由飞灰制造制品

申请号 CN200380110486.4 申请日 2003-11-17 公开(公告)号 CN1878736A 公开(公告)日 2006-12-13
申请人 新南创新有限公司; 发明人 奥巴达·卡亚里; 卡尔·J·肖;
摘要 本 发明 提供一种形成具有含 烧结 飞灰的基体的成型制品的方法。所述方法包括将飞灰和 水 共混在一起,产生飞灰团的步骤。加入的水超过飞灰所吸收的水,以便所述团包含游离水以致至少部分处于 流体 状态。该方法还包括由飞灰团形成所需形状的未烧结制品,并在未烧结制品形成期间和/或形成后从飞灰团中除去至少一部分游离水的步骤。随后烧制未烧结制品以便通过烧结它的飞灰基体而硬 化成 型制品。本发明还提供基体为烧结飞灰的建筑元件。
权利要求

1.一种形成具有基体的成型制品的方法,所述基体包含烧结的飞灰, 所述方法包括步骤:
将飞灰和共混在一起,产生飞灰团,加入的水超过飞灰所吸收的水, 以便所述团包含游离水以致至少部分处于流体状态;
由飞灰团形成所需形状的未烧结制品,
在未烧结制品形成期间和/或形成后,从所述飞灰团中除去至少一部分游 离水;和
随后烧制未烧结制品以便通过烧结它的飞灰基体而硬化成型制品。
2.根据权利要求1的方法,其中使塑化剂与飞灰和水共混在一起,生 产飞灰团。
3.根据权利要求1或2的方法,还包括在烧制未烧结制品前熟化未烧 结制品的步骤,其中在熟化期间,水与飞灰反应以便至少部分固化制品。
4.根据权利要求3的方法,其中在未烧结制品熟化期间,从飞灰团中 除去至少一部分游离水。
5.根据权利要求4的方法,其中在熟化期间对未烧结制品进行低至中 等加热。
6.根据权利要求5的方法,其中在30℃至80℃的温度范围内对未烧结 制品进行加热。
7.根据权利要求5的方法,其中在55℃至65℃的温度范围内对未烧结 制品进行加热。
8.根据权利要求3至6中任何一项的方法,其中在熟化期间使未烧结 制品经受高湿度。
9.根据权利要求8的方法,其中湿度在20%相对湿度至60%相对湿度 的范围内。
10.根据权利要求8的方法,其中湿度在35%相对湿度至45%相对湿度 的范围内。
11.根据前述权利要求的方法,其中在从飞灰团中除去至少一部分游离 水后,团中的水分含量在1-5%范围内。
12.根据权利要求1至10中任一项的方法,其中在从飞灰团中除去至 少一部分游离水后,团中的水分含量在2-4%范围内。
13.根据权利要求3的方法,其中熟化时间在12小时至5天之间。
14.根据权利要求3的方法,其中熟化时间在1天至3天之间。
15.根据前述权利要求中任一项的方法,其中烧制温度在1000℃至300℃ 的范围内。
16.根据权利要求1至14中任一项的方法,其中烧制温度在1100℃至 1250℃之间。
17.根据权利要求16的方法,其中烧制的持续时间在30分钟至6小时 范围内。
18.根据权利要求16的方法,其中烧制的持续时间在1小时至4小时 之间。
19.根据前述权利要求中任一项的方法,其中未烧结制品为建筑砖,并 且烧制温度在1100℃至1250℃范围内。
20.一种建筑元件,具有烧结飞灰基体,并具有大于30MPa的抗压强 度,大于5MPa的断裂模数,在0.2至5kg/m2/min之间的吸收初速(IRA)和在 5-20%之间的吸收容量。
21.根据权利要求20的建筑元件,其中建筑元件为建筑砖。
22.根据权利要求20或21的建筑元件,通过根据权利要求1的方法制 造。

说明书全文

技术领域

发明一般性地涉及由飞灰(fly ash)形成的成型制品和形成这种制品的 方法。为制造结构元件,尤其但不是排他性地开发了本发明,本文就这一点 描述本发明。但是,应理解本发明具有较宽的应用,并可能用于生产各种各 样的制品,既有结构上的又有非结构上的。

