具有增加的韧性的基于熔融的多晶多孔Al2O3本体及其用途

申请号 CN201480054462.X 申请日 2014-10-01 公开(公告)号 CN105592981B 公开(公告)日 2017-12-01
申请人 研磨剂与耐火品研究与开发中心C.A.R.R.D.有限公司; 发明人 R·孔茨; S·穆梅尔;
摘要 本 发明 涉及一种 温度 处理的多晶多孔Al2O3本体,其包含大于97重量%的α 氧 化 铝 ,总量小于3重量%的其它氧化物的 合金 化组分,5‑30体积%的宏观孔隙率,其中Al2O3本体由多个包括20‑100μm的微晶尺寸的Al2O3主晶体构成。
权利要求

1.熔融的多晶多孔Al2O3本体,包含大于97重量%的α氧化铝和总重量小于3重量%的其它氧化物的合金化组分,其中Al2O3本体包含多个具有20-100μm的微晶尺寸的Al2O3主晶体,且展示出具有5-30体积%的孔隙体积的宏观孔隙率,和20-60μm的平均孔隙直径和约100μm的最大孔隙直径,
其特征在于,
在主晶体的边界处,多晶Al2O3本体包含具有单个TiO2的集聚的外部相,其中外部相具有小于7μm的直径,且以点状方式或线状沿着主晶界分别分布。
2.根据权利要求1的Al2O3本体,
其特征在于,
外部相具有小于5μm的直径。
3.根据权利要求1或2的Al2O3本体,
其特征在于,
外部相除TiO2外还包含选自Cr2O3、Fe2O3、MgO、Na2O、NiO、ZnO、CoO、ZrO2、SiO2、MnO2或稀土氧化物中的其他氧化物的合金化组分。
4.根据权利要求1至2之一的Al2O3本体,
其特征在于,
其它氧化物的合金化组分的量小于1重量%。
5.根据权利要求1至2之一的Al2O3本体,
其特征在于,
Al2O3本体是磨粒,将其处理和定尺寸成限定的磨料粒度。
6.根据权利要求5的Al2O3本体,
其特征在于,
在根据FEPA的磨料粒度F24-F80中,磨粒具有小于1.75g/cm3的堆积密度
7.根据权利要求5的Al2O3本体,
其特征在于,
在根据FEPA的磨料粒度F24-F80中,磨粒具有小于1.70g/cm3,的堆积密度。
8.根据权利要求5的Al2O3本体,
其特征在于,
在根据FEPA的磨料粒度F24-F80中,磨粒具有小于1.65g/cm3的堆积密度。

说明书全文

具有增加的韧性的基于熔融的多晶多孔Al2O3本体及其

用途

[0001] 本发明涉及基于熔融氧化铝的多晶多孔Al2O3本体,涉及其制造方法及其用途,特别是在磨料中的用途。
[0002] 基于熔融氧化铝的磨粒,在文献中通常也称为刚玉,长时间是已知的,且目前仍属于用于机加工表面的最常用的材料。由于有多种待机加工的不同材料,例如木材、不锈钢、塑料、石头、陶瓷等,在过去已经开发出了分别匹配相应的应用和物理特性(已对相应情形进行了优化)的刚玉类型或特殊的刚玉。
[0003] 对此目的,可以选择不同的工艺,其中刚玉掺杂有其它氧化物和/ 或生产工艺有所变化,从而特别是改变磨粒的物理特征,和/或还对所得到的磨粒进行后处理,从而得到特定特征或从而强化它们。
[0004] WO2012/041421公开了一种多晶Al2O3本体,其通过在电弧炉中熔融氧化铝且然后倾出液体熔体产生。由此倾出流快速冷却,为此目的将液体熔体倾倒到两个冷辊子之间的间隙中,例如以相反方向旋转的辊子。为了增加冷却速度,另外将细粒氧化铝颗粒添加到倾出流中。
