以硬质材料覆层的,由金属、硬质金属、金属陶瓷或陶瓷制成的体以及制造这种体的方法

申请号 CN201280059368.4 申请日 2012-11-28 公开(公告)号 CN103987874B 公开(公告)日 2016-11-23
申请人 弗朗霍夫应用科学研究促进协会; 发明人 因戈尔夫·恩德勒; 塞巴斯蒂安·斯科尔茨;
摘要 本 发明 的主题是一种以硬质材料覆层的,由金属、硬质金属、 金属陶瓷 或陶瓷制成的体,其以TiSiCN 复合材料 层或含有至少一个TiSiCN复合材料层的多层层体系覆层,其中,根据本发明,TiSiCN复合材料层是借助热 化学气相沉积 方法而不附加 等离子体 激发地制造的纳米复合材料层,其含有由带有在5nm和150nm之间的微晶尺寸的TiCxN1‑x组成的 纳米晶 相以及由非晶的SiCxNy组成的第二相。根据本发明的层的突出之处在于高硬度、高 氧 化耐受性和 温度 耐受性以及高粘附性。为了制造这种TiSiCN纳米复合材料层,本发明包含一种方法,其中,该层在含有一种或多种卤化 钛 、一种或多种含 硅 前体、氢、以及带有 碳 原子 和氮原子的 反应性 化合物和/或氮化合物和/或碳氢化合物和/或惰性气体的气体混合物中通 过热 化学气相沉积工艺在700℃和1100℃之间的温度并且在10Pa和101.3kPa之间的压 力 下不附加等离子体激发地沉积,其中,卤化钛和含硅前体的摩尔比例选择为,使得在气体混合物中Si与Ti的原子比例大于1。根据本发明的方法使得在工业条件下也能够成本低廉地生产这种类型的覆层。
权利要求

1.一种以硬质材料覆层的体,所述体由金属、硬质金属、金属陶瓷或陶瓷制成,所述体以TiSiCN复合材料层或含有至少一个TiSiCN复合材料层的多层层体系覆层,其特征在于,所述TiSiCN复合材料层是借助热化学气相沉积方法而不附加等离子体激发地制造的纳米复合材料层,其具有小于1原子%的卤素含量以及小于4原子%的含量,所述纳米复合材料层含有由带有在5nm和150nm之间的微晶尺寸的TiCxN1-x组成的纳米晶相,其中0.1≤x≤
0.99,以及由非晶的SiCxNy组成的第二相。
2.根据权利要求1所述的以硬质材料覆层的体,其特征在于,含有60质量%到99质量%份额的由TiCxN1-x组成的所述纳米晶相以及1质量%到40质量%份额的所述非晶的SiCxNy相。
3.根据权利要求1所述的以硬质材料覆层的体,其特征在于,在所述纳米复合材料层中含有带有0.1≤x≤0.95并且0.05≤y≤0.9的所述非晶的SiCxNy相。
4.根据权利要求1所述的以硬质材料覆层的体,其特征在于,所述TiSiCN复合材料层的含量为大于8原子%。
5.根据权利要求1所述的以硬质材料覆层的体,其特征在于,所述TiSiCN纳米复合材料层含有至多5质量%的非晶碳作为另外的组分。
6.根据权利要求1所述的以硬质材料覆层的体,其特征在于,所述TiSiCN纳米复合材料层由带有不同的/比例的TiSiCN单层组成。
7.根据权利要求1所述的以硬质材料覆层的体,其特征在于,所述TiSiCN纳米复合材料层在硅含量和钛含量方面具有梯度。
8.根据权利要求1所述的以硬质材料覆层的体,其特征在于,在多层层体系中,所述TiSiCN纳米复合材料层与一个或多个覆盖层和/或接合基材体的接合层组合,其中,这些层由Ti、Hf、Zr、Cr和/或Al的一种或多种氮化物、碳化物、碳氮化物、氮氧化物、碳氧化物、碳氮氧化物、氧化物或者由带有这些元素的混合相组成。
9.一种用于制造根据权利要求1所述的以硬质材料覆层的体的方法,所述体由金属、硬质金属、金属陶瓷或陶瓷制成,所述体以TiSiCN复合材料层或含有至少一个TiSiCN复合材料层的多层层体系覆层,其中,所述TiSiCN复合材料层是纳米复合材料层,其具有小于1原子%的卤素含量以及小于4原子%的氧含量,所述纳米复合材料层含有由带有在5nm和
150nm之间的微晶尺寸的TiCxN1-x组成的纳米晶相,其中0.1≤x≤0.99,以及由非晶的SiCxNy组成的第二相,其特征在于,所述TiSiCN纳米复合材料层在含有一种或多种卤化钛、一种或多种含硅前体、氢、以及作为带有碳原子和氮原子的反应性化合物的乙腈的气体混合物中,通过热化学气相沉积工艺在700℃和1100℃之间的温度并且在10Pa和101.3kPa之间的压下不附加等离子体激发地沉积到所述体上,其中,所述卤化钛和所述含硅前体的摩尔比例选择为,使得在所述气体混合物中Si与Ti的原子比例大于1。
10.根据权利要求9所述的方法,其特征在于,所述气体混合物额外地混入氮化合物和/或碳氢化合物和/或惰性气体。
11.根据权利要求10所述的方法,其特征在于,使用N2和/或NH3作为氮化合物并且使用C2H4和/或C2H2作为碳氢化合物。