背景技术

飞灰是燃发电厂中煤燃烧的副产品。飞灰被大量制造并通常包含引起 处理问题的重金属如镉、铬、锌和铅。在设法减小飞灰的环境影响时,已经 考虑飞灰的各种用途以既有助于飞灰处理又得到一些经济收益。
一种这种应用是制造包含飞灰作为组成部分的砖。这些砖通常包括与粘 土混合的飞灰并被火硬化。虽然这些砖设法利用飞灰,但它们没有被视为可 行的结构建筑元件。特别地,在制造成本可与现有砖竞争、具有一致质量并 且在结构性能范围内表现充分的包含飞灰的砖方面遇到困难。

发明内容

在第一方面,本发明提供形成具有基体(matrix)的成型制品的方法,所述 基体包含烧结的飞灰,所述方法包括步骤:
将飞灰和共混在一起,产生飞灰团(dough),加入的水超过飞灰所吸收 的水,以便团包含游离水以致至少部分处于流体状态;
由飞灰团形成所需形状的未烧结制品(green article),
在未烧结制品形成期间和/或形成后,从所述飞灰团中除去至少一部分游 离水;和
随后烧制未烧结制品以便通过烧结它的飞灰基体而硬化成型制品。
在具体实施方案中,使塑化剂(plasticizer)与飞灰和水混合。使用塑化剂 的优点在于它减少了构成至少部分是流体的可加工状态的团所需要的游离 水量。这又减少了为获得制品所需性质而随后可能需要除去的水量,从而允 许更有效加工制品以及允许在它的生产期间更好地控制制品的形状和尺寸。
根据上述形式的方法理想地适合于工业规模制造制品。在一种形式中, 方法仅仅使用三种成分,即飞灰、水和塑化剂。由于飞灰是一种副产品,因 此它是一种便宜并且容易得到的成分。此外,该方法能够用于与粘土砖制造 类似的生产线方式。通过控制团中的水含量,制品可被最初成型,不需要模 具,因为团可显示出足够的尺寸稳定性。同时,可通过控制未烧结制品的水 含量以及烧制温度和持续时间能够容易地控制制品性质。在制造期间能够控 制这些参数中的每一个,由此允许生产具有一致质量的制品。
应认识到,如果需要可向混合物中掺入其它添加剂。例如,可掺入颜料 以为制品着色。还可掺入更多的添加剂以改善混合物的性质或产生未烧结制 品。例如,可掺入微量的羧甲基纤维素(CMC)以凝胶混合物而不需要过多的 水。这种添加剂还防止团在延长的熟化(curing)期情况下的潜在收缩和开裂。 从加入微量氯化溶液中也可获得类似于CMC的效果。
本发明的方法具有用于制造结构元件(例如砖)的特别用途。本发明人发 现单独或至少主要由烧结飞灰形成的砖具有比常规粘土砖更高的抗压强度 和断裂模数。此外,通过控制未烧结制品中的水含量以及烧制温度和持续时 间,可控制飞灰基体的结构和它的表面特征。这又允许控制制品的吸收初速 (initial rate of adsorption)和吸收容量(adsorption capacity),两者都是重要的性 质,尤其在砖制造中。此外,减少游离水降低了烧制未烧结制品时爆裂的 险,并因此保证了尽可能没有内部和外部开裂的更均匀烧结过程。
在本方法的具体实施方案中,未烧结制品在被烧制之前被熟化。在熟化 期间,水与飞灰反应,以固化制品。
未烧结制品在这种熟化过程期间的固化可能归因于几个不同的反应。虽 然不将本发明约束到理论,但发明人认为在飞灰为基体中仅有的胶结材料 (cementitious material)时,可引起某些快速固化的唯一化合物是化钙。这种 化合物在F级飞灰中少量地存在,在C级飞灰中大量存在。水和氧化钙之间 的反应导致氢氧化钙的形成,其为制品提供一定的固化。随后,发生火山灰 反应(pozzolanic reaction),其中飞灰中的主要氧化物主要是二氧化和氧化 与氢氧化钙反应形成比氢氧化物硬得多的和更多的胶结材料。得到的材料是 产物的络合结晶和非结晶混合物,在它们的点阵中包含氧化硅、氧化铝、氧 化钙和水的分子。
