而不会破裂。然而,假使以约5℃/分钟或更大的变温速率加热,则Y2O3可能会破裂。在一个实施例中,对于包含Al2O3的单式陶瓷制品,可利用介于约0.1℃/分钟与约5℃/分钟之间(诸如约2℃/分钟)的变温速率。典型地,单式陶瓷或玻璃制品将从环境温度处或附近开始并且以变温速率缓慢加热到预定的温度。在一个实施例中,Al2O3单式制品被加热到介于约1300℃与约1500℃之间(诸如约1400℃)的温度。
[0028] 在操作230,在温度范围内的一个或更多个温度处热处理UV腔室部件并持续约0.5小时至约24小时之间的持续时间。在一个实施例中,该温度范围介于约1小时与约4小时之间,诸如约2小时。所使用的具体持续时间可以取决于单式陶瓷或玻璃制品的组成物,以及单式陶瓷或玻璃制品的期望性能性质。在一个实施例中,将单式陶瓷或玻璃制品保持在单一温度处并持续热处理的持续时间。或者,单式陶瓷或玻璃制品可以在热处理期间被加热和/或冷却到温度范围内的多个不同温度。例如,可以在第一温度下热处理单式陶瓷或玻璃制品并持续第一持续时间,然后可以在第二温度下热处理该单式陶瓷或玻璃制品并持续第二持续时间。当使用多个不同的热处理温度时,可以将单式陶瓷或玻璃制品以变温速率加热和/或冷却,以在第一和第二温度之间转换。
[0029] 在操作240,以介于约0.1℃/分钟和约20℃/分钟的第二变温速率冷却UV腔室部件。在一个实施例中,以与用以加热单式陶瓷或玻璃制品的变温速率相同的变温速率冷却该单式陶瓷或玻璃制品。在另一个实施例中,使用与用以加热单式陶瓷或玻璃制品的变温速率不同的变温速率来冷却该单式陶瓷或玻璃制品。对于某些单式陶瓷或玻璃制品来说,有可能在阈值温度(诸如约100℃)以下以高于该变温速率的速率冷却制品。
[0030] 作为热处理的结果,UV腔室部件关于微粒污染物以及UV和氧自由基抗性可表现出改良的性能。一般来说,可以在将UV腔室部件使用于UV处理腔室之前执行热处理方法200。或者,可以在先前已被用于UV处理腔室的UV腔室部件上执行热处理方法200。
[0031] 如前面所描述的,曝露于UV能量和氧自由基可能产生会污染半导体器件的微粒。热处理方法200可以降低在新制造的UV腔室部件上产生的微粒的发生率或可以修复缺陷并降低使用过的UV腔室部件产生微粒的发生率。因此,热处理方法200可被用于制备或修复UV腔室部件并延长UV腔室部件的使用寿命。构想到,用于后续热处理工艺的热处理方法200的温度和/或持续时间可以不同于用于初始热处理工艺的温度和/或持续时间。
[0032] 图3示出以不同温度的热处理之前和之后的UV腔室部件表面微粒收集的显微照片302-310。将被应用于单式Al2O3制品的聚酰亚胺胶带(诸如 胶带)以4,000X的放大倍数显示于显微照片302-310中。可以通过将黏性胶带黏附到单式Al2O3制品,剥离胶带,以及计数黏附于胶带的微粒数量来执行胶带微粒收集测试。显微照片302示出热处理之前的胶带的样品。存在于制品表面上的微粒312通常是不期望的,并且使用热处理方法200来从制品减少或消除微粒312的存在。
[0033] 显微照片304示出来自1200℃的热处理之后的单式Al2O3制品的胶带微粒收集。如所示,极大地减少了存在于胶带上的微粒312的量,然而仍可以从单式Al2O3制品收集到一些微粒312。显微照片306、308、310分别示出来自在1300℃、1400℃、及1500℃的温度的热处理之后的单式Al2O3制品的胶带微粒收集。由于单式Al2O3制品的热处理,显微照片306、308、310中胶带上的微粒的出现基本上不存在。
[0034] 图4A示出在曝露于腐蚀性环境之前和之后的单式Al2O3制品的胶带微粒收集的显微照片402-406。显微照片402a、404a、及406a示出来自在曝露于腐蚀性环境之前的未经热处理的单式Al2O3制品的各个区域的胶带微粒收集。如所示,微粒312被收集到胶带上。图402b、404b、及406b分别示出来自在曝露于腐蚀性环境之后,来自显微照片402a、404a、及
406a的相同区域的胶带微粒收集。如所示,微粒312被收集在胶带上。
