低热渗透、粘性气凝胶的低温系统

申请号 CN94106468.9 申请日 1994-06-09 公开(公告)号 CN1098996C 公开(公告)日 2003-01-15
申请人 普莱克斯技术有限公司; 发明人 V·E·堡格斯滕; J·诺塔罗; R·B·马扎雷拉; C·F·戈茨曼;
摘要 一个包括以下部分的低热渗透低温系统: 低温 流体 、外侧面向并直接或间接暴露于该低温流体且其内侧背向该低温流体的第一薄层、与第一薄层相隔一定空间的第二薄层;在第一薄层第二薄层之间至少有一 块 或一层粘性气凝胶。粘性气凝胶周围的气体环境压 力 不高于250,000微米汞柱。另一方面,至少一个薄层是柔性的,以将外部负荷至少部分传递到粘性气凝胶,再传递到另一个薄层。
权利要求

1.包括以下部分的低热渗透低温系统:
(a)低温流体(14);
(b)外侧面向并直接或间接暴露于所述低温流体、内侧背向所述低 温流体的第一薄层(12);
(c)与所述第一薄层的所述内侧相隔一定空间的第二薄层(16),所 述第二薄层的内侧面向所述第一薄层,其外侧背向所述第一薄层;
(d)由所述第一薄层的所述内侧延伸至所述第二薄层的所述内侧 的至少一或一层粘性气凝胶(18,20,22),其密度为约20-约160 千克/立方米;和
(e)围绕所述气凝胶的气体环境,其压为约1.3至33.3kPa(约 10,000至约250,000微米汞柱)。
2.按权利要求1的系统,其中用于所述第一和第二薄层(12,16) 之间的较冷区域中的所述气凝胶比用于所述第一和第二薄层之间的较 暖区域中的所述气凝胶有更大孔径。
3.按权利要求1或2的系统,其中用于所述第一和第二薄层(12, 16)之间的较冷区域中的所述气凝胶比用于所述第一和第二薄层之间 的较暖区域中的所述气凝胶有更低的密度。
4.按上述权利要求中任何一项的系统,进一步包括围绕所述气凝 胶的一个密闭的环境和吸附剂,在所述密闭环境的至少一部分冷却到 低温温度时,该吸附剂吸附所述密闭环境中的气体,从而降低所述环 境中的压力,并进而降低穿过所述气凝胶的传热速度。
5.按上述权利要求中任何一项的系统,其中所述气凝胶被包含在 一个气体环境中,该气体环境包括在围绕所述气凝胶的气体环境压力 下导热率至少比空气低25%的一种气体或多种气体混合物,从而使穿 过所述气凝胶的传热速度低于包含在由空气构成的气体环境时的传热 速度。
6.按上述权利要求中任何一项的系统,其中所述气凝胶被包含在 一个由一种气体或多种气体混合物构成的气体环境中,所述气体或气 体混合物在所述低温流体的温度下冷凝。
7.按上述权利要求中任何一项的系统,其中所述气凝胶能够将外 部负荷从一个所述薄层(12,16)传递到另一个所述薄层。
8.按权利要求1至6中任何一项的系统,其中至少一个所述薄层 (12,16)是柔性的,以便将外部负荷传递到所述气凝胶,并且所述气 凝胶能够将加在其上的负荷至少部分地从一个薄层传递到另一个薄 层。
9.按上述权利要求中任何一项的系统,进一步包括在所述第一和 第二薄层(12,16)之间有局部负荷支撑装置(26)。
10.按上述权利要求中任何一项的系统,进一步包括在所述第一 和第二薄层(12,16)之间至少有一个辐射防护片(24)。
11.按上述权利要求中任何一项的系统,其中所述气凝胶形式选 自:板、块、无序片、整齐排列的片、饼、压缩的粉末、前几种形式 的各种组合或前几种中任意一种与粉末的组合。
12.按上述权利要求中任何一项的系统,其中所述薄层(12,16) 提供一个围绕所述气凝胶的密闭空间,以避免空气和湿气的进入,同时 在搬运期间起保护作用。
13.按上述权利要求中任何一项的系统,进一步包括在第二薄层 (16)的外侧加一保护层(17)或绝热层
14.按上述权利要求中任何一项的系统,其中所述气凝胶选自气凝胶、氧化气凝胶、氧化锆气凝胶、气凝胶、气凝胶、 钨气凝胶、气凝胶、由间苯二酚与甲溶胶-凝胶聚合制备的气凝 胶、由三聚氰胺与甲醛溶胶-凝胶聚合制备的气凝胶。
15.按权利要求14的系统,其中所述氧化硅气凝胶的有效孔径为 约0.01-约0.4微米。
16.按权利要求15的系统,其中所述氧化硅气凝胶的有效孔径为 约0.02-约0.1微米。
17.按权利要求14的系统,其中所述氧化硅气凝胶的密度为约 60-约100千克/立方米。
18.在低热渗透低温系统使用至少一块或一层粘性气凝胶的方 法,所述方法包括:
(a)提供第一薄层(12),其外侧面向并直接或间接暴露于所述低温 流体(14),其内侧背向所述低温流体;
(b)提供第二薄层(16),与所述第一薄层的所述内侧相隔一定空 间,所述第二薄层的内侧面向所述第一薄层,其外侧背向所述第一薄 层;
(c)在所述第一薄层的所述内侧和所述第二薄层的所述内侧之间 提供至少一块或一层粘性气凝胶(18,20,22),其密度为约20-约160 千克/立方米;并且
(d)围绕所述气凝胶提供一个气体环境,其压力为约1.3至 33.3kPa(约10,000至约250,000微米汞柱)。