说明书全文

以硬质材料覆层的,由金属、硬质金属、金属陶瓷或陶瓷制成

的体以及制造这种体的方法

技术领域

[0001] 本发明涉及一种以硬质材料覆层的,由金属、硬质金属、金属陶瓷或陶瓷制成的体,其以TiSiCN层或含有至少一个TiSiCN层的层体系覆层,并且涉及一种制造这种体的方法。在体上产生的根据本发明的硬质材料层的突出之处在于高硬度、高化耐受性和温度耐受性以及高粘附性,并且能作为防磨损层而在许多硬质金属工具和陶瓷工具中得到采用。

背景技术

[0002] 如今,许多硬质金属工具和陶瓷工具具有防磨损覆层,其决定性地提高了使用寿命。通过这些防磨损覆层的特殊的特性,例如高硬度、良好的氧化耐受性和温度耐受性保护了工具并且显著提高了效率。
[0003] 因此,尤其公知的是基于Ti的硬质材料层,例如TiN和TiCN。然而这类硬质材料层不具有足够的氧化耐受性,从而在切屑处理时由于在切割棱边上的高温而不能不加冷却润滑剂地采用这些硬质材料层。
[0004] 这些层的氧化耐受性和硬度可以通过掺入其他元素(例如)改善。一个途径是开发含硅的纳米复合材料层,其由纳米晶的TiCN相和非晶的含硅的相所组成。
[0005] Ti-Si-C-N体系的复合材料或纳米复合材料已经可以通过不同的物理气相沉积等离子体增强化学气相沉积方法来沉积。这些层的突出之处在于高硬度和减小的摩擦值(参见J.-H.Jeon,S.R.Choi,W.S.Chung,K.H.Kim,Surface&Coatings Technology(表面与涂层技术)188-189(2004)415以及R.Wei,C.Rincon,E.Langa,Journal of Vacuum Science and Technology(真空科学与技术)A28(2010)1126)。
[0006] 在PVD(物理气相沉积)技术中使用磁控溅射方法或电弧工艺,如在DE3811907C1、WO2008/130316A1中以及由J.-H.Jeon,S.R.Choi,W.S.Chung,K.H.Kim在Surface&Coatings Technology188-189(2004)415中所描述的那样。通过使用等离子体增强化学气相沉积(PECVD)同样可以制造带有或没有纳米复合材料结构的TiSiCN层(参见D.Ma,S.Ma,H.Dong,K.Xu,T.Bell,Thin Solid Films(固体薄膜)496(2006)438以及P.Jedrzeyowski,J.E,Klemberg-Sapieha,L.Martinu,Surface&Coatings Technology188-189(2004)371)。借助PECVD制造的TiSiCN纳米复合材料层具有与PVD层近似的高硬度和特性。
[0007] 迄今,对于借助热化学气相沉积(CVD)制造Ti-Si-C-N体系的硬质材料层仅给出了少量的试验。Kuo等人在三篇科学出版物中报告了与之相关的研究(参见D.-H.Kuo,K.-W.Huang,Thin Solid Films394(2001)72和D.-H.Kuo,K.-W.Huang,Thin Solid Films394(2001)81以及D.-H.Kuo,W.-C.Liao,Thin Solid Films419(2002)11)。但是,在直至800℃的温度仅能够制造带有小于8原子%的含量的TiSiCN复合材料覆层。晶相是TiN或TiN0.3而不涉及TiCxN1-x。在800℃和1100℃之间的温度不产生复合材料层,而是产生带有在10GPa和27.5GPa之间的硬度的单相(Ti,Si)(C,N)层。也就是说,这些层的硬度相对以上所提到的借助PVD方法和PECVD方法制造的超硬的纳米复合材料层是相对较小的。
[0008] 由US2008/0261058A1还已经公知了一种层,其由TiC、TiN或Ti(C,N)以及合金元素Si、Cr、V组成。该层要么由带有合金元素的晶体混合相组成,要么由两个或多个相形成的复合材料层组成。在此,一个相以在微米范围中的TiCN晶粒的形式存在,并且其他相由合金元素Si、Cr、V的氮化物和碳化物所组成。
[0009] 在所介绍的复合材料层中缺点在于,其仅具有微小的硬度以及不足够的氧化耐受性。

