具有类似石材的特性的挤压成型的纤维增强泥制品以及制造该制品的方法

申请号 CN201610452841.5 申请日 2010-11-19 公开(公告)号 CN106082826A 公开(公告)日 2016-11-09
申请人 E·喀硕吉工业有限责任公司; 发明人 P·J·安德森; S·K·霍德森;
摘要 本 发明 涉及一种 水 泥 复合材料 制品,所述复合材料制品可充当石材和固体表面材料(例如 花岗岩 、大理石、以及工程石材)的替代品。此外公开了用于制造该 水泥 复合材料制品的方法,所述方法利用了可 挤压 成型 的水泥合成物,所述合成物可被 挤压成型 或以其它方式成型为类似石材的建筑制品,所述建筑制品可用作许多已知的石材制品的替代品。在一个 实施例 中,可更便宜地将水泥复合材料制品制造成与石材和固体表面材料一样坚韧或更坚韧并更持久。
权利要求

1.一种具有类似石材的特性的复合材料制品,该制品包括可挤压成型的水泥合成物,所述合成物包括:
水硬性水泥,
骨料
流变改性剂,所述流变改性剂的量为从约0.1%至约4%(以可挤压成型的水泥合成物的体积衡量),以及
纤维,所述纤维充分均匀地分布在可挤压成型的水泥合成物中且水泥合成物中包含的纤维的量大于约2%(以可挤压成型的水泥合成物的体积衡量),
其中水泥复合材料制品具有至少4MOH的硬度值和从约1.3g/cm3至约2.3g/cm3的堆密度
2.根据权利要求1所述的水泥复合材料制品,其中可挤压成型的水泥合成物包括细骨料和粗骨料,优选地,所述细骨料是沙并且所述粗骨料是石。
3.根据权利要求1所述的水泥复合材料制品,其中可挤压成型的水泥合成物还包括火山灰质材料,优选地,所述火山灰质材料选自包括以下物质的集合:矿渣、F类灰、C类粉煤灰以及微粉。
4.根据权利要求1所述的水泥复合材料制品,其中可挤压成型的水泥合成物还包括C类粉煤灰。
5.根据权利要求1所述的水泥复合材料制品,其中所述流变改性剂的量为以体积衡量从约0.25%至约2%,优选地以体积衡量从约0.5%至约1.5%,更优选地以体积衡量从约
0.75%至约1%。
6.根据权利要求1所述的水泥复合材料制品,其中所述流变改性剂选自包括以下物质的集合:能够表现为或提供流变特性的多糖、蛋白质材料、淀粉、多糖胶和合成有机材料。
7.根据权利要求6所述的水泥复合材料制品,其中:
所述多糖选自包括以下物质的集合:纤维素醚、甲基羟乙基纤维素、羟甲乙基纤维素、羧甲基纤维素、甲基纤维素、乙基纤维素、羟乙基纤维素以及羟乙丙基纤维素;
所述淀粉选自包括以下物质的集合:支链淀粉、直链淀粉、淀粉醋酸酯、淀粉羟乙基醚、离子淀粉、长链烷基淀粉、糊精、胺淀粉、磷酸淀粉、以及双淀粉;
所述多糖胶选自包括以下物质的集合:海洋凝胶、褐藻酸、藻胶、琼脂、阿拉伯胶、瓜尔豆胶、刺槐豆胶、刺梧桐胶以及黄蓍胶;
所述蛋白质材料选自包括以下物质的集合:胶原蛋白酪蛋白生物聚合物以及生物聚酯;并且
可赋予流变改性特性的合成有机材料选自包括以下物质的集合:基于石油的聚合物、聚乙烯、聚丙烯、乳胶、例如苯乙烯-丁二烯、可生物降解的聚合物、脂肪族聚酯、聚羟基烷酸、聚乳酸、聚己酸内酯、聚氯乙烯、聚乙烯醇以及聚乙酸乙烯酯。
8.根据权利要求1所述的水泥复合材料制品,其中,所述水泥复合材料制品不包括增强元件。
9.一种制造具有类似石材的特性的水泥复合材料制品的方法,该方法包括:
将水、纤维和流变改性剂混合在一起以形成含纤维混合物,纤维充分均匀地分布在所述含纤维混合物中;
将水硬性水泥和骨料的混合物添加至含纤维混合物以产生可挤压成型的水泥合成物,所述水泥合成物具有塑性稠度;
将可挤压成型的水泥合成物挤压成具有预先确定的横截面积的未干的中间状态挤压制品,该挤压制品在挤压时是形状稳定的并能够基本上保持横截面积从而允许操作而不破损;并且,
致使或允许水硬性水泥固化以形成水泥复合材料制品,其中水泥复合材料制品具有至少4MOH的硬度值和从约1.3g/cm3至约2.3g/cm3的堆密度;
其中,所述流变改性剂的量为从约0.1%至约4%(以可挤压成型的水泥合成物的体积衡量);
所述纤维充分均匀地分布在可挤压成型的水泥合成物中且水泥合成物中包含的纤维的量大于约2%(以可挤压成型的水泥合成物的体积衡量)。
10.根据权利要求9所述的方法,其中可挤压成型的水泥合成物包括细骨料和粗骨料,优选地,所述细骨料是沙并且所述粗骨料是石。
11.根据权利要求9所述的方法,其中可挤压成型的水泥合成物还包括火山灰质材料,优选地,所述火山灰质材料选自包括以下物质的集合:矿渣、F类粉煤灰、C类粉煤灰以及硅微粉。
12.根据权利要求9所述的方法,其中可挤压成型的水泥合成物还包括C类粉煤灰。
13.根据权利要求9所述的方法,其中所述流变改性剂的量为以体积衡量从约0.25%至约2%,优选地以体积衡量从约0.5%至约1.5%,更优选地以体积衡量从约0.75%至约1%。
14.根据权利要求9所述的方法,其中所述流变改性剂选自包括以下物质的集合:能够表现为或提供流变特性的多糖、蛋白质材料、淀粉、多糖胶和合成有机材料。
15.根据权利要求14所述的方法,其中:
所述多糖选自包括以下物质的集合:纤维素醚、甲基羟乙基纤维素、羟甲乙基纤维素、羧甲基纤维素、甲基纤维素、乙基纤维素、羟乙基纤维素以及羟乙丙基纤维素;
所述淀粉选自包括以下物质的集合:支链淀粉、直链淀粉、淀粉醋酸酯、淀粉羟乙基醚、离子淀粉、长链烷基淀粉、糊精、胺淀粉、磷酸淀粉、以及双醛淀粉;
所述多糖胶选自包括以下物质的集合:海洋凝胶、褐藻酸、藻胶、琼脂、阿拉伯胶、瓜尔豆胶、刺槐豆胶、刺梧桐胶以及黄蓍胶;
所述蛋白质材料选自包括以下物质的集合:胶原蛋白、酪蛋白、生物聚合物以及生物聚酯;并且
可赋予流变改性特性的合成有机材料选自包括以下物质的集合:基于石油的聚合物、聚乙烯、聚丙烯、乳胶、例如苯乙烯-丁二烯、可生物降解的聚合物、脂肪族聚酯、聚羟基烷酸、聚乳酸、聚己酸内酯、聚氯乙烯、聚乙烯醇以及聚乙酸乙烯酯。
16.根据权利要求9所述的方法,其中,所述水泥复合材料制品不包括增强元件。

说明书全文

具有类似石材的特性的挤压成型的纤维增强泥制品以及制

造该制品的方法

[0001] 本申请是2010年11月19日在中国专利局提交的申请号为201080062134.6(PCT/US2010/057446)、名称为“具有类似石材的特性的挤压成型的纤维增强水泥制品以及制造该制品的方法”的专利申请的分案申请。

技术领域

[0002] 本发明总体上涉及含有高含量的增强纤维的水泥建筑制品,而更特别地,涉及可挤压成型的合成物,所述可挤压成型的合成物用于制造具有类似石材的特性的超高强度水泥复合材料建筑制品。

背景技术

[0003] 建筑及建造行业的成功大部分取决于在建造中可供利用的特性。许多材料已在历史上以及在当前被使用,但如在下表中进一步描述的那样,每一种材料都具有一个或多个显著的局限性。