在具体实施方案中,在未烧结制品被熟化时从基体中减少游离水。在优 选形式中,未烧结制品在这种熟化过程中受到低至中等加热。这种安排的优 点在于温和加热能够在不引起基体过度开裂的情况下减少游离水。此外,水 的缓慢排出还给予一部分水既通过水合飞灰中的胶结材料又在火山灰反应 下与飞灰反应的时间。在具体实施方案中,未烧结制品中的水分含量在熟化 期间被减少至1和5%之间,更优选在2和4%之间。
在一种形式中,在高湿度下加热未烧结制品。这种安排的优点在于它能 够促进未烧结制品在整个制品中更均匀地固化。
这种熟化过程消耗团中已存在的游离水,并可能需要一部分补给水 (additional water)以补偿自脱水。在优选的形式中,补给水可从潮湿空气得到。
在根据上述形式的过程中,利用两种独立的反应;首先通过氢氧化钙的 形成获得最初的固化,其次通过火山灰反应获得更进一步的固化。如果该过 程只依赖这些反应的前者,则由于飞灰中氧化钙的有限数量而限制烧制前未 烧结制品的固化。固化未烧结制品的优点在于改善了它被处理能和它在烧 制期间的尺寸稳定性,两者在成型制品的商业制造中都是重要的。
在一种优选形式中,在30℃-80℃范围内的温度内,更优选在55℃-65℃ 的范围内熟化未烧结制品。
在一种优选形式中,使未烧结制品经受在20%相对湿度至60%相对湿度 的范围内的湿度,更优选在35%相对湿度至45%相对湿度的范围内。
由于熟化优选在温和或中等加热和高湿度下进行,因此熟化的持续时间 可相当大地变化,因为长的熟化时间不可能致使未烧结制品的基体开裂。通 常,对于砖,熟化时间将为大约12小时至5天,更优选在1和3天之间。 虽然熟化对除去水和固化未烧结制品重要,但希望减少熟化时间以减小制造 过程时间。在一种形式中,本发明人发现2天对于熟化是足够的。
在一种优选形式中,在未烧结制品的烧制之前除去大多数游离水,如果 不是全部的话。因而,由于烧制过程不会因基体中水蒸发而产生开裂或爆裂 (burst),所以能够更好地控制烧制制品的孔隙率。
如上所指出,烧制之前保持在未烧结制品中的水分含量在1%至5%范围 之内,更优选在2%-4%范围内。
典型地,保持在制品中的水分由两部分组成。第一部分为进入水合反应 并产生硅酸钙和硅酸铝水合络合物固体产物的水分。第二部分为在内孔内被 捕集为水分的那些。第一部分抵抗砖在处理期间的破碎并经得起烧制期间逸 出气体的内部压力。第二部分为保持在砖结构中的孔隙率的主要来源。
其它技术,例如团或未烧结制品的压制等可用来代替或结合使制品经受 热和湿度的受控环境以减少水含量。
如上所指出,本发明人发现,烧制的温度和持续时间能够调整烧制制品 的吸收性质,尤其在游离水基本上从未烧结制品中除去时。
在成型制品为砖的安排中,优选烧制温度在1000℃-1300℃范围内,更 优选在1100℃-1250℃之间,烧制的持续时间在30分钟至6小时范围内,更 优选在1至4小时范围内。在这个范围内烧制的砖的烧结飞灰基体不是光滑 的(glazed),并在吸收初速和吸收容量两方面显示出优异的吸收特性。
在另一方面,本发明涉及基体为烧结飞灰、抗压强度大于30MPa、断裂 模数大于5Mpa、吸收初速(IRA)在0.2-5kg/m2/min之间和吸收容量在5-20% 之间的建筑元件。
形成有这些性质的建筑元件理想地适合作为常规粘土砖的直接替代物。 它们比常规粘土砖更坚固,尤其承受拉力时,并且由于它们的吸收性质而能 与灰浆胶结良好。虽然元件的强度归因于烧结的飞灰基体,但吸收性质归因 于元件的孔隙率和它们的表面特征。因而,根据本发明这个方面的建筑元件 理想地适合于通过本发明较早方面来制造,即通过孔隙率和表面特征能够被 控制的方面。
附图说明
下文中参考附图,方便地描述本发明的实施方案。应认识到附图和相关 描述的细节将被理解为不代替本发明在前的宽泛描述。
在图中:
图1为具有烧结的飞灰基体的砖的横截面照片;
图2为图示飞灰砖制造步骤的流程图
图3为飞灰砖的吸收容量作为烧制温度函数的图;
图4为飞灰砖的吸收初速作为烧制温度函数的图;
图5为砖的水分含量作为熟化时间函数的图;
图6为飞灰砖基体在1200℃温度下烧制时的显微照片;和
图7为飞灰砖基体在1040℃温度下烧制时的显微照片。