[0035] 对于图4A-4E表示的测试,在UV处理腔室中,通过将单式Al2O3制品放在该腔室中的加热器上来处理该单式Al2O3制品。加热器温度在环境温度与200℃之间摆动并持续825个加热循环。在这些循环中的至少一个循环期间或之后执行臭氧清洁工艺。臭氧清洁工艺持续300秒的持续时间,在该持续时间期间将12.5wt%的臭氧以10slm提供到UV处理腔室。随后,氦气和氩气各被以16slm提供到UV处理腔室,以净化UV处理腔室。净化工艺具有10秒的持续时间。在净化工艺期间,UV处理腔室的压力为3托。上述条件模拟可包括UV能量和氧自由基的腐蚀性环境。
[0036] 图4B-4E示出在曝露于腐蚀性环境之前和之后、以不同温度热处理的紫外线腔室部件的胶带微粒收集的显微照片。图4B示出在曝露于腐蚀性环境之前和之后的单式Al2O3制品的胶带微粒收集的显微照片408-412。显微照片408a、410a、及412a示出来自在曝露于腐蚀性环境之前的以1200℃热处理的单式Al2O3制品的各个区域的胶带微粒收集。如所示,在曝露于腐蚀性环境之前,微粒312被收集在胶带上。图408b、410b、及412b示出来自在曝露于腐蚀性环境之后分别来自显微照片408a、410a、及412a的相同区域的胶带微粒收集。如所示,在以1200℃热处理的单式Al2O3制品在曝露于腐蚀性环境之后,微粒312被收集在胶带上。
[0037] 图4C示出在曝露于腐蚀性环境之前和之后的单式Al2O3制品的胶带微粒收集的显微照片414-418。显微照片414a、416a、及418a示出来自在曝露于腐蚀性环境之前的以1300℃热处理的单式Al2O3制品的各个区域的胶带微粒收集。如所示,在曝露于腐蚀性环境之前,没有微粒可识别地存在于胶带上。图414b、416b、及418b示出在曝露于腐蚀性环境之后,分别来自显微照片414a、416a、及418a的相同区域的胶带微粒收集。如所示,以1300℃热处理的单式Al2O3制品在曝露于腐蚀性环境之后,没有微粒可识别地存在于胶带上。
[0038] 图4D示出在曝露于腐蚀性环境之前和之后的单式Al2O3制品的胶带微粒收集的显微照片420-424。显微照片420a、422a、及424a示出来自在曝露于腐蚀性环境之前的以1400℃热处理的单式Al2O3制品的各个区域的胶带微粒收集。如所示,在曝露于腐蚀性环境之前,没有微粒可识别地存在于胶带上。图420b、422b、及424b示出在曝露于腐蚀性环境之后,分别来自显微照片420a、422a、及424a的相同区域的胶带微粒收集。如所示,以1400℃热处理的单式Al2O3制品在曝露于腐蚀性环境之后,没有微粒可识别地存在于胶带上。
[0039] 图4E示出在曝露于腐蚀性环境之前和之后的单式Al2O3制品的胶带微粒收集的显微照片426-430。显微照片426a、428a、及430a示出来自在曝露于腐蚀性环境之前的以1500℃热处理的单式Al2O3制品的各个区域的胶带微粒收集。如所示,在曝露于腐蚀性环境之前,没有微粒可识别地存在于胶带上。图426b、428b、及430b示出在曝露于腐蚀性环境之后,分别来自显微照片426a、428a、及430a的相同区域的胶带微粒收集。如所示,以1500℃热处理的单式Al2O3制品在曝露于腐蚀性环境之后,没有微粒可识别地存在于胶带上。
[0040] 图4B-4E示出诸如UV能量或臭氧(氧自由基)的腐蚀性环境对单式Al2O3制品基本上没有影响。因此,相信对UV腔室部件的热处理减少或消除了微粒产生的发生率,并且可以增加UV腔室部件的使用寿命,同时提高无缺陷器件的产率。
[0041] 图5示出在不同温度的热处理之前和之后的UV腔室部件的表面形态显微照片502-510。显微照片502-510示出在4,000X放大倍数的单式Al2O3制品的表面。单式Al2O3制品的表面形态可以使用表面粗糙度Ra参数和/或表面均匀性参数表示。表面形态也可以使用孔隙度、裂纹和/或孔隙参数表示。表示孔隙度的测量参数可以包括端口数和/或平均孔尺寸。同样地,表示孔隙和/或裂纹的测量参数可以包括平均孔隙/裂纹尺寸和/或孔隙/裂纹数。构想到,作为热处理的结果,单式Al2O3制品的表面粗糙度可以具有减小的表面粗糙度Ra。减小的表面粗糙度也可以降低从陶瓷或玻璃UV腔室部件产生微粒的发生率。