说明书全文

发明涉及在低温贮存或输送流体的低热渗透系统。

在低温温度下的流体(即低温流体)的贮存和输送过程中,因为 温差大,故传热驱动非常高,因此提供一个传热速率非常低的系 统是非常重要的,也就是说,从暴露于大气环境的表面向与低温温度 流体接触的表面的热渗透要非常低。而热量渗透进低温流体是非常 不经济和不希望发生的,这是因为得到低温流体,尤其是液化气体形 成低温流体需要消耗很大的能量

低温的范围在许多文献中都作了说明,在本文中为0K-172K。 在高于低温范围的温度下能够非常满意地运行的绝热系统在低温范 围内通常不能满意地运行。在温度低于点温度时,绝热系统 中的内部蒸汽压很低,使环境中的湿汽进入系统内部的趋势很高, 从而使系统的绝热质量恶化。

在贮存和输送低温流体的系统中,通常是通过使用低气压的空 间,即将空气或气体减少到一定程度的空间,以降低由气体传导引 起的传热,达到降低热渗透。其结构须随着该空间中的负压真空 度的变化而变化。真空度越高,需要越强和越厚的器壁和结构,以承 受真空空间和大气之间的压差。为了降低辐射传热,该空间通常至 少部分填充辐射防护物粉末或固体和空隙的基(matrix of solids and voids)。为了使穿过该空间的传热速度达到可以接 受的程度,一般仍然需要高真空。基块或粉末通常会由于其固体部 分的传导对穿过该空间的传热有所贡献。

所需要的是在不需要高真空和高强度结构的情况下具有低热渗 透的贮存和输送低温流体的系统。本发明满足了这一需要。本发明 使用粘性气凝胶(coherent-aerogel)得到低的传热速度,优选在气 体环境压力高于以前用其它材料的情况下使用。粘性气凝胶有固定 的形式,能够承受并传递负荷,使得在气凝胶周围的结构不需要承受 周围气氛产生的全部压力负荷,而能够通过气凝胶将该压力负荷从 一个外表面传递到另一表面,从而平衡周围气氛的压力负荷。

气凝胶是一种在胶中固体物质保持完整的情况下进行干燥得到 的无水胶。所产生的固体为无定型的晶格结构,具有超细的开放的 气孔,一般含有1-5%的固体物质。气凝胶有连续的多孔结构和相互 连接的直径为0.01微米的类胶粒或聚合链微结构。丰富的纳米级的 孔遍及胶体,构成了胶的体积的大部分.