具体实施方式

首先从图1开始,图1披露了掺入基体11的飞灰砖10,基体11由烧结 的飞灰12制成,烧结的飞灰12中分散有空隙13。烧结飞灰的结构和空隙的 排列和散布决定砖10的结构强度和它的吸收容量(吸收初速和总吸收容量两 方面)。
通常,空隙13分散在整个基体中,并主要包含小的互连空隙14和大的 孤立空隙15。小的空隙14使得砖10多孔并能够吸水。这些小的空隙14主 要为飞灰堆积密度和飞灰团在砖制造中经受的压实程度(degree of compaction) 的函数。具有同等重要性,这些空隙为受烧制温度和持续时间控制的烧结过 程的效率的函数。较小的空隙14还部分地归因于团制造中使用的塑化剂。 塑化剂的包含减少了混合飞灰团需要的水量,同时容许可加工性容易。塑化 剂的分散作用使得水被保持成液滴形式,这容许飞灰颗粒滚动到它们上面, 并当通过蒸发和/或自脱水干燥时,液滴作为气泡而留下它们的痕迹。
飞灰颗粒典型地具有从1μm至150μm的粒度范围。典型地,超过66% 的飞灰颗粒具有小于45μm的直径。中值粒径(median diameter)范围为2μm至 10μm,并且灰的反应性由于较小尺寸的颗粒而增加。尽管可通过飞灰的分级 调整堆积密度,但本发明人发现不需要这种筛选来给予如以下详述的所需强 度和吸收容量性质。这具有不需要预处理飞灰的明显优点。飞灰可从来源(典 型地为发电厂)处收集,并直接用作砖制造过程中的成分。
用于图1的砖的飞灰为F级。F级飞灰由烟煤(bituminous coal)产生,并 主要为硅质的。按照ASTM分类,F级飞灰包含总共至少70%的为氧化硅、 氧化铝和氧化的化合物。另一种飞灰被称为C级飞灰。这种来源于亚烟煤 和褐煤。C级飞灰富含氧化钙。尽管F级飞灰中氧化钙的典型含量在2-4%之 间,并通常低于10%,但C级飞灰中氧化钙的典型含量在10%和20%之间, 并可高至26%。尽管本发明人使用含沥青的F级飞灰,但应认识到本发明不 局限于这种类型,并也适用于C型飞灰。此外,C级飞灰中存在的高氧化钙 含量用来促进固化和减少熟化时间,由此减少处理和进行烧制过程需要的时 间。
较大的空隙15主要由砖正在形成时基体中捕集的空气形成。这些空隙 15部分地为制造过程尤其是飞灰和水初始混合形成团和这种团的压实的函 数。塑化剂通过它的分散和疏水作用也可促进在干制品中形成较大的空隙。
理想地,基体11不包括过多数量的较大空隙15,因为它们使基体变弱。 但是,这些较大的空隙可有助于砖性质,因为它们用来减少烧制时可能的压 力累积和用来减轻成品在碰到冻融(freezing and thawing)的地方中可能出现 的应力。由于砖10是在实验室条件下被制造,因此对控制较大空隙15的存 在有一定限制。可以预料,较大空隙的产生将在飞灰基体的形成可得到较好 控制的商业过程中得到较好控制。
如图1的照片所示,砖的外缘16,即邻近外部的围缘17,仍是多孔的。 尽管砖10结合了砖烧制时形成的皮18,但它不光滑并还结合了较小空隙14。 因而,皮不会形成防止水渗入到砖10的阻挡层。
此外,没有贯穿砖基体的主要开裂或裂缝,这些开裂或裂缝会显著降低 砖强度和促进砖的不一致吸水性。
砖基体11的结构提供了一致的强度和吸水特性,这使得砖10理想地适 合作为常规粘土砖的代替物,这将在下文中更详细地讨论。
图2为示意地描述制造砖10的工艺20的流程图。在第一阶段21中, 提供适当量的砖的成分。成分包括飞灰、水和塑化剂。