发明内容

[0010] 本发明的任务在于,针对由金属、硬质金属、金属陶瓷或陶瓷制成的体开发一种层体系,该层体系是单层的或多层的并且含有至少一个TiSiCN硬质材料层,其突出之处在于高硬度、高的氧化耐受性和温度耐受性以及高粘附性。在该任务中还包括开发一种方法,其使得在工业条件下也能够成本低廉地生产这种类型的覆层。
[0011] 这个任务通过权利要求的特征解决,其中,本发明还在“和-关系(UND-Verknüpfung)”的意义上包含各个从属权利的组合。
[0012] 本发明的主题是以硬质材料覆层的,由金属、硬质金属、金属陶瓷或陶瓷制成的体,其以TiSiCN复合材料层或含有至少一个TiSiCN复合材料层的多层层体系覆层,其中,TiSiCN复合材料层根据本发明是借助热化学气相沉积方法而不附加等离子体激发地制造的纳米复合材料层,其含有由带有在5nm和150nm之间的微晶尺寸的TiCxN1-x组成的纳米晶相以及由非晶的SiCxNy组成的第二相。
[0013] 在此,含有60质量%到99质量%份额的由TiCxN1-x组成的纳米晶相以及1质量%到40质量%份额的非晶的SiCxNy相。
[0014] 纳米晶相TiCxN1-x的组成在0.1≤x≤0.99的范围中,并且非晶的SiCxNy相的组成在0.1≤x≤0.95并且0.05≤y≤0.9的范围中。
[0015] TiSiCN纳米复合材料层的碳含量为优选大于8原子%。
[0016] 根据本发明,TiSiCN纳米复合材料层可以含有至多5质量%的非晶碳作为另外的组分。
[0017] 根据本发明,TiSiCN纳米复合材料层具有优选小于1原子%的卤素含量以及小于4原子%的氧含量。
[0018] 根据本发明,TiSiCN纳米复合材料层能够由带有不同的/硅比例的TiSiCN单层组成和/或在硅含量和钛含量方面具有梯度。
[0019] 根据本发明的其他特征,在多层层体系中,TiSiCN纳米复合材料层可以与一个或多个覆盖层和/或接合基材体的接合层组合,其中,这些层由Ti、Hf、Zr、Cr和/或Al的一种或多种氮化物、碳化物、碳氮化物、氮氧化物、碳氧化物、碳氮氧化物、氧化物或者由带有这些元素的混合相组成。
[0020] 借助热化学气相沉积制造的根据本发明的、由TiCxN1-x组成的纳米晶相与非晶的SiCxNy相的复合物是新颖的组合。通过组合这两种相发生了协同效应,其导致出乎意料地非常良好的层特性,即,高粘附性、高氧化耐受性和温度耐受性以及直至超过4000HV[0.01]的高硬度。
[0021] 为了制造根据本发明的TiSiCN纳米复合材料层,本发明包含一种方法,其中,层在含有一种或多种卤化钛、一种或多种含硅前体、氢、以及带有碳原子和氮原子的反应性化合物和/或氮化合物和/或碳氢化合物和/或惰性气体的气体混合物中通过热化学气相沉积工艺在700℃和1100℃之间的温度并且在10Pa和101.3kPa之间的压下不附加等离子体激发地沉积,其中,卤化钛和含硅前体的摩尔比例选择为,使得在气体混合物中Si与Ti的原子比例大于1。
[0022] 在此,优选可以使用一种或多种腈(优选乙腈)或胺作为带有碳原子和氮原子的反应性化合物。
[0023] 根据本发明的层相对于借助PVD制造的层的优点在于更高的粘附性。在使用时另一个明显的优点在于这种层包含在更复杂的、多层的CVD层体系中。
[0024] 相对于在现有技术中所提到的等离子体增强化学气相沉积(PECVD),热化学气相沉积方法更简单的且在工业中建立巩固的方法。PECVD方法在工具覆层中(除了针对制造硬的碳层之外)是不起任何作用的。PECVD层也达不到借助热化学气相沉积制造的层的高粘附性。附图说明
[0025] 以下以实施例和附图详细阐述本发明。在附图中:
[0026] 图1示出根据实施例1的、借助CVD制造的TiSiCN纳米复合材料层的X-射线衍射图;
[0027] 图2示出根据实施例3的、由两个TiN层(C)和(B)以及TiSiCN纳米复合材料层(A)组成的层体系的横断面的REM(扫描电镜)照片。