[0004]
[0005]
[0006] 随着高品质的天然出现的材料(例如石材和木材)的可获性变得稀少,对人造制品的需求日益变得更为重要。特别地,在设计和建造带混凝土材的建筑物时有对人造制品的需求,所述人造制品具有高耐久性、低成本、每单位质量的高强度和韧度,并且是美观的。
[0007] 此外,在常规的建筑制品中,所需的混凝土质量和体积的90%仅是为了支承自身处于适当位置和形状;仅10%是真正用于结构的动态或动荷载能。类似地,用在建筑中的钢材的质量和体积的75%是用于支承自身并保持其位置和形状;仅25%是真正用于结构的动态或动荷载能力。此外,尽管在历史上混凝土已被认为具有高抗压强度,但混凝土的抗压强度并无用处。相反,所需要的是它的抗弯或抗拉强度,而抗弯或抗拉强度是如此之低,以致在大多数情况下它被假定为零。
[0008] 基于前文所述,在建造行业具有水泥制品会是很大的优势和进步,所述水泥制品可在当地被模塑和成型但具有高得多的抗弯和抗拉强度,从而在结构中需要较少或不需要钢材加固。若这种水泥材料是较低堆密度的并具有大为改善的堆密度比率则会是进一步的优势。这会增加可用于建筑的动态荷载能力的混凝土的量。
[0009] 早先利用纤维增强的混凝土的尝试已普遍受多种因素的限制。一个因素是将体积上多于3%的纤维均一地混合和分布在高强度水灰比合成物中的困难性。第二因素是混凝土流变能力的迅速降低使得混凝土材料的成型和布置要困难得多。
[0010] 因此,提供水泥复合材料制品和用于制造该水泥复合材料制品的方法以用在建筑制品中作为对石材和固体表面材料的具有成本效益的替代品会是有利的。水泥复合材料制品可制造得比石材和固体表面材料更坚韧和更耐久(即较不易碎)而无需利用增强元件例如钢筋。此外,提供可被用作石材替代品的水泥复合材料制品会是有益的。

发明内容

[0011] 本发明涉及水泥复合材料制品(也被称为建筑制品或水泥复合材料建筑制品),所述复合材料制品可充当石材和固体表面材料的替代品。特别地,所公开的合成物和制造过程相较于常规制品具有增加了多于10倍的抗弯和抗拉强度。该制品容许多种可用的建造材料或制品可轻松模制和成型。此外,合成物和方法以大为减少的成本和重量制造出高度美观的水泥建筑材料。这些水泥材料不易碎且不像常用于建筑业中的天然合成石材那样碎裂或开裂。此外,它们具有标准波特兰水泥混凝土的所有优势但减少了1/3的重量、更强固10倍且更坚韧100倍。该制品是不可燃的、高度耐久的并可在当地制造。这些材料的最后一个优势是它们在24至48小时之内获得了所有使用所需的强度而无需其它水泥材料峰值性能要求的典型的28天期限。
[0012] 因此,一方面,本发明针对具有类似石材的特性的水泥复合材料制品。该制品包括可挤压成型的水泥合成物,所述合成物包括水硬性水泥、骨料、流变改性剂、以及纤维,所述纤维充分均匀地分布在可挤压成型的水泥合成物中且水泥合成物中包含的纤维的量大于约2%(以可挤压成型的水泥合成物的体积衡量)。水泥复合材料制品具有至少4MOH的硬度3 3
值和从约1.3g/cm至约2.3g/cm的堆密度。
[0013] 另一方面,本发明针对一种用于制造具有类似石材的特性的水泥复合材料制品的方法。方法包括:将水、纤维和流变改性剂混合在一起以形成含纤维混合物,纤维充分均匀地分布在含纤维混合物中;将水硬性水泥和骨料的混合物添加至含纤维混合物以产生可挤压成型的水泥合成物,所述水泥合成物具有塑性稠度且所包含的纤维的浓度大于约2%(以可挤压成型的水泥合成物的体积衡量);将可挤压成型的水泥合成物挤压成具有预先确定的横截面区域的未干的中间状态挤压制品,挤压制品在挤压时是形状稳定的并能够基本上保持横截面区域从而允许操作而不破损;并且,致使或允许水硬性水泥硬化以形成水泥复合材料制品,其中水泥复合材料制品具有至少4MOH的硬度值和从约1.3g/cm3至约2.3g/cm3的堆密度。
[0014] 在下文中其它目的和特征将部分变得显而易见且部分地被指出。附图说明
[0015] 图1A是示出了用于制造水泥复合材料建筑制品的挤压过程的实施例的示意图;
[0016] 图1B是示出了用于制造水泥复合材料建筑制品的挤压模头的实施例的示意图,其具有延伸通过它的连续孔;
[0017] 图1C是示出了挤压成型的水泥复合材料建筑制品的横截面区域的实施例的立体图。
[0018] 图2是示出了用于制造水泥复合材料建筑制品的滚子挤压过程的实施例的示意图。

具体实施方式

[0019] 已发现水泥复合材料制品可制成具有类似于石材的特性以作为石材和固体表面制品(例如台面、瓷砖、覆层、屋面瓦、等等)、以及其它非建筑性制品(例如预铸和预成型材料)的更便宜和更耐久的替代品。本文所采用的术语仅是出于描述特定实施例的目的而不是意在作为限制。
[0020] 术语“骨料”和“骨料成分”指代混凝土的成分,该成分通常是非水活性的。骨料成分典型地包括两种或多种不同尺寸的颗粒,往往被分类为细骨料和粗骨料。
[0021] 当用在本文中时,术语“细骨料”指代尺寸小于5mm的固体颗粒材料。
[0022] 当用在本文中时,术语“粗骨料”指代保留在4号筛(ASTM(美国材料试验协会标准)C125和ASTM C33)上的固体颗粒材料。常用的粗骨料的范例包括3/8英寸的岩石和3/4英寸的岩石。
[0023] 术语“多组分”指代纤维增强的可挤压成型的水泥合成物和由此制备的挤压成型的复合材料制品,所述制品典型地包括三种或更多种化学或物理上截然不同的材料或相。例如,这些可挤压成型的水泥合成物和因而形成的建筑制品可包括诸如以下的组分:流变改性剂、水硬性水泥、其它水硬性可凝材料、促凝剂、缓凝剂、纤维、无机骨料材料、有机骨料材料、分散剂、水、以及其它液体。这些大类的材料的每一种将一种或多种独特的特性赋予由它们制备的挤压合成物,也赋予最终的制品。在这些大类中可进一步包括不同组分(例如两种或更多种无机骨料或纤维),所述不同组分可将不同的、但互补的特性赋予挤压成型的制品。
[0024] 术语“水硬性可凝合成物”和“水泥合成物”意在指代含有水硬性可凝粘合剂和水两者以及其它组分(例如骨料和纤维)的合成物和材料的大类,而不考虑已发生的水合作用或固化的程度。就这一点而言,水泥材料包括处于未干状态(即未硬化的、软的、或可模塑的)的水硬浆或水硬性可凝合成物,以及已硬化或固化的水泥复合材料制品。
[0025] 术语“均匀”意在指代合成物被平均地混合从而使合成物的至少两个随机样品粗略地或基本上具有相同的组分的量、浓度、以及分布。
[0026] 术语“水硬性水泥”、“水硬性可凝粘合剂”、“水硬性粘合剂”、或“水泥”意在指代在水泥或水硬性可凝合成物中的组分或组分的组合,所述组分是在接触到水之后硬化和固化的无机粘合剂,例如波特兰水泥、灰、以及石膏。这些水硬性水泥通过与水化学反应而发展增加的机械特性,例如硬度、抗压强度、抗拉强度、抗弯强度、以及组分表面结合力(例如骨料向水泥的粘合)。