以粘合的形式制备的无机气凝胶包括、氧化、氧化锆、 钨、气凝胶,是通过金属的烷氧化物水解和缩合制备的,例如: 四甲氧基硅烷在醇中形成一种醇凝胶,该醇凝胶在对醇为超临界的 条件下干燥醇,或在对代替醇的溶剂为超临界的条件下干燥,从而 形成一种粘性基体,即粘性气凝胶。另外,醇也可以用溶剂代替,该 溶剂可在超临界条件下抽提。目前也已用制备粘性气凝胶。

有机气凝胶包括间苯二酚-甲气凝胶,这是通过间苯二酚与 甲醛在性条件下溶胶-凝胶聚合形成的。典型的过程在USP4,402 ,927(1983年9月6日发布,申请人G.von Dardel)中作了描述,在此将 它作为参考文献。另一种有机气凝胶在USP5,086,085(1992年2月5 目发布,申请人R.W.Pekala,在此作为参考文献)中作了描述,它是 用三聚氰胺与甲醛溶胶-凝胶聚合引起pH变化,接着用超临界抽提的 方法制备的。代表性的密度为约100-约800千克/立方米。

述及的所有气凝胶都能够制成粘性气凝胶形式,都能够承受压 力负荷,且具有低密度,并在大气压力和负压特别是在低真空度下表 现出低的传热性。

气凝胶的使用形式有:板、块、无序片、整齐排列的片、饼、 压缩的粉末,前几种形式的各种组合或前几种的任意几种与粉末的 组合。

本发明目的是提供包括以下部分的低热渗透的低温系统:

(a)低温流体;

(b)外侧面向并直接或间接暴露于低温流体、内侧背向低温流 体的第一薄层;

(c)与第一薄层内侧相隔一定空间且内侧面向第一薄层、外侧 背向第一薄层的第二薄层,和

(d)由第一薄层的内侧延伸至第二薄层的内侧的至少一层粘性 气凝胶。

另一方面,本发明还包括在粘性气凝胶周围有压力为约2000-约 100,000微米汞柱的气体环境。

本发明的再一方面,至少一个薄层是柔性的,以使外部的负荷, 如大气所产生的负荷,至少一部分传递到粘性气凝胶上,并且该粘 性气凝胶能够将至少一部分加在它上面的负荷从一个薄层传递到另 一个薄层。

图1是采用本发明的低温流体容器的剖面图。

图2是根据本发明的一种形式的图1所示的容器沿2-2线的剖面 图。

图3是根据本发明的另一种形式的图1所示容器沿2-2线的剖面 图。

图4是根据本发明的再一种形式的图1所示容器沿2-2线的剖面 图。

图5是几种材料在分别为295K和77K的两个表面间的空气环境 下对应于不同压力的表观导热率图。曲线A对应于密度为96Kg/立方 米的粘性氧化硅气凝胶,是在两个各为1.27cm厚的相接触层上测量 的。曲线B在两个相似的粘性氧化硅气胶接触层上测量,但在两个 层的外表面侧和两层之间各有一层反射铝箔。曲线C对应于堆积密 度为88千克/立方米的珍珠岩粉末。曲线D对应于堆积密度为16千克 /立方米的玻璃纤维(Owens-Corning制,牌号为PF-210)。曲线E是空 气的计算值,包括相距2.54cm的两个表面之间的对流效应,每一表面 的辐射率为0.074。