具体实施方式

[0028] 示例1
[0029] 在以5μm厚的TiN/TiCN/TiN层体系预覆层的WC/Co硬质合金的转位式刀片上,TiSiCN纳米复合材料层借助根据本发明的热化学气相沉积方法沉积为覆盖层。
[0030] 为此,为了沉积TiSiCN纳米复合材料层,把4.2ml/min的TiCl4、20.4ml/min的SiCl4、7.9ml/min的乙腈(CH3CN)和2400ml/min的氢的气体混合物在800℃和6kPa下导入到带有75mm的内直径的平的热壁型CVD反应器中。在120分钟的覆层时间之后显现出具有4.3μm的层厚度的灰色涂层。
[0031] 在以掠入射施行的X射线薄层分析中仅发现了晶体的TiCxN1-x(参见图1中的X-射线衍射图)。与在实施例3中施行的XPS分析类似地,硅包含在第二、非晶的SiCxNy相中。TiCxN1-x的纳米晶相的平均晶粒尺寸借助里特沃尔德分析(Rietveld-Analyse)确定为19±
0.4nm。
[0032] 借助于WDX的元素分析获得以下元素含量:
[0033] 36.86原子%Ti、
[0034] 11.74原子%Si、
[0035] 27.39原子%C、
[0036] 20.82原子%N、
[0037] 0.39原子%Cl以及
[0038] 2.80原子%O。
[0039] 针对这种TiSiCN纳米复合材料层测得4080HV[0.01]的微硬度。
[0040] 示例2
[0041] 在以1μm TiN和3μm TiCN预覆层的WC/Co转位式刀片上,首先施加带有0.5μm厚度的另一TiN层,随后施加根据本发明的TiSiCN纳米复合材料层。
[0042] 为此,把由8.3ml/min的TiCl4、10ml/min的Si2Cl6、10.6ml/min的CH3CN和2400ml/min的氢所组成的气体混合物在850℃和6kPa下导入到示例1中提到的CVD反应器中。在90分钟的覆层时间之后获得具有7.6μm的层厚度的灰色涂层。
[0043] 在以掠入射施行的X射线薄层分析中与示例1的情况一样仅发现了晶体的TiCxN1-x。与在实施例3中施行的XPS分析类似地,硅包含在第二、非晶的SiCxNy相中。借助里特沃尔德分析,获得了纳米晶的TiCxN1-x相的39±2nm的平均晶粒尺寸。
[0044] WDX分析获得以下元素含量
[0045] 41.70原子%Ti、
[0046] 4.3原子%Si、
[0047] 28.07原子%C、
[0048] 23.15原子%N、
[0049] 0.01原子%Cl以及
[0050] 2.77原子%O。
[0051] 针对这种TiSiCN纳米复合材料层测得3840HV[0.01]的微硬度。
[0052] 示例3
[0053] 在以3μm的TiN预覆层的WC/Co转位式刀片上,首先施加带有0.5μm厚度的另一TiN层,随后施加根据本发明的由TiSiCN组成的纳米复合材料层。
[0054] 为此,把由4.2ml/min的TiCl4、10ml/min的Si2Cl6、10.6ml/min的CH3CN和2400ml/min的氢所组成的气体混合物在850℃和6kPa下导入到示例1中提到的CVD反应器中。在90分钟的覆层时间之后获得具有3.5μm的层厚度的灰色涂层。
[0055] 在以掠入射施行的X射线薄层分析中与示例1的情况一样仅发现了晶体的TiCxN1-x。通过X射线不能检测到晶体的含硅相。然而通过TiSiCN层的XPS分析,根据评定Si2p谱图结果在101.8eV下明显地检测到了Si-N键并且在100.7eV下明显地检测到了Si-C键,这表明了非晶的SiCxNy相的存在。
[0056] TiCxN1-x的纳米晶相的平均晶粒尺寸借助里特沃尔德分析确定,并且获得的值为12±4nm。由在图2中的横断面可以看出纳米复合结构。TiSiCN覆盖层(A)表现出纳米复合结构,其中,较亮的纳米晶的TiCxN1-x微晶嵌入到较暗的非晶基体中。在TiSiCN覆盖层以下可以看到微晶接合层TiN(C)和(B)。
[0057] TiSiCN覆盖层的WDX分析获得以下元素含量:
[0058] 32.75原子%Ti、
[0059] 12.72原子%Si、
[0060] 27.15原子%C、
[0061] 23.62原子%N、
[0062] 0.51原子%Cl以及
[0063] 3.25原子%O。
[0064] 针对这种TiSiCN纳米复合材料层测得3610HV[0.01]的微硬度。
QQ群二维码
意见反馈