[0005] 随后以这种方式将所得的固体物质粉碎和通过筛分处理成磨料粒度。以这种方式获得了具有封闭的宏观孔隙率且由单独的主晶体构成的磨粒,单独的主晶体彼此连接并且包括20μm和100μm的微晶尺寸。包含确定的孔隙率和确定的多晶结构的这样的磨粒在用于研磨盘时特别具有优点。
[0006] EP-B-1339809描述了一种用于生产基于氧化铝的致密紧密的磨粒的方法及其在磨料中的用途,该磨料具有增加的韧性。由此,将成品磨粒进行800-1500℃的热后处理。
[0007] 从US-A-4157898也已知热后处理。于氧化条件下对含TiO2的刚玉进行退火,其中在还原条件下进行的熔化过程中由TiO2形成的低价氧化物在粒子表面上被氧化且形成钛-铝化合物,其包括四价钛且在磨粒的表面上实现蓝色着色。
[0008] 在两种较后情况下,对成品磨粒(对其复配从而为紧密和致密的) 进行热后处理,从而提高它们的磨粒韧性。在某些研磨操作的情形中,磨粒韧性的增加与研磨性能的增加相关。
[0009] 除了磨粒(对其复配从而为紧密和致密的且由极少的大的或单独的微晶构成),特别是在最近时间还已经开发了大量磨粒,对其复配 (compose)从而为微晶或多晶的,且其由多个较小的微晶构成,且具有基于晶态结构或仅其结构的高韧性。例如,EP-B-1595081描述了氧化铝氧化锆的生产,其中与氧化铝一起熔融氧化锆,然后将液体熔体尽快冷却,以便防止冷却时的组分偏析,因此ZrO2和Al2O3存在于产物中,从而在微晶结构中彼此相邻均匀分布。
[0010] 还可以通过化学或陶瓷方法获得类似的坚韧材料(对其也进行复配从而为微晶的),其中对细颗粒熔凝氧化铝或相应的原料(在生产过程由其得到Al2O3)进行加工以形成生坯,然后在1200-1600℃的温度烧结。例如,微晶烧结刚玉是EP-B-0152068或EP-A-0725045 的主题。
[0011] 过去,已经避免该微晶或多晶刚玉的热后处理,因为经验表明导致韧性的晶态结构响应于后热处理而维持损伤,这归因于晶体生长,或在氧化铝-氧化锆的情形中还归因于改性转变。
[0012] 因而,当前仅对于由极少的大微晶或单微晶构成的紧密和致密类型的刚玉已知成功的热后处理。
[0013] 由于巨大范围的待机加工的不同材料、表面和形状,以及由于对机加工过程本身的不同需要,不仅优选使用上述以示例性方式明确的刚玉类型,还具有使磨粒更好地适应某些研磨操作或特殊材料从而由此在机加工材料时进一步改善去除率或表面品质的需要。
[0014] 因此,本发明的任务是提供一种刚玉磨粒,其具有对特定研磨操作优化的特性曲线,且该曲线因此允许由其生产的磨料以及研磨效果的进一步优化。
[0015] 本发明的任务还是提供一种制造相应的刚玉磨粒的方法。
[0016] 通过提供基于熔融氧化铝的多晶多孔Al2O3本体解决了该问题,其包含大于97重量%的α氧化铝和总量小于3重量%的其它氧化物合金化组分。
[0017] Al2O3本体包括具有20-100μm的微晶尺寸的多个Al2O3主晶体且显示出宏观孔隙率,该宏观孔隙率具有5-30体积%的孔隙体积,20-60 μm的平均孔隙直径,以及约100μm的最大孔隙直径。在主晶体边界处,该多晶Al2O3本体显示单一外部相的集聚,其以点状方式分别分布或还沿着主晶体晶界的以线状分布。外部相具有小于7μm,优选小于 5μm的直径。
[0018] 在本发明的优选实施方案中,外部相包含TiO2和/或其它氧化物合金化组分,其选自Cr2O3、Fe2O3、MgO、Na2O、NiO、ZnO、CoO、ZrO2、 SiO2、MnO2或稀土的氧化物。
[0019] 通过包含少量TiO2和/或其它氧化物合金化组分的多晶Al2O3本体 (例如可按WO2012041421制成)的热后处理得到上述多晶Al2O3本体。