[0027] 术语“水硬浆”或“水泥浆”意在指代在未干状态的水硬性水泥和水的混合物以及由该水硬性粘合剂的水合作用而形成的硬化的浆。就这一点而言,在水硬性可凝合成物之中,水泥浆将单独的固体材料(例如纤维、水泥颗粒、骨料、等等)粘合在一起。
[0028] 术语“纤维”包括天然的和合成的纤维两者。典型地具有至少约10:1的纵横比的纤维被添加至可挤压成型的水泥合成物以增加因而形成的挤压成型的复合材料或最终的建筑制品的延伸率、偏转率、韧性、和断裂能,以及抗弯和抗拉强度。纤维减少了由其制成的未干挤压制品、挤压成型制品、以及硬化或固化的制品在操作、加工、以及固化期间当向其施加力时破裂或破损的可能性。并且,纤维可吸收水并减少有效的水/水泥比率。
[0029] 术语“纤维增强”意在指代纤维增强的水泥合成物,所述合成物包括纤维从而提供某些结构性增强以增加与由其制成的未干挤压制品、挤压成型制品、和硬化或固化的复合材料以及建筑制品相关联的机械特性。此外,关键术语为“增强”,该术语清晰地将本发明的可挤压成型的水泥合成物、未干挤压制品、以及固化的建筑制品区别于常规的可凝合成物和水泥制品。纤维主要充当增强组分以特别增加建筑制品的抗拉强度、柔性、以及韧性,也增强在其上切割或形成的任何表面。由于它们是充分均匀地散布的,因此建筑制品当接触到水分时并不像利用常规过程制造的制品那样分离或脱层。
[0030] 术语“机械特性”意在包括某一特性、变量、或参数,所述特性、变量、或参数被用于确定或表征物质、合成物、或制造的制品的机械强度。相应地,机械特性可包括在断裂或破坏之前延伸、偏转、或压缩的量、在破裂之前的应力和/或应变、抗拉强度、抗压强度、杨氏模量刚度、硬度、变形、阻抗、等等。
[0031] 术语“挤压成型制品”、“挤压成型制品形状”、或“挤压成型的制品”意在包括利用本发明的可挤压成型水泥合成物和方法挤压成型的制品的任何已知的或将来设计的形状。例如,挤压成型的复合材料可制备成台面、瓷砖、覆层、以及屋面瓦。此外,挤压成型的建筑制品可首先被挤压成“粗略形状”并随后经成型、研磨、磨铣、或以其它方式精制成加工制品,所述加工制品拟包括在本术语的使用中。
[0032] 术语“挤压成型”可包括一种过程,在所述过程中通过开口或通过具有某一尺寸的区域加工或压制材料,从而使材料成型为与开口或区域一致。就这一点而言,通过母模逃孔压制材料的挤压机可以是挤压成型的一种形式。可选地,滚子挤压可以是挤压成型的另一形式,所述滚子挤压包括在一组滚子之间压制合成物。在下文图2中更详细地描述了滚子挤压。一般而言,挤压成型指代一种过程,所述过程被用于使可模塑的合成物成型而无需切割、磨铣、锯等等,且通常包括压制材料或使材料穿过具有预先确定的横截面区域的开口。
[0033] 术语“水合”或“固化”意在指代水化反应的一种水平,所述水平足以产生已硬化的水泥建筑制品,所述水泥建筑制品已获得了其潜在或最大强度的大部分。尽管如此,水泥复合材料或挤压成型的建筑制品可在它们已获得了显著的硬度和其最大强度的大部分很久之后继续水合或固化。
[0034] 术语“未干”、“未干材料”、“未干的挤压制品”、或“未干状态”意在指代水泥合成物的状态,所述状态还未达到其最终强度的大部分;但是,“未干状态”意在认定水泥合成物具有足够的内聚性以在水合或固化之前保持所挤压的形状。就这一点而言,刚被挤压的包括水硬性水泥和水的挤压制品应在发生大部分的硬化或固化之前被认为是“未干”的。未干状态并不一定是对已发生的固化或硬化的量的鲜明的分界线,而是应被理解为合成物在基本上固化之前的状态。因此,水泥合成物在挤压成型之后和基本上固化之前处于未干状态。
[0035] 术语“形状稳定”意在指代紧接挤压之后未干的挤压成型制品的状况,所述状况的特征在于挤压成型制品具有稳定的结构,所述结构并不因其自身的重量而变形。就这一点而言,形状稳定的未干挤压制品可在操作和进一步加工期间保持其形状。
[0036] 术语“复合材料”意在指代形状稳定的合成物,所述合成物由截然不同的组分(例如纤维、流变改性剂、水泥、骨料、促凝剂、等等)组成。就这一点而言,复合材料随着未干的挤压成型制品的硬度或形状稳定性增加而形成,并可制备成建筑制品。
[0037] 术语“类似石材”或“类似石材的特性”意在指代水泥合成物和挤压的水泥复合材料的建筑特性,所述建筑特性具有至少4MOH、更适宜地至少约5MOH的硬度值,更加适宜地至少约6MOH的硬度,更加适宜地7至8MOH的硬度。
[0038] 一方面,本发明提供了具有类似石材的特性的水泥复合材料制品。复合材料制品包括可挤压成型的水泥合成物。水泥复合材料制品具有至少4MOH的硬度值和至少1.3g/cm3的堆密度。更适宜地,水泥复合材料制品具有从约1.3g/cm3至约2.3g/cm3的堆密度。
[0039] 用于制造水泥复合材料制品的可挤压成型的水泥合成物
[0040] 用于制造水泥复合材料建筑制品的可挤压的水泥合成物包括水、水硬性水泥、纤维、骨料、流变改性剂、以及可选地,促凝剂或缓凝剂。除了这些组分以外,可挤压成型的水泥合成物可与其它外加剂混合以使挤压成型的水泥复合材料制品具有所需的特性,如在下文中更完整地描述。更特别地,水泥复合材料制品配制成相较于普通混凝土具有更大的硬度和抗压强度,并具有更大的韧性以较好地模仿石材和固体表面材料的特性。此外,本发明的水泥复合材料制品表现出柔性,而不像常规的石材制品。
[0041] A.水硬性水泥、水、以及骨料
[0042] 水硬性水泥是可在有水存在时凝固和硬化的材料。水泥可以是波特兰水泥、改良波特兰水泥、或砌筑水泥。出于本发明的目的,波特兰水泥包括所有具有高含量酸三的水泥合成物,包括波特兰水泥、化学上类似或类同于波特兰水泥的水泥、以及落在ASTM规范C-150-00中的水泥。当用在贸易中时,波特兰水泥意为通过粉磨熟料而制成的水硬性水泥,包括水硬性硅酸钙、酸钙、以及铝酸钙,且通常含有一种或多种形式的硫酸钙作为磨碎杂料。波特兰水泥在ASTM C 150中被分类为类型I、II、III、IV和V。其它水硬性可凝材料包括研磨的粒状高炉渣、水硬性熟石灰、白水泥、矿渣水泥、铝酸钙水泥、硅酸盐水泥磷酸盐水泥、高铝水泥、氯镁水泥、油井水泥(例如类型VI、VII和VIII)、以及这些和其它类似材料的组合。
[0043] 火山灰质/凝硬性(Pozzolanic)材料(例如矿渣、F类粉煤灰、C类粉煤灰以及硅微粉)当与常规水硬性水泥(例如波特兰水泥)组合使用时也可被认为是水硬性可凝材料。火山灰是硅质或硅酸铝质材料,所述材料具有胶凝值,并且在有水存在时且在精细分割的形式下会与在波特兰水泥的水合期间产生的氢氧化钙起化学反应以形成具有水泥特性的可水合的物种。硅藻土、蛋白石、黑硅石、粘土、页岩、粉煤灰、硅微粉、火山凝灰岩、浮岩、以及火山土是一些较熟知的火山灰。某些研磨的粒状高炉渣和高钙粉煤灰具有火山灰质和水泥特性两者。在ASTM C618中定义了粉煤灰。