本发明将按照用于图1所示的低温流体贮存容器的情况进行描 述。类似地,本发明也能够用于其他的容器以封闭或导流低温流体。 贮存容器10有一个第一薄层12,该薄层的外侧面向低温流体14,而内 侧背向低温流体14。通常第一薄层12直接暴露于低温流体,即与低 温流体接触并容纳该低温流体。第一薄层一般用金属板制成,它不 透低温流体并能够承受低温流体产生的负荷。另一方面,第一薄层 也可以间接暴露于低温流体,即第一薄层的外侧与另一个与低温流 体直接接触并容纳低温流体的表面(图中未示出)接触。当容器容纳 低温流体时,第一薄层的温度接近于低温流体的温度。

第二薄层16与第一薄屋12内侧相隔一定空间,该薄层的内侧面 向第一薄层12的内侧,而外侧背向第一薄层12。第二薄层的外侧一 般直接暴露于大气。在第二薄层外侧也可任选加一个保护层17,以 避免物理损伤并能减小热渗透速度。合适的材料为有机泡沫材料, 如聚苯乙烯或聚亚酯泡沫。从第一薄层12的内侧到第二薄层16的 内侧,即两个薄层之间的空间,至少有一个粘性气凝胶层或块。也可 以使用较多的层、块、片、鳞片或无序的片。第一薄层和第二薄层 具有密封粘性气凝胶,以提供一个密闭的空间(该空间可以抽空空气 或其它气体)及在搬运过程中保护粘性气凝胶的多种功能。本发明 通常使用气凝胶,但优选用氧化硅气凝胶,这是因为氧化硅气凝胶 的基体二氧化硅是四面体结构,易于形成强的分子键,并且是不燃性 的。

粘性氧化硅气凝胶的密度为约20-160千克/立方米,用于本发明 系统的优选密度为60-100千克/立方米。平均孔径从约0.01-约0.4 微米,优选约0.02-约0.1微米。孔径越大一般对应的密度越低。这 里所说的孔径为该粘性材料中孔隙的两壁之间的平均距离。

在一个低温装置的单一低热渗透系统中,粘性气凝胶可以不同 孔径和不同密度的多层形式使用。当系统处于低温状态时,在系统 内靠近较冷表面的气体环境中的气体分子的平均自由程比靠近较暖 表面的气体分子的平均自由程要长。因此,在系统中在靠近较冷的 表面用具有较大孔径的粘性气凝胶较之在靠近较暖表面用具有较小 孔径的气凝胶,可获得相似甚至更低的穿过粘性气凝胶的表观导热 率。为了减少在如图2所示的指定用途中所用气凝胶材料的重量, 在温度较低的层20或临近于第一薄层12的各层使用低密度和大孔径 的材料,而在温度较高的层22或临近于第二薄层16的各层使用高密 度和小孔径的材料具有一定的优势。这样将会降低系统的重量和成 本,而又使系统保持了低的热渗透。

如图3所示,为了减少系统中穿过粘性气凝胶的辐射传热,可以 在气凝胶层之间和面对第一和第二薄层的气凝胶表面上使用一种辐 射防护层24(反射箔,如铝箔);或者也可以通过化学或蒸汽沉积的方 法将一种反射膜加在粘性气凝胶层的表面;或者也可以在气凝胶材 料的配制中加入不透明的反射鳞片,如铝或鳞片(未示出)。

粘性气凝胶能够承受和传递外部所加的负荷,尤其是压力负荷, 这是很有利的。为了改善粘性气凝胶的强度,在粘性气凝胶的制备 过程中可以加入增强纤维,如金属纤维、碳纤维和聚酯纤维。在本 发明的系统中,一个或两个薄层含有柔性材料,柔性材料能够通过将 所承受的至少一部分负荷转移到粘性气凝胶上而承受外部施加的负 荷,而粘性气凝胶能够接着将该负荷至少部分转移到另一个薄层, 如果后一薄层不承受和容纳低温流体,则该负荷进一步转移到接触 和支撑后一薄层并容纳低温流体的表面。柔性薄层可以是具有泡沫、 塑料、优选纤维增强的塑料保护层的薄金属,轻材料。该薄层最好 不透水蒸汽和其它自然气。