称量飞灰并放入合适的混凝土搅拌机或类似搅拌机中。然后加入总量约 70%的水并混合和旋转团混合物(dough mixture)三分钟。总水量相对于飞灰为 26升水∶100kg飞灰。用于该实验的飞灰为符合ASTM标准的F级飞灰。这 从使用煤的发电厂大量得到。但是,应认识到特定飞灰的使用不是必需的, 但是它应该符合地方性质量标准。
然后加入塑化剂,在该例中为超塑化剂,并再继续混合三分钟。使用超 塑化剂的目的是促进飞灰料浆或团的可加工性。超塑化剂为由Handy Chemicals制造的聚磺酸盐的纯钠盐,并以商品名DISAL在市场上可买到。 但是,使用特定的塑化剂显然不是必需的。它只对用最低量的水获得一致的 可加工性是重要的,只要用量与使用的特定超塑化剂有关,则合适塑化剂的 使用应该令人满意。在这种情况下,在DISAL为超塑化剂时,用量的比率为 每100kg飞灰,200ml塑化剂。
然后加入其余的水并继续混合再三分钟直到混合完成。
混合各成分形成团发生在步骤22。此时,团可能被压实以限制空隙13(尤 其是较大的空隙14)。可通过任何合适的技术进行压实,并且在本发明人进 行的实验中,把飞灰团放入盘中并以与浇注混凝土类似的方式压实或在振动 台上振动。当团混合物开始渗水(bleed)时停止压实或压缩。但是,在生产环 境中,通常在压力下混合和挤出飞灰团,这将导致团的压实。
在步骤23中,形成砖坯(green brick)。在进行的实验中,通过迫使切割 刀锯(cutter mould)进入团中,将团切成砖坯。然后从盘上移走这些砖。在工 业规模操作中,在团被挤出的地方,将按照粘土砖制造采用的方式生产砖, 其中在传送带上输送转,并用丝钳(wire cutter)切割。
在步骤24中,通过将未烧结制品放置在58℃和37%相对湿度的熟化室 中48小时,熟化单独的未烧结制品。如先前所示,设计熟化过程以固化未 烧结制品以及从飞灰基体中抽出大部分水。
图5为未烧结飞灰砖在熟化期间的水分含量图。该图显示了从混合直到 烧制时的水分含量,烧制通常在熟化后24至72小时之间。显然,在熟化条 件下,水分含量在48小时后稳定在约3.5%。水分的主要损失发生在第一个 24小时之内。这个时期对于促进固化和排出不必要的水分是最关键的。两天 后,残存水分由两部分组成。第一部分为参加水合反应并产生硅酸钙和硅酸 铝水合络合物的固体产物的水分。第二部分为在内部孔内作为水分被捕集的 那些。第一部分为抵抗砖在处理期间的破碎和经得起烧制期间逸出气体的内 部压力所必需。第二部分为保持砖结构中孔隙的主要来源。
然后在步骤25烧制熟化过的砖以便烧结飞灰基体。在本实验中,将熟 化过的制品被放入窑中,升高温度到1200℃,烧制砖3.5小时。
在过程的最后阶段,如步骤26所描述,然后使烧结的飞灰砖冷却至室 温。
测试飞灰砖的各种性质,下面的表1对比了普通粘土砖与飞灰砖的性质。   砖类型   性质   压缩强度   断裂模数   吸收初速(IRA)   吸收容量   平均密度   粘土砖   通常为12-40   MPa。澳大利亚   标准接受的最小   值:7MPa。   从小于1MPa   到大于2MPa。   默认值为0.8   MPa。   典型的范围在   0.2-5kg/m2/min   之间   5-20%   1800-2000   kg/m3   飞灰砖   43MPa   10.3MPa   4.5kg/m2/min   10%   1450kg/m3
为测定上述性质而进行的试验如下:
抗压强度:按照澳大利亚/新西兰标准AS/NZS 4456.4:1997,方法4: Determining Compressive Strength of Masonry Units进行。