[0044] 在可挤压成型的水泥合成物中水硬性水泥和火山灰质材料的量可根据其它组分的特性和浓度而变化。一般而言,水硬性水泥和火山灰质材料的组合量在从约25%至约75%的范围内(以可挤压成型的水泥合成物的重量衡量),更适宜地在从约35%至约65%的范围内(以可挤压成型的水泥合成物的重量衡量),而最适宜地在从约40%至约60%的范围内(以可挤压成型的水泥合成物的重量衡量)。
[0045] 简要地说,在挤压成型制品之中,水硬性水泥通过与水反应形成了水泥浆或凝胶,其中可通过促凝剂的使用或热养护而使反应速度大大增加,而水泥复合材料建筑制品的强度和物理特性由高浓度的纤维调制。通常,水硬性水泥在固化的水泥复合材料中的量被描述为干百分比(例如干重%或干体积%)。水硬性水泥的量可在从约40%至约95%的范围内变化(以干重衡量),更适宜地约50%至约80%(以干重衡量),而最适宜地约60%至约75%(以干重衡量)。应认识到,某些制品可采用更多或更少的水硬性水泥,视需要并取决于其它成分。
[0046] 水在本文所述的各种合成物中的量可在大范围内大幅变化。例如,水在可挤压成型的水泥合成物和未干的挤压成型制品中的量可在从约15%(以可挤压成型的水泥合成物的重量衡量)至约75%(以可挤压成型的水泥合成物的重量衡量)的范围内,更适宜地从约35%至约65%,而最适宜地从约40%至约60%(以可挤压成型的水泥合成物的重量衡量)。
另一方面,固化的复合材料或硬化的水泥复合材料制品可具有少于10%的自由水(以重量衡量),更适宜地少于约5%(以重量衡量),而最适宜地少于约2%的水(以重量衡量);但是额外的水可与流变改性剂、纤维、或骨料结合。
[0047] 在快速反应期间水在挤压制品中的量应足够供固化或水合,从而提供本文所述的最终特性。尽管如此,维持相对较低的水比水泥的比率(即w/c)增加了最终的水泥复合材料制品的强度。因此,典型地,实际或额定的水比水泥的比率最初在从约0.1至约0.6的范围内。
[0048] 尽管希望水泥复合材料建筑制品具有类似于石材的特性,但已发现利用本发明的方法制备的水泥建筑制品相较于天然石材和固体表面制品具有较低的密度。更特别地,水泥复合材料建筑制品具有至少约1.3g/cm3并少于3.0g/cm3的密度,更适宜地,至少约1.3g/cm3并少于约2.3g/cm3,而更加适宜地,从约1.6g/cm3至约1.7g/cm3。
[0049] 在可挤压成型的水泥合成物中也包括骨料从而为水泥复合材料制品提供硬度。更特别地,典型地包括较强固、较硬的骨料,因为这些骨料会比在常规制品中更少地破坏水泥复合材料制品的粘贴强度。
[0050] 骨料包括细骨料和粗骨料两者。用于粗和/或细骨料的合适材料的范例包括硅石、石英、压碎的球状大理石、玻璃球、花岗岩、石灰石、铝矾土、方解石、长石、冲积沙、或任何其它耐久骨料、以及它们的混合物。在优选的实施例中,细骨料主要包括“沙”而粗骨料主要包括“石”(例如3/8英寸和/或3/4英寸的岩石),如同本领域技术人员对这些术语的理解。
[0051] 一方面,可挤压成型的水泥合成物(以及水泥复合材料制品)包括两种不同尺寸的粗骨料(即较粗和较不粗的骨料)。更特别地,可挤压成型的水泥合成物可包括较粗骨料(例如3/4英寸的岩石)和较不粗骨料(例如3/8英寸的岩石)。
[0052] 应认识到,尽管本文论述为采用两种尺寸的粗骨料,但可挤压成型的水泥合成物可仅由较不粗的或仅由较粗的骨料制成而不会偏离本发明。
[0053] B.纤维
[0054] 可挤压成型的水泥合成物和挤压成型的水泥复合材料建筑制品相较于常规的混凝土合成物包括相对较高浓度的纤维。此外,典型地,纤维充分均匀地散布在水泥合成物中以使由纤维赋予的有益特性最大化。存在纤维是为了给可挤压成型的水泥合成物、未干的挤压成型制品、以及水泥复合材料建筑制品提供结构性增强。
[0055] 可采用各种类型的纤维以获得特定的特征。例如,可挤压成型的水泥合成物可包括天然出现的有机纤维(所述纤维提取自麻、植物的叶子或茎、硬木、软木、等等)、由有机聚合物制成的纤维(所述纤维的范例包括聚酯尼龙(即锦纶)、聚乙烯醇(PVA)、聚乙烯、和聚丙烯)、和/或无机纤维(所述纤维的范例包括玻璃、石墨、硅石、硅酸盐、微玻璃制成的耐砂、陶瓷、纤维、碳化物、金属材料、等等)。例如,特别优选的纤维包括玻璃纤维、硅灰石、麻蕉、甘蔗渣、木纤维(例如软松、南方松、杉木、以及桉木)、棉、氮化硅、碳化硅、氮化硅、碳化钨、以及Kevlar纤维;但是,可采用其它类型的纤维。
[0056] 在制造水泥合成物中所用的纤维可具有高的长宽比(或“纵横比”),因为典型地,较长、较窄的纤维每单位重量赋予最终的水泥复合材料建筑制品更多强度。纤维可具有至少约10:1的平均纵横比,优选至少约50:1,更优选至少约100:1,而最优选大于约200:1。
[0057] 在一个实施例中,可采用各种长度的纤维,例如从约0.1cm至约2.5cm,更优选从约0.2cm至约2cm,而最优选约0.3cm至约1.5cm。在一个实施例中,可采用少于约5mm的长度的纤维,更优选少于约1.5mm,而最优选少于约1mm。
[0058] 在一个实施例中,非常长或连续的纤维可掺混入水泥合成物中。当用在本文中时,“长纤维”意在指代长度大于约2.5cm的细长的合成纤维。就这一点而言,可存在长纤维,所述长纤维具有从约2.5cm至约10cm的范围的长度,更优选约3cm至约8cm,而最优选从约4cm至约5cm。
[0059] 纤维在可挤压成型的水泥合成物中的浓度可大范围变化,从而为挤压成型的合成物和最终的水泥复合材料制品提供各种特性。通常,纤维可以大于约1%的量(以可挤压成型的水泥合成物的体积衡量)存在于可挤压成型合成物中,更适宜大于约2%,而更适宜大于约3%,而更加适宜从约3%至约20%,而最适宜从约3.5至约8%(以可挤压成型的水泥合成物的体积衡量)。
[0060] 此外,特定类型的纤维在合成物中的量可变化。例如,在一个实施例中,PVA可以从约1.5%至约3.5%的量(以可挤压成型的水泥合成物的体积衡量)存在于可挤压成型的水泥合成物中。软和/或硬木(例如纤维素纤维)可以在上文中关于普通纤维所描述的量存在于可挤压成型的水泥合成物中,或以从约1.5%至约5.0%的量(以可挤压成型的水泥合成物的体积衡量)存在。