如图4所示,为了提高粘性气凝胶承受压力负荷的能力,穿过在 第一薄层和第二薄层之间的气凝胶间隔地增设若干局部支撑装置, 如支架或支撑杆26。另外,气凝胶也可以装在若干横截面为六方形 的小室中(未示出),室壁由第一薄层延至第二薄层。另外,由于粘性 气凝胶具有承受负荷的能力,它本身也可以用作薄层之间的局部支 撑装置26,否则在薄层之间有未填充的空间或装有绝热粉末(如珍珠 岩粉末)的空间。

表I所示的是温度保持在如表所示的数值的表面之间的两个各 为1.27cm厚的密度为96千克/立方米粘性氧化硅气凝胶接触层在不 同的负压下测得的表观导热率值。该粘性氧化硅气凝胶材料是根据 加拿大专利1,288,313(1991年9月3日发布,申请人A.J.Hunt等,在此 作为参考文献)中所述的方法制备的,该方法包括烷氧基硅( silicon alkoxide)在乙醇中水解并缩聚得到醇凝胶,然后用液体 二氧化碳代替乙醇并在超临界条件下抽提二氧化碳干燥醇凝胶。由 气体传导情况与室温下气体的性质、气体压力和材料孔径的函数关 系测得材料有效平均孔径为0.04微米。测得材料的密度为约96千克 /立方米。材料的负荷承受能力通过让一个层承受等于标准大气压 的压力负荷测定。材料压缩不明显,且仍保持粘性,表现出小的裂 纹,并与承受负荷之前表现出相同的导热率。

图5是从保持在约295K的一个表面到约77K的另一个表面之间的 几种材料所表现的表观导热率的对比。曲线A对应于上述两个各1. 27cm厚的粘性氧化硅气凝胶材料的接触层。曲线A表明,在760, 000微米汞柱的标准大气压力空气环境中,粘性氧化硅气凝胶的表观 导热率显著小于也在标准大气压下的其它材料的表观导热率。氧 化硅气凝胶的导热率随着密闭该气凝胶的空间的空气环境压力的降 低迅速下降,以至于在约250,000微米汞柱时,其导热率已经降低到 可以与在低得多的压力下的珍珠岩或玻璃纤维的导热率相媲美, 故在低温流体的低热渗透结构中被优选采用。氧化硅气凝胶的导热 率曲线在约100,000微米汞柱时开始进入水平段,当压力从约100, 000微米汞柱下降到约100微米汞柱时,曲线A水平段几乎为常数。曲 线A表明,在整个压力范围内其导热率显著地低于珍珠岩(曲线C)或 玻璃纤维(曲线D)的导热率(二者均处于100微米汞柱)。因此粘性氧 化硅气凝胶在100,000微米汞柱的压力时即具有更低的导热率,故 可用于低热渗透低温系统,比在100微米汞柱的压力下用珍珠岩或 玻璃纤维的系统具有更低的热渗透。粘性氧化硅气凝胶比珍珠岩或 玻璃纤维更优选用于低温系统,因为它在较高的压力下具有较高的 绝热性质,即比用珍珠岩或玻璃纤维时需要的真空度更低。

如图5所示,从标准大气压到约30微米汞柱的压力范围内,粘性 氧化硅气凝胶比珍珠岩或玻璃纤维有更低的导热率。然而,在压力 低于30微米汞柱时,珍珠岩和玻璃纤维的导热率低于没有辐射减少 装置的粘性氧化硅气凝胶。尽管如此,如曲线B所示,在压力低于30 微米汞柱时,每层的表面都加有反射片的各1.5英寸厚的两层粘性 氧化硅气凝胶层仍然表现出比珍珠岩和玻璃纤维都低的导热率。 因此,本发明的在低压环境中的粘性氧化硅气凝胶层的表面加有辐 射防护片的低温系统,比用玻璃纤维或珍珠岩的传统的系统具有更 低的热渗透。