[0020] 根据本发明的基于多晶Al2O3本体的磨粒生产包括一系列工艺步骤,从在电弧炉中熔融至少97重量%的氧化铝和至多3重量%的其它氧化物合金化组分的混合物开始。在完全熔融该混合物后,以低于 80kg/min的恒定倾倒速率倾倒出液体熔体。当倾倒时,将细α氧化铝颗粒加入倾倒流中。以这种方式加速熔体的冷却。然后,通过将该熔体倒入金属板之间的狭窄间隙或通过以相反方向旋转的冷却辊,或者还可以通过倒出到冷却板上来进行熔体的完全冷却。在冷却后,多晶 Al2O3本体以粗片或板的形式存在,然后将其粉碎,并随后筛分到限定的磨料粒度。本发明的必要步骤是以这种方式获得的磨粒的后续回火 (tempering),在1000-1400℃的温度下持续5-60分钟。优选地,在1250℃下在回转窑中进行热后处理15分钟。
[0021] 作为在本发明的上下文中进行的试验的结果,发现在回火之前的成品磨料的先前粉碎和筛分对于根据本发明的磨粒的品质具有显著影响。因而已发现,即使在冷却后获得的粗片的回火和后续粉碎也导致磨粒特征的改善,但是所述改善远不如反向次序显著。粉碎后得到的磨粒的形状是立方的和状,但是其中由于基础Al2O3本体的宏观孔隙率,对于根据FEPA的磨料粒度F24-F80,成品磨粒显示出相对低的堆积密度,其小于1.75g/cm3,优选小于1.70g/cm3,更优选小于 1.65g/cm3。
[0022] 令人惊奇地是,现已发现,当基础产物包括少量外部氧化物作为合金化组分时,甚至在多晶多孔Al2O3本体的情形中,也可以借助于热后处理获得磨粒韧性的巨大增长,尽管其多晶结构和其孔隙率。在少量TiO2存在下该作用尤其显著和明显。
[0023] 除了TiO2,根据本发明的多晶Al2O3本体中还存在一小部分选自 Cr2O3、Fe2O3、MgO、Na2O、NiO、ZnO、CoO、ZrO2、SiO2、MnO2和/或稀土氧化物中的附加的氧化物的合金化组分,其中附加的合金化组分之和小于于3重量%,优选≤1重量%。然而,当外部相不包括TiO2时,也可以观察到不很明显的积极作用。
[0024] 另外,通过REM图像说明了本发明的特征,以图1-6对说明书附上这些图像。
[0025] 图1以1000倍放大倍数示出了根据本发明的多晶磨粒的抛光截面的扫描电子显微照片,
[0026] 图2以2000倍放大倍数示出了根据本发明的多晶磨粒的抛光截面的扫描电子显微照片,
[0027] 图3以1000倍放大倍数示出了比较例的抛光截面的扫描电子显微照片,[0028] 图4以1000倍放大倍数示出了比较例的抛光截面的扫描电子显微照片,[0029] 图5以100倍放大倍数示出了多晶磨粒的扫描电子显微照片,
[0030] 图6以150倍放大倍数示出了紧密致密单晶磨粒的扫描电子显微照片。
[0031] 在图1和2中能够将主晶体1的边界3标识为黑边区域,其围绕单个主晶体1。还通过增加性显现的单独浅色外部相2突出了晶界,在该情况下该外部相包含超过88重量%的TiO2(实施例4)。因而,外部相2的EDX分析导致88.6重量%的TiO2,0.7重量%的Na2O,0.1 重量%的MgO,0.1重量%的SiO2和10.5重量%的Al2O3的组合物。对于主晶体1,分析了99.5重量%的Al2O3,0.3重量%的SiO2和在每种情况下0.1重量%的CaO和TiO2。对于相界3,发现5.6重量%的Na2O,93.4 重量%的Al2O3,0.2重量%SiO2和0.8重量%的TiO2。可以在图像中标识的黑色区域是沿着主晶态边界形成的孔隙4。图2以2000倍放大倍数示出了磨粒的抛光截面,在该情况下,特别能够看到沿微晶边界3排列的含TiO2的外部相2。