[0061] 在一个实施例中,可基于包括水泥复合材料制品的成品的所需结构性特征来选择纤维的类型,其中可相较于轻型天然纤维优选具有致密的合成纤维,或反之亦然。典型地,天然或软木纤维的比重为约1.2。另一方面,合成纤维可具有的比重在从聚酯纤维的约1、PVA纤维的约1.3、Kevlar纤维的约1.5、石墨和石英玻璃的约2、玻璃纤维的约2.3、碳化硅和氮化硅的约3.2、大多数金属的约7至约9(其中不锈钢纤维约8、氧化锆纤维约5.7),至碳化钨纤维的约15的范围。就这一点而言,天然纤维趋向于具有约1或更小的密度,而合成纤维趋向于具有从约1至约15的密度。
[0062] 在一个实施例中,常规或较长长度的纤维(例如松木、杉木、或其它天然纤维)的混合物可与微纤维(例如硅灰石或微玻璃纤维)组合以提供独特的特性,包括增加的韧性、柔性、以及抗弯强度,因为在水泥合成物内部较大和较小的纤维在不同层面起作用。
[0063] 鉴于上述情况,以相对较高的量添加纤维,以产生具有增加的抗拉强度、延伸率、偏转率、变形能力、以及柔性的水泥复合材料建筑制品。纤维有助于提供水泥复合材料建筑制品像石材那样被锯、旋拧、研磨、和/或磨铣的能力。
[0064] C.流变改性剂
[0065] 在本发明的一个或多个实施例中,可挤压成型的水泥合成物和水泥复合材料建筑制品包括流变改性剂。流变改性剂可与水和纤维混合以有助于充分均一地(或均匀地)使纤维散布在水泥合成物中。此外,流变改性剂可给挤压成型制品赋予形状稳定性。这部分是因为当合成物处于未干状态时流变改性剂充当了粘合剂以增加早期未干强度,从而使合成物可被操作或者加工而无需使用模具或其它的形状保持装置。流变改性剂有助于控制孔隙率(即当水通过蒸发而除去时产生均匀散布的微孔)。此外,流变改性剂可给固化的水泥复合材料制品赋予增加的韧性和柔性,这可带来增强的偏转特性。由此,流变改性剂与其它合成物组分配合以获得更加可变形、柔性、可弯曲、可压紧、坚韧、和/或有弹性的水泥建筑制品。
[0066] 例如,流变改性剂的类型的变化、分子量、支化度、量、以及分布可影响可挤压成型的水泥合成物、未干的挤压成型制品、以及水泥复合材料建筑制品的特性。就这一点而言,流变改性剂的类型可以是任何能够表现为或提供本文所述的流变特性的多糖、蛋白质材料、和/或合成有机材料。某些合适的多糖、特别是纤维素醚的范例包括甲基羟乙基纤维素、羟甲乙基纤维素、羧甲基纤维素、甲基纤维素、乙基纤维素、羟乙基纤维素、以及羟乙丙基纤维素、淀粉(例如支链淀粉、直链淀粉、淀粉醋酸酯、淀粉羟乙基醚、离子淀粉、长链烷基淀粉、糊精、胺淀粉、磷酸淀粉、以及双淀粉)、多糖胶(例如海洋凝胶、褐藻酸、藻胶、琼脂、阿拉伯胶、瓜尔豆胶、刺槐豆胶、刺梧桐胶、黄蓍胶、等等)。蛋白质材料的范例包括胶原蛋白酪蛋白生物聚合物、生物聚酯、等等。可赋予流变改性特性的合成有机材料的范例包括基于石油的聚合物(例如聚乙烯、聚丙烯)、乳胶(例如苯乙烯-丁二烯)、以及可生物降解的聚合物(例如脂肪族聚酯、聚羟基烷酸、聚乳酸、聚己酸内酯)、聚氯乙烯、聚乙烯醇、以及聚乙酸乙烯酯。粘土也可充当流变改性剂以有助于散布纤维和/或赋予性状稳定性至未干的挤压成型的中间制品。
[0067] 流变改性剂在可挤压成型的水泥合成物以及水泥建筑制品内部的量可根据类型、支化、分子量、和/或与其它合成物组分的相互作用而从低到高浓度地变化。例如,存在于可挤压成型的水泥合成物中的流变改性剂的量可在从约0.1%至约4%的范围内(以可挤压成型的水泥合成物的体积衡量),适宜地从约0.25%至约2%(以体积衡量),更加适宜约0.5%至约1.5%(以体积衡量),而最适宜从约0.75%至约1%(以可挤压成型的水泥合成物的体积衡量)。存在于固化的水泥复合材料制品中的流变改性剂的量可在从约0.5%至约1%的范围内(以体积衡量)。
[0068] 此外,合成有机材料的范例(所述合成有机材料为通常与流变改性剂一起使用的增塑剂)包括聚乙烯吡咯烷、聚乙二醇、聚乙烯醇、聚乙烯甲醚、聚丙烯酸、聚丙烯酸盐、聚乙烯丙烯酸、聚乙烯丙烯酸盐、聚丙烯酰胺、环氧乙烷聚合物、聚乳酸、合成粘土、苯乙烯-丁二烯共聚物、乳胶、它们的共聚物、它们的混合物、等等。例如,增塑剂在可挤压成型的水泥合成物中的量可在从没有增塑剂至约40%增塑剂的范围内(以重量衡量),更适宜约1%至约35%的增塑剂(以重量衡量),更加适宜地从约2%至约30%,而最适宜从约5%至约25%(以重量衡量)。
[0069] D.填料
[0070] 在一个实施例中,可挤压成型的合成物、未干的中间状态挤压成型制品、以及固化的水泥复合材料制品可包括填料。可选地,有明确不包括填料材料的情况。如果确实使用了填料,则通常包括较小的量并主要用于降低挤压成型制品的成本。由于希望获得形式为石材般建筑材料、具有石材特性的挤压成型制品,填料应选择成不会产生过于柔软或难以操作的制品。填料的范例包括硬硅酸盐、玻璃、玄武岩、花岗岩、煅烧铝矾土。本领域技术人员已知关于可用在水泥合成物中的填料的类型和量的其它信息。还可选择填料以增加水泥复合材料制品的艺术或美学特性。
[0071] 在一个实施例中,可挤压成型的水泥合成物可包括大范围变化的量的填料。特别地,当采用填料时,每一填料可独立地少于约10%地存在(以可挤压成型的水泥合成物的重量衡量),适宜地少于约7%(以重量衡量),更适宜地少于约3%(以重量衡量),而最适宜地在约2%至约12%之间(以可挤压成型的水泥合成物的重量衡量)。
[0072] 在一个实施例中,固化的水泥复合材料制品可包括大范围变化的量的填料。特别地,当采用填料时,每一填料可独立地少于约15%地存在(以重量衡量),适宜地少于约10%(以重量衡量),更适宜地少于约5%(以重量衡量),而最适宜地在约3%至约15%之间(以重量衡量)。在某些情况下,诸如石灰岩的填料可高达约70%地存在(以重量衡量)。例如,当包括在固化的水泥复合物中时,蛭石可从约2%(以重量衡量)至约20%(以重量衡量)地存在,而适宜地从约3%(以重量衡量)至约16%(以重量衡量)。
[0073] E.外加剂和其它材料
[0074] 多种外加剂和其它材料可添加至可挤压成型的水泥合成物以赋予由此制成的可挤压成型水泥合成物和水泥复合材料制品需要的特性。可用在本发明的可挤压成型的水泥合成物中的外加剂的范例包括但不限于:促凝剂、引气剂、强度增强胺以及其它增强剂、分散剂、减水剂、超塑化剂、水结合剂、粘度调节剂、缓蚀剂、色素、润湿剂、水溶性聚合物、拒水剂、减渗剂、送剂、防霉外加剂、杀菌外加剂、杀虫外加剂、精细分割的矿物外加剂、碱反应减速剂、粘合外加剂、成核剂、挥发性溶剂、盐、缓冲剂、酸性剂、着色剂、等等、以及它们的混合物。
[0075] 在可挤压成型的水泥合成物、未干的中间状态的挤压成型制品、以及水泥复合材料建筑制品可包括促凝剂。如本文所述,可包括促凝剂以减少诱导期的持续时间或促使快速反应期的发动。相应地,可采用传统的促凝剂(例如MgCl2、NaCO3、KCO3、CaCl2等等),但会导致水泥复合材料建筑制品的抗压强度降低;然而,这可能是理想的副作用从而产生可像石材那样被锯、钉、研磨、以及磨铣的制品。例如,传统的促凝剂可从约0.001%至约5%(以总重衡量)地存在于未干的中间状态挤压成型制品中,更适宜从约0.05%至约2.5(以重量衡量),而最适宜从约0.11%至约1%(以重量衡量)。