通过在粘性氧化硅气凝胶周围建立一个压力低于约100,000微 米汞柱的空气或其它气体的环境,可以使从大气环境穿过本发明的 系统到低温流体的热渗透低。该气体环境的压力从约300-约100, 000微米汞柱、从约1000-约100,000微米汞柱、从约10,000-约100, 000微米汞柱尤其有吸引力,这是因为这些较高的压力更容易得到和 维持。在这些较高的压力范围下的系统比一般压力更低的用珍珠岩 和玻璃纤维的传统系统具有更多的优势。本发明与传统的系统相比 可以显著节约制造成本和维持成本,因传统系统需要在更低的压力 (即更高的真空度)下操作才能达到相同或具竞争力的热渗透速度。

粘性氧化硅气凝胶的表观导热率随气体环境压力的变化所表现 出的行为可望与所有的气凝胶类似,即在较高的压力下有比传统材 料更低的导热率。因此,在本发明中,如氧化硅气凝胶的情况一样, 各种气凝胶都可以使用。

粘性气凝胶在标准大气压力到中等负压下具有低的导热率的特 点使得不用真空而用其它的方法就可达到操作压力水平。可以用 要盛放的低温流体冷却系统结构从而使气凝胶周围的气体冷凝达到 所需的操作压力水平。例如,在粘性气凝胶周围的密闭环境中用二 氧化碳气代替空气。当该系统被低温流体(如液氧或液氮)冷却时, 即第一薄层和临近的粘性气凝胶的一部分冷却时,二氧化碳气体将 冷凝,从而降低了该气凝胶的气体环境的压力,并降低了穿过该气凝 胶的传热速度。类似地,当低温液体是氢或氦时,在该密闭系统中的 空气将冷凝,从而降低该气凝胶的气体环境的压力并降低了穿过该 气凝胶的传热速度。

另一种使粘性气凝胶周围的密闭环境压力降低的方法是在该环 境中装大量的在冷却到低温温度时能从该密闭环境吸附气体的材料。 这一降低压力的方法尤其适用于得到较高压力的场合。如上所述, 在这一较高的压力下本发明的低温系统具有低的热渗透。如图1所 示,当低温流体充满该容器时,装在贮存容器中凹进盛放低温流体的 空间的贮存库26中的分子筛材料将被冷却到低温温度。然后分子筛 材料将吸附气体,从而降低该粘性气凝胶周围密闭环境的压力。

在大气压力或在负压下降低气体环境中的粘性气凝胶的导热 率的再一种方法是在该气凝胶周围的环境中用导热率比空气低的气 体代替空气,如氩气、氙气、氪气、三氯氟甲烷,二氯二氟甲烷、溴、 二硫化碳、六氟化硫或它们的混合物。在导热压力下导热率至少比 空气低25%的一种气体或多种气体的混合物是有效的。

以上参考一些具体的实施方案对本发明进行了描述,但可以理 解的是本发明将包括在所附权利要求书范围内的所有更改和等效内 容。

                            表I 压力 微米汞柱   无辐射防   护片时   的导热率   w/mk,   295K-77K   有辐射防护片   时的导热率   w/mk,   295K-77K   无辐射防护片   时的导热率   w/mk,   330K-300K 7.5   0.00237 27   0.00192 28   0.00974 41   0.00346 43   0.00246 95   0.00298 200   0.00334 425   0.00351 550   0.00364 5000   0.00392   0.00384 31000   0.00432 80000   0.0107 83000   0.00497 84000   0.00502 228000   0.00650 243000   0.00675 470000   0.00853 743000   0.01022

QQ群二维码
意见反馈