断裂模数:进行两次,一次按照澳大利亚/新西兰标准AS/NZS 4456.15:1997,方法15:Determining Lateral Modulus of Rupture,第二次在单一 砖上。这样做的原因是标准方法需要通过水平地胶结三砖形成横梁(beam)。 使用的胶为Epirez,一种环氧砂浆胶结剂。这种方法对于普通粘土砖操作很 好,因为胶承受拉力时比粘土砖坚固,断裂线(failure line)通过砖。在本发明 的飞灰砖情况下,在7.2MPa时通过胶缝发生断裂。这意味着砖比胶坚固, 7.2MPa是胶的强度。因此在不包括胶的单一砖上再次进行试验。结果证实, 飞灰的砖断裂模数值比7.2MPa值高,事实上为10.3MPa。
吸收初速:按照澳大利亚/新西兰标准AS/NZS 4456.17:1997,方法 17:Determining Initial Rate of Absorption(Suction)进行。
吸收容量:按照澳大利亚/新西兰标准AS NZS4456.14:1997,方法 14,Determining Water Absorption Properties进行。
平均密度:按照澳大利亚/新西兰标准AS/NZS 4456.8:1997,方法8: Determining Moisture Content and Dry Density进行。
因此,从上表可知,与常规粘土砖相比,飞灰砖10显然表现出优异的 性质。
建筑砖的两种重要性质是吸收初速(IRA)和吸收容量。这两种性质对于 砖具有特别的重要性。IRA对于砖的铺设和与灰浆的胶结具有重大的重要性。 高IRA导致灰浆干燥得太快并且因此使灰浆变弱和降低与砖的粘着性。另一 方面,如果IRA过低,则砖接近灰浆的表面不会吸收过剩水量并将导致非常 弱的灰浆层,其不会足够地穿透到砖的表面裂缝和孔内。总吸收容量的性质 对于砖的性能也非常重要。很高的吸收作用导致易因体积变化而损坏,这将 导致建筑物中砖的开裂和结构破坏。如果孔内部的水冻融也将导致开裂。但 是太小的吸收作用也不是所需的。这是因为雨水如果不是部分被砖吸收的 话,将往往非常快地向接缝处流掉,并可找到进入建筑物的途径以及降低灰 浆接缝的耐久性。
本发明人进行了烧制温度对总吸收容量和吸收初速影响的更多试验。使 用按照上述步骤制造的砖坯进行这些试验。唯一的差别是使用的烧制温度。 这些试验的结果图示在图3和4中。
从图3和4清楚看到,烧制温度对烧结的飞灰砖的吸收性质有主要影响。 此外,从以上结果可知,通过保持温度速度在1100℃至1250℃之间,可得到 与常规粘土砖一致的优异吸收性质。
图6和7为在不同的温度下烧制时飞灰砖基体的显微照片。图6具有 1200℃的烧制温度,而图7为在1040℃温度下烧制时的砖基体。在图6的显 微照片中,砖的基体显示出遍及基体结构的更细和更一致的孔。飞灰基本上 被烧结而没有被气化。相反,在图7公开的基体中,即砖在1040℃下被烧制 时,飞灰没有被足够烧结,由此导致过分疏松和它结构强度的降低。
因此,本发明提供由飞灰制造制品的方法,该制品可工业规模生产,并 在强度和吸收容量两方面显示出优异的性质,这使得这种制品理想地适合作 为常规粘土砖的替代物。
在所附的权利要求中和在前面的发明描述中,除上下文由于表达语言或 必要含义的另外要求之外,术语“包括”以包含的含义使用,即指定特征可与 本发明各种实施方案中的更多特征有关。
在没有脱离本发明精神或环境的情况下,可对先前描述的部分进行变化 和/或修改
QQ群二维码
意见反馈