[0076] 可选地,延缓剂(又被称作延缓物、缓凝剂、延迟凝固或水合控制外加剂)也可用于延缓、延迟、或减慢水泥水合的速率。此外,延缓剂可维持恒定的流变能力并减少挤压机内的集结。它们可被添加至可挤压成型合成物、未干的挤压成型制品、以及水泥复合材料建筑制品。延缓剂的范例包括木质素磺酸盐、以及它的盐类、羟基羧基酸、硼砂、葡萄糖酸、酒石酸、粘液酸、以及其它有机酸和它们相应的盐类、膦酸酯、单糖、二糖、三糖、多糖、某些其它糖类(例如食糖和糖酸)、纤维素及其衍生物、硼酸的水溶性盐、水溶性硅酮化合物、糖酸、以及它们的混合物。范例性延缓剂是以 的商标市售的,来自Masterbuilders公司(BASF的分公司,化学公司,Cleveland市,Ohio州)。
[0077] 引气剂是将微小的气泡引入水泥合成物中的化合物,所述水泥合成物随后硬化成具有微小气孔的水泥复合材料制品。被引入的空气极大改进了在冻解冻循环期间接触到水分的制品的耐久性。引气剂还能以低的浓度降低可挤压成型的水泥合成物的表面张力。空气的引入还可增加可挤压成型的水泥合成物的可操作性并减少离析和泛浆。合适的引气剂的范例包括木材树脂、磺化木质素、石油酸、蛋白质材料、脂肪酸、树脂酸、烷基苯磺酸盐、磺化碳氢化合物、松香皂树脂、阴离子表面活性剂、阳离子表面活性剂、非离子表面活性剂、天然松香、合成松香、无机引气剂、合成洗涤剂、这些化合物的相应盐类、以及这些化合物的混合物。以一定量添加引气剂以在可挤压成型的水泥合成物中产生所需水平的空气。
[0078] 在另一可选的实施例中,混凝土合成物并不包括任何引气剂而是更大量的超塑化剂,如下文所论述。
[0079] 强度增强胺是使由可挤压成型的水泥合成物制成的水泥复合材料制品的抗压强度提高的化合物。强度增强胺包括一种或多种化合物,所述化合物来自选自包括以下物质的集合:聚(羟烷基化)聚乙烯胺、聚(羟烷基化)聚乙烯聚胺、聚(羟-烷基化)聚乙烯亚胺、聚(羟-烷基化)聚胺、联氨、1,2-丙二胺、聚乙二醇胺、聚(羟烷基化)胺、以及它们的混合物。范例性强度增强胺为2,2,2,2四羟基乙二胺。
[0080] 分散剂用于可挤压成型的水泥合成物中以增加流动性而无需添加水。分散剂可用于降低可挤压成型的水泥合成物中水的含量以增加强度而无需添加额外的水。分散剂(若使用的话)可以是任何合适的分散剂,例如木质素磺酸盐、β-磺酸盐、磺化三聚氰胺甲醛缩合物、天冬氨酸盐、带有和不带聚醚单元的聚羧酸、萘磺酸盐甲醛缩合树脂、或低聚分散剂。根据分散剂的类型,分散剂可充当增塑剂、高效减水剂、助流剂、防絮凝剂、和/或超塑化剂。
[0081] 分散剂的一个类别包括中效减水剂。中效减水剂应至少符合ASTM C494中对A类的要求。
[0082] 分散剂的另一类别包括高效减水剂(HRWR)。这些分散剂能够使给定的可挤压成型水泥合成物的水含量减少多达从约10%至约50%。HRWR可用于增加强度或大为增加塌落度以产生“流动的”可挤压成型水泥合成物而无需添加额外的水。可用在本发明中的HRWR包括由ASTM C 494和F类和G类、以及ASTM C 1017中的1和2类所涵盖的HRWR。在美国专利号6,858,074中描述了HRWR的范例,所述专利通过引用在它与本文相一致的范围内结合入本文。
[0083] 防潮外加剂降低了具有低的水泥含量、高的水/水泥比率的可挤压成型水泥合成物的渗透性,或降低了骨料中细料的不足。这些外加剂延缓水分渗透进干的混凝土中并包括某些皂类、硬脂酸盐、以及石油制品。
[0084] 减渗剂用于减少水在压力下被传导通过可挤压成型的水泥合成物(以及水泥复合材料制品)的速率。可采用硅微粉、粉煤灰、经研磨的矿渣、天然火山灰、减水剂、以及乳胶来减少可挤压成型的水泥合成物的渗透性。
[0085] 减缩剂包括但不限于碱金属硫酸盐、碱土金属硫酸盐、碱土金属氧化物,例如硫酸钠和氧化钙。
[0086] 精细分割的矿物外加剂为处于粉末或磨粉形式的材料,所述材料在混合过程之前或期间添加至可挤压成型水泥合成物以改进或改变波特兰水泥的某些塑性或硬化特性。精细分割的矿物外加剂可根据其化学或物理特性而分类成:水泥材料;火山灰;火山灰质和水泥材料;以及名义惰性材料。名义惰性材料包括精细分割的原料石英、白石、石灰岩、大理石、花岗岩、以及其它。
[0087] 出于审美和安全的原因,天然和合成的外加剂用于给可挤压成型的水泥合成物着色。着色外加剂通常包括色素并包括炭黑、氧化铁、酞菁、赭石、氧化铬、氧化以及钴蓝。
[0088] 在一个实施例中,由纤维增强的基本上固化的水泥复合材料制品可涂敷有保护性或密封性材料,例如涂料、色漆、清漆、纹理涂层、等等。就这一点而言,涂层可在水泥复合材料建筑制品基本上固化之后被涂敷至其上。例如,可将水泥建筑制品上色从而使出现在表面的纤维与制品的其余部分为不同的色度,和/或被纹理化从而类似于石材制品。
[0089] 混凝土行业中已知的密封剂可被涂敷至表面和/或混合至水泥合成物中以提供防水特性。密封剂包括硅烷和硅氧烷。
[0090] 制造水泥复合材料制品
[0091] 图1的示意图示出了可在可挤压成型的水泥合成物、未干的中间状态挤压成型制品、水泥复合材料制品、和/或水泥复合材料建筑制品的形成期间使用的制造系统和设备的实施例。应认识到,这仅是出于描述一般的加工系统和设备的目的而示出的一个范例,其中可对其进行各种添加和修改以制备水泥复合材料制品(以及建筑制品)。同样,示意图不应被理解为对与其相关地描述的任一特征件的存在、布置、形状、方位、或尺寸的任何限制。在申明此点后,进行对系统和设备的更详细的描述,所述系统和设备可制备根据本发明的可挤压成型水泥合成物以及水泥复合材料建筑制品。
[0092] 现在参考图1A,它提供了根据本发明的挤压成型系统10的实施例。这种挤压成型系统10包括第一混合器16、可选的第二混合器18、以及挤压机24。第一混合器16构造成通过至少第一给料流12接纳材料的至少一股给料以便混合至第一混合物20中(例如,在一个实施例中第一混合物20为前文所描述的含纤维混合物)。适当混合之后(所述混合可在高切力下进行),在将温度维持在低于加速水合的温度的同时,第一混合物20作为材料流离开第一混合器16以供进一步加工。
[0093] 通过将第一混合物20脱离任何额外组分地混合,分别混合的组分可均匀地分布在合成物中。例如,使纤维与至少流变改性剂及水在它们与额外组分组合之前混合会是有利的。就这一点而言,流变改性剂、纤维、和/或水在高切力下混合以增加纤维在其中的均匀分布。流变改性剂和水形成了具有高屈服应力和粘度的塑性合成物,所述塑性合成物能够将剪力从混合器下移至纤维高度。这样,可利用比在常规步骤中所需的少得多的水使纤维均匀地散布在含纤维混合物中,常规步骤典型地需要高达99%的水来散布纤维。