[0032] 图3和4示出了穿过热处理之前的基础磨粒的截面。与图1或2 中所示的根据本发明的热后处理的磨粒相比,可以看出含钛外部相2 的量低得多,分隔物更粗,且分隔物的形状更像薄片。因此,认为热后处理的高温度导致扩散过程,这导致增大的分隔物和外部相2的更细的点状分布。还可看出,温度处理或扩散效应分别导致了相界3的厚度减小。
[0033] 在图5中可以100倍放大倍数看到根据本发明的多晶磨粒组合物,其包含尺寸为20-100μm并彼此连接的Al2O3主晶体。磨粒的裂隙表面说明了其在磨料的粘结剂基体中的良好嵌入与由此得到的良好研磨性能。
[0034] 与图5形成显著对比,在图6中可以150倍放大倍数看到传统的致密紧密磨粒,对其复配从而为单晶的且其具有相对光滑的表面,使得磨粒确实显示出高的磨粒强度,但它仅不良地嵌入于粘结剂基质中。
[0035] 为了评价磨粒的品质,有必要进行研磨试验。研磨试验是相对延续和时间密集的。由此,在磨料工业中,通常预先通过机械特征评价磨粒品质,可以更容易地得到该机械特征,且该机械特征可以在研磨试验充当后者行为的指示。在本工作的上下文中,通过在球磨机中球磨通过微粒分解(MKZ)确定磨粒的磨粒韧性。
[0036] 微粒分解(MKZ)
[0037] 为了测量磨粒分解,将10g(相应磨料粒度)的刚玉在填充有12 个钢球(直径15mm,重330-332g)的球磨机中以188转/分钟球磨预定的时间段。随后在筛分机(HaverEHL 200)中通过对应的细筛将球磨的磨粒进行筛分5分钟,所述细筛比对于对应的磨粒粒度确定的底筛细2级,并平衡掉细的部分。MKZ值遵从如下:
[0038]
[0039] 在下面的表1中,表征了多种选定的刚玉,然后在表2中总结了其微粒分解和堆积密度,并与根据本发明的磨粒进行对比。使用来自 Treibacher Schleifmittel GmbH的刚玉用于试验。为了比较,除了多晶刚玉外,还使用在分批过程中熔融的块状且致密的熔凝铝氧化物 (图6)。在1250℃下在回转炉中对于多晶刚玉进行温度处理15分钟。
[0040] 表1
[0041]
[0042] 表2
[0043]
[0044] 对于块状且致密的熔凝刚玉(实施例1和2),低的MKZ值显示出高韧性和磨粒强度,相比白色熔凝氧化铝(实施例1)其对于合金化的刚玉(实施例2)明显更高。在与实施例2相同的化学组合物中,多晶多孔刚玉(实施例3)的MKZ值明显更高。响应于相应的应用,该材料仍然表现出好的研磨性能,其还特别归因于这样的事实:由于其多孔组合物,磨粒可很好地嵌入于磨料(研磨带或研磨盘)中,其中粘结剂渗入磨粒的外部开放孔隙,且磨粒固定在磨料中。
[0045] 在1250℃的温度处理后,相同磨粒示出了MKZ值的降低或磨粒韧性的增加,分别为约32%。由此对于根据本发明的磨粒得到完全新的应用可能性,这是由于多孔多晶结构现在与相对高的磨粒韧性配对,且因此良好嵌入的优势可以与高的磨粒强度结合。
[0046] 众所周知,MKZ值是磨粒尺寸的函数。因而还用更细磨粒尺寸进行进一步的测量。在实施例5-8的情形中,对于F60和F80还变得清楚的是,还通过热后处理得到磨粒韧性的巨大增加。因此,对于磨料粒度F60(实施例5和6)还测得约24%的磨粒韧性的提高,而对于磨料粒度F80甚至也可观察到约44%的提高。
[0047] 球磨磨粒分解(KMKZ)