[0042] 显微照片502示出在热处理之前的单式Al2O3制品的表面形态。显微照片504和506示出分别以1200℃和1300℃的热处理之后的单式Al2O3制品的表面形态。如所示,当将显微照片504、506与显微照片502相比时,表面形态没有明显的变化。显微照片508示出以1400℃的热处理之后的单式Al2O3制品。如所示,当与显微照片502相比时,热处理稍微改变了单式Al2O3制品的表面形态,尽管相信表面形态的变化是可忽略的。显微照片510示出以1500℃的热处理之后的单式Al2O3制品。如所示,当与显微照片502相比时,热处理极大地改变了单式Al2O3制品的表面形态。因此,UV腔室部件以低于约1400℃的温度的热处理可以保持结构完整性和UV腔室部件的加工公差。
[0043] 图6A示出表面形态显微照片602-606。显微照片602a、604a、及606a示出来自在曝露于腐蚀性环境之前的未经热处理的单式Al2O3制品的各个区域的表面形态特征。关于图4A-4E更加详细地描述了腐蚀性环境。图602b、604b、及606b示出在曝露于腐蚀性环境之后,分别来自显微照片602a、604a、及606a的相同区域的表面形态特征。如所示,由于腐蚀性环境曝露,单式Al2O3制品的表面形态中有明显的变化。
[0044] 图6B-6E示出在曝露于腐蚀性环境之前和之后的以不同温度热处理的单式Al2O3制品的表面型态显微照片。图6B示出在曝露于腐蚀性环境之前和之后的单式Al2O3制品的表面型态显微照片608-612。显微照片608a、610a、及612a示出来自在曝露于腐蚀性环境之前的以1200℃热处理的单式Al2O3制品的各个区域的表面型态特征。图608b、610b、及612b示出在曝露于腐蚀性环境之后,分别来自显微照片608a、610a、及612a的相同区域的表面型态特征。如所示,曝露于腐蚀性环境的以1200℃热处理的单式Al2O3制品没有因腐蚀性环境曝露而表面形态中表现出明显变化。
[0045] 图6C示出在曝露于腐蚀性环境之前和之后的单式Al2O3制品的表面形态显微照片614-618。显微照片614a、616a、及618a示出来自在曝露于腐蚀性环境之前的以1300℃热处理的单式Al2O3制品的各个区域的表面型态特征。图614b、616b、及618b示出在曝露于腐蚀性环境之后,分别来自显微照片614a、616a、及618a的相同区域的表面型态特征。如所示,曝露于腐蚀性环境的以1300℃热处理的单式Al2O3制品没有因腐蚀性环境曝露而在表面型态中表现出明显变化。
[0046] 图6D示出在曝露于腐蚀性环境之前和之后的单式Al2O3制品的表面型态显微照片620-624。显微照片620a、622a、及624a示出来自在曝露于腐蚀性环境之前的以1400℃热处理的单式Al2O3制品的各个区域的表面型态特征。图620b、622b、及624b示出在曝露于腐蚀性环境之后,分别来自显微照片620a、622a、及624a的相同区域的表面型态特征。如所示,曝露于腐蚀性环境的以1400℃热处理的单式Al2O3制品没有因腐蚀性环境曝露而在表面型态中表现出明显变化。
[0047] 图6E显示在曝露于腐蚀性环境的前和的后单式Al2O3制品的表面型态显微照片626-630。显微照片626a、628a、及630a示出来自在曝露于腐蚀性环境之前的以1500℃热处理的单式Al2O3制品的各个区域的表面型态特征。图626b、628b、及630b示出在曝露于腐蚀性环境之后,分别来自显微照片626a、628a、及630a的相同区域的表面型态特征。如所示,曝露于腐蚀性环境的以1500℃热处理的单式Al2O3制品没有因腐蚀性环境曝露而在表面型态中表现出明显变化。
[0048] 在上述的示例中,大于约1400℃的热处理可以改变UV腔室部件的表面形态。然而,曝露于腐蚀性环境不会改变表面形态。因此,在重复曝露于腐蚀性环境之后,可以保持经热处理的紫外线腔室部件的期望的表面形态。此外,UV腔室部件(诸如单式陶瓷或玻璃制品)的热处理可以减少或消除从UV腔室部件的表面产生微粒的机会。
[0049] 虽然前述内容针对本公开的实施例,但可在不偏离本公开的基本范围的情况下设计出本公开的其他和进一步的实施例,并且本公开的范围由所附权利要求书确定。
QQ群二维码
意见反馈