[0094] 可选的第二混合器18具有第二给料流14,所述第二给料流将待混合的材料供应至第二混合物22中,在所述第二混合物中可通过包含加热元件而增强这种混合。例如,第二混合器18可在将额外的组分(例如额外的水、促凝剂、水硬性水泥、增塑剂、骨料、成核剂、分散剂、聚合物粘接剂、挥发性溶剂、盐、缓冲剂、酸性剂、着色剂、填料、等等)与其它组分组合以形成可挤压成型水泥合成物之前接纳并混合该额外的组分。第二混合器18是可选的,因为额外组分可与含纤维混合物在第一混合器16中混合。
[0095] 如在所示的示意图中那样,挤压机24包括挤压机螺旋件26、可选的加热元件(未示出)、以及带有母模逃孔30的模头28。可选地,挤压机可以是单螺旋件、双螺旋件、和/或活塞型挤压机。在第一混合物20和第二混合物22进入挤压机之后,它们可被组合和混合成可挤压成型的水泥合成物。
[0096] 通过将组分混合,在不同的组分(例如流变改性剂和纤维)之间形成了交界面,这允许单个的纤维互相拉开。通过用流变改性剂增加粘度和屈服应力,更多纤维可充分均匀地分布在混合物和最终固化的制品中。同样,可增加不同组分之间的内聚力以增加颗粒间的力和毛细力以便增强混合和挤压之后的形状稳定性。例如,不同组分之间的内聚力可以比喻成粘土,从而使未干的挤压制品可被放置在陶轮上并类似于被制成陶器的普通粘土那样被操作。
[0097] 在一个实施例中,额外的给料流(未示出)可位于沿挤压机24长度的任何位置处。额外的给料流的可利用性可使得制造过程能够在任何位置处添加某些组分,从而在混合和挤压期间改良可挤压的水泥合成物的特性以及在挤压之后未干的中间状态的挤压制品的特性。例如,在一个实施例中,在挤压之前约60分钟之内至约1秒之内将促凝剂供应至合成物中会是有利的。更优选地,在挤压之前约45分钟至约5秒之内将促凝剂混合至合成物中,更加适宜在约30分钟至约8秒之内,而最适宜在挤压之前约20分钟至约10秒之内。这可使得未干的中间状态挤压制品能够构造成具有增加的形状稳定性以及在快速反应期开始之前的缩短的诱导期。
[0098] 继续参考图1A,随着可挤压成型的水泥合成物移动至挤压机24的末端,它在母模逃孔30处被挤压之前穿过模头28。模头28和母模逃孔30可构造成任何形状或布置,只要能制出未干的中间状态的挤压制品(在本文中也被称为未干的挤压制品或挤压成型制品),所述挤压制品能够被进一步加工或修整成水泥复合材料建筑制品。在所示的实施例中,这样做是有利的:母模逃孔30具有圆直径从而使挤压制品32具有棒状的形状。其它示范性横截面形状示于图1C中,包括六边形42、矩形44、方形46、或工字梁48。挤压成型的制品可表征为在处于未干状态的时候就是即刻形状稳定的。也就是说,挤压成型制品可被即刻加工而不会变形,其中加工可包括切割、锯、成型、研磨、磨铣、修型、钻孔、等等。就这一点而言,处于未干状态的挤压成型制品无需在制备成最终的水泥复合材料建筑制品的尺寸、形状、或形式之前固化。例如,未干状态的加工可包括以下加工:(a)通过磨铣、锯、切割、研磨等等形成石材般的表面,所述表面具有特定的尺寸,例如宽度、厚度、长度、半径、直径、表面纹理、等等;(b)将挤压成型制品弯曲以形成弧形的水泥制品,所述制品可以是任何尺寸和形状的,例如弧形的台面或边缘、以及其它装饰性和/或结构性元件;(c)形成具有6英尺9英寸、8英尺8英寸、9英尺1英寸、27英尺、40英尺、41英尺、60英尺、61英尺、80英尺、81英尺、等等长度的制品;(d)用滚子纹理化,所述纹理化可为水泥复合材料建筑制品赋予石材和/或大理石般的表面;(e)使表面涂漆、涂防水、或以其它方式涂上涂层,所述涂层可涂敷包括硅烷、硅氧烷、乳胶、等等的涂层;以及(1)运送、装船、或以其它方式移动和/或操作。同样,从未干状态的加工产生的副产品可放置在给料合成物中并再加工。由此,未干水泥副产品可被回收利用,这可显著减少浪费和制造成本。
[0099] 图1B是模头29的示意图,所述模头29可用于图1A的挤压过程。就这一点而言,模头29包括母模逃孔30,所述母模逃孔30具有孔洞形成元件31。孔洞形成元件31可以是如图所示的圆形的,或具有任何横截面形状。就这一点而言,孔洞形成元件31可在挤压制品中形成孔洞,所述孔洞示于图1C中。由于挤压制品可以是在挤压时即刻形状稳定的,因此孔洞可保持孔洞形成元件31的尺寸和形状。此外,本领域中已熟知各种具有孔洞形成元件的、可产生环形挤压制品的模头,所述各种模头可被改型或改良(如果需要的话)从而可用在根据本发明的挤压过程中。
[0100] 现在参考图1C,它示出了挤压制品40的其它实施例。相应地,图1A或图1B的模头和母模逃孔可被改良或更改以提供具有各种横截面区域的挤压制品40,其中挤压制品40的横截面区域可基本上与母模逃孔的横截面区域相同。例如,横截面区域可以是六边形42、矩形44(例如2×4、1×10,等等)、方形46、工字梁形48、或圆柱形50,可选地,所述横截面区域可具有连续孔49。同样,可经由挤压制备另外的横截面形状。更特别地,图1B的模头和母模逃孔可用于使得六边形42、矩形44、方形46、工字梁形48、或圆柱形50可以可选地包括连续的圆形孔51、矩形孔53、方形孔57、等等。同样,可采用复杂的模头和开口以便制备具有连续孔
49和多个较小的孔51的圆柱形50。此外,任何一般的横截面形状可被进一步加工成特定形状,例如从4×4的方形变成2×4。可选地,模孔可产生超大尺寸的制品,所述超大尺寸的制品随后被修整成所需的规格以确保较大的一致性。
[0101] 因此,前述的过程可用于挤压具有一个或多个连续孔的建筑制品以降低制品的重量。例如,台面状的材料可被挤压成具有一个或多个孔洞,在处于未干状态时或在固化之后钢筋可插入所述孔洞中。在固化的台面材料的情况下,可利用环氧树脂或其它粘合剂以在钢筋和材料之间提供强劲的粘接从而将钢筋保持在孔洞内部的适当位置。例如,图1C的圆柱形50,以及其它形状,可被制成大的台面。可选地,这些结构可包括大的内部开口49以降低质量和成本,以及在壁中包括较小的孔洞51以允许加强钢筋的插入,如图所示。
[0102] 在一个实施例中,在挤压之前将可挤压成型的水泥合成物脱气。尽管某些过程可采用特定的脱气过程以从可挤压成型的水泥合成物除去大量的空气,但其它过程可通过发生在挤压机中的混合过程来除去空气。在任何情况下,主动或被动的脱气可提供不具有大的气孔或孔隙构造的挤压成型制品。一般而言,优选将可挤压成型的水泥合成物脱气,因为这减少了合成物的孔隙率,并且由此增加了成品的强度。例如,经脱气的水泥复合材料可具有的夹带空气的量为从约0%至约10%,更适宜从约0.1%至约5%,而最适宜约0.2%至约3%。因此,可将挤压成型制品和因而形成的水泥复合材料建筑制品制成使得基本上或完全没有任何多孔隙构造。