[0048] 对于测量磨粒强度,球磨磨粒分解是类似的方法。由于更大的样品量,该方法更准确且较不容易出故障。
[0049] 将100g(相应磨料粒度)的刚玉在填充有8个大直径(35mm)和 40-45个小直径(14.7mm)钢球的球磨机中以83转/分钟球磨预定的时间段。在分离钢球后,随后在Rotap筛分机中通过对应的细筛将球磨的磨粒进行筛分5分钟,所述细筛比对于对应的磨粒粒度确定的底筛细2级,并平衡掉细的部分。KMKZ值遵从如下:
[0050]
[0051] 在此情况下,将未合金化的多晶刚玉与TiO2合金化的多晶刚玉进行对比。两种类型的刚玉的化学组合物总结于表1A中。
[0052] 表1A
[0053]
[0054] 表2A
[0055]
[0056] 在回转窑中在1250℃对多晶刚玉进行温度处理15分钟。球磨磨粒分解的结果总结于表2A中。发现未处理的多晶刚玉具有可对比的磨粒强度,而不管其合金化的或未合金化的。在温度处理后,两种类型的刚玉都显示磨粒强度的改善,由此未合金多晶刚玉的改善低于20%,而合金化多晶刚玉的磨粒强度增加超过50%。
[0057] 研磨试验
[0058] 还为了验证MKZ值对于实践研磨实践的积极效果,从样品1-4进行其它的研磨试验。
[0059] 为此目的,以125x 1.5x22.23的尺寸生产切割盘,然后将其用于切割直径为20mm且厚度为2mm的不锈钢管。为了调节该盘初始制得 3个粗糙的切口,随后对于每一盘制得总共20个切口。通过盘直径的降低(盘磨损)测定研磨性能。在每种情况下由3个盘求得响应于盘磨损的平均值。研磨结果和研磨条件总结于下面的表3中。
[0060] 表3
[0061]
[0062] 在上述研磨条件的情况下,包含紧密且致密的白色熔凝氧化铝的切割盘显示出最高的盘磨损,这可以用紧密磨粒在粘结剂基质中的劣等嵌入和特别是用相对低的磨粒韧性解释。与其相比,包含坚韧的合金化刚玉的切割盘磨损明显更少(约45%)。尽管具有非常高的MKZ 值(实施例3=29.6),包含多晶多孔刚玉的切割盘的结果显示出的盘磨损仅稍低于来自实施例(2)的紧密并坚韧的磨粒,该结果是令人惊奇和无疑可以用多孔多晶磨粒在粘结剂基质中的良好嵌入解释。通过将磨粒在1250℃下回火15分钟,切割盘的稳定性(基于直径的降低)可提高约30%,因此超过极度固体紧密的合金化刚玉。
[0063] 着重注意,在本上下文中,主要进行上述研磨试验从而总体确定根据本发明的Al2O3本体作为磨粒的合适性,以显示相比于未处理的磨粒的性能提高。对于具体的应用和研磨操作(在该情况下根据本发明的磨粒的孔隙率和相对高的磨粒韧性具有特别积极的作用,特别是比紧密和致密的刚玉类型进一步的性能提高是预期的。对于精密研磨或还对于高性能研磨(用陶瓷粘结的磨粒进行)发现相应的结果。
[0064] 特别地,在用于应具有限定的孔隙率的研磨盘时,使用根据本发明的磨粒与现有技术相比导致改善,由于现在所需孔隙率至少部分地表现为磨粒本身,其与冷却润滑剂可以直接带入磨料接触区的附加优点有关。一方面,改善了磨料盘的切割能,且通过响应于使用根据本发明的磨粒引入附加的孔隙率支持了在操作过程中的自由切割。另一方面,进一步改善了磨粒在研磨盘中的嵌入,这归因于包括大的裂隙表面的多晶结构,从而还提高了研磨性能。
[0065] 尽管具有高的宏观孔隙率,但磨粒是极其稳定的,且也可以用于研磨操作,在该情况下施加高的接触压力。即使由于其组成,特别对于在研磨盘中的用途,多晶Al2O3本体是预先指定的,它们也适合用作松散的磨料,用于涂覆的磨料中,用于生产难熔材料,且还用作磨损保护材料。
QQ群二维码
意见反馈