[0103] 在一个实施例中,挤压成型制品可在烘干机或压热器中被进一步加工。烘干机可用于烘干挤压成型制品从而从硬化的制品除去多余的水。在另一实施例中,可通过压热器加工挤压成型制品以增加固化和强度发展的速率从而使得产生的制品强度增加约50%至约100%。
[0104] 图2是示出了可选的挤压过程的示意图,所述挤压过程可用于制备根据本发明的水泥复合材料建筑制品。就这一点而言,挤压过程可考虑使用滚子挤压系统200,所述滚子挤压系统200利用滚子将可挤压的水泥合成物挤压成未干的中间状态的挤压制品。这种滚子挤压系统200包括混合器216,所述混合器216构造成通过给料流212接收材料的至少一股给料以便混合至混合物220中。在适当混合之后(可如本文所述地那样执行所述混合),混合物220作为材料流离开混合器216以备进一步加工。
[0105] 混合物220随后被涂敷至运输件222或其它类似的输送件从而从涂敷场所移动可挤压成型的水泥合成物。这允许合成物形成为可被加工的水泥流224。就这一点而言,水泥流224可在第一滚子226之下经过,所述第一滚子226设置在距运输件222预先设定的距离处并相对于其具有预先设定的横截面区域,且可将水泥流224压制或成型为未干的中间状态的挤压制品228。可选地,运输件222可随后运送未干的中间状态的挤压制品228通过第一压延机230,所述第一压延机230包括上滚子230a和下滚子230b。压延机230可构造成具有预先设定的横截面区域,从而使未干的中间状态的挤压制品228进一步成型和/或压缩成成型的未干中间状态挤压制品242。同样,包括第一滚子240a和第二滚子240b的可选的第二压延机240可用于代替第一压延机230或除第一压延机230之外额外使用。压延机230、240的组合可有利于提供基本上如所希望的那样成型的未干中间状态挤压制品。可选地,可不包括第一滚子226,而可通过任何数量的压延机230、240加工水泥流224。
[0106] 此外,成型的未干中间状态挤压制品242、或本文所述的其它挤压制品(例如来自图1A所示的过程的挤压制品)可由加工装置244进一步加工。加工装置244可以是用来加工本文所述的未干中间状态挤压制品材料的任何类型的设备或系统。就这一点而言,加工装置244可锯、研磨、磨铣、切割、弯曲、涂敷、烘干、或以其它方式将成型的未干中间状态挤压制品242成型或进一步加工成经加工的挤压制品246。同样,从加工装置244获得的副产品260可被回收利用至给料合成物212中,或随同混合物220转移至运输件222。
[0107] 在一个实施例中,组合的固化/烘干过程可用于固化和烘干水硬性水泥以形成挤压成型的水泥复合材料。例如,可在从约75至95℃的温度下执行组合的固化/烘干过程48小时以获得最终强度的约80%。但是,在任何固化和/或烘干过程中较大的会需要更多的时间。在另一实施例中,可在压热器中进行组合的固化/烘干过程。例如,压热器可在约190℃的温度下、在约12巴下固化/烘干约12小时。
[0108] 可选地,可将挤压成型制品覆盖在塑料中和/或储存一段时间以允许挤压制品固化。这可允许挤压制品随时间硬化以产生固化的水泥复合材料制品所需的强度。例如,在28天之后,固化的水泥复合材料制品可具有最终强度的约80%,并可被放置在烘干机中以除去残余的水。
[0109] 在另一实施例中,组合的蒸汽养护和蒸压过程用于固化水硬性水泥。典型地,水泥首先由蒸汽养护约1至6小时并随后在约190℃或更高的温度、在12巴下蒸压养护约12小时。通过蒸压养护,所形成的水泥制品获得了约100%的额外强度。
[0110] 在一个实施例中,可这样来进一步加工未干中间状态挤压制品:致使或允许未干中间状态挤压制品中的水硬性水泥水合或以其它方式固化从而形成凝固的水泥复合材料建筑制品。就这一点而言,水泥复合材料建筑制品可制备成在挤压之后即刻形状稳定的,从而允许对它的操作而不会破损。更优选地,可挤压的水泥合成物、或未干中间状态挤压制品可在挤压之后的数分钟之内、更适宜在10分钟之内、更加适宜在5分钟之内、而最适宜在1分钟之内形状稳定。最优化的和优选的合成物和方法可导致在挤压之后形状稳定的未干中间状态挤压制品。流变改性剂的使用可用于产生即使没有水硬性水泥粘合剂的水合作用也即刻形状稳定的挤压制品。
[0111] 为了获得形状稳定性,制造过程可简单地允许未干中间状态挤压制品置于原地并凝固而没有任何额外的加工,或可致使未干中间状态挤压制品水合和/或凝固。当制造包括致使未干中间状态挤压制品水合、凝固、或以其它方式固化时,制造系统可包括烘干机、加热器或压热器。烘干机或加热器可构造成产生足够的热量以从挤压制品驱走或蒸发水,从而增加其刚度和孔隙率或促使快速反应期的开始。另一方面,压热器可提供加压蒸汽以促使快速反应期的开始。
[0112] 在一个实施例中,除了在可挤压的水泥合成物中包括促凝剂之外,可允许或促使未干中间状态挤压制品开始如本文所述的快速反应期。就这一点而言,可通过改变挤压制品的温度或改变压力和/或相对湿度而促使未干中间状态挤压制品开始快速反应期。同样,可通过将促凝剂构造成在挤压之后预定的一段时间之内使反应开始而引发快速反应期。
[0113] 在一个实施例中,水泥复合材料或水泥复合材料建筑制品的制备可包括使未干的中间状态挤压制品相较于常规混凝土或其它水硬性可凝材料在缩短的时段之内、或以较快的反应速率基本上水合或以其它方式固化成水泥复合材料建筑制品。结果,水泥复合材料建筑制品可在约48小时之内、更适宜在约24小时之内、更加适宜在12小时之内、而最适宜在6小时之内基本上固化或硬化,取决于所用的粘合剂的类型。由此,制造系统和过程可构造成用以获得快速固化速率,从而使水泥复合材料建筑制品可被进一步加工或修整。
[0114] 在一个实施例中,正在固化或已固化的水泥复合材料可被进一步加工或修整。这种过程可包括将水泥复合材料制品砂纸打磨、切割、钻孔、研磨、磨铣和/或成型为所需形状,其中合成物适宜于以上述方式成型。相应地,当切割水泥复合材料建筑制品时,纤维和流变改性剂可促成直的切割线,所述直的切割线可形成而不使材料的切割面或内部面开裂或碎裂。这使得水泥复合材料建筑制品能够成为石材替代品,因为消费者可购买较大的材料厚板并用标准设备切割成所需形状和长度。
[0115] 在一个实施例中,可通过修改制品外表面的系统来加工形状稳定的未干中间状态挤压制品。这种修改的一个范例是使未干的中间状态挤压制品穿过压延机或一系列滚子,所述压延机或滚子可赋予类似石材的外观。就这一点而言,水泥复合材料建筑制品可作为具有石材或其它固体表面材料的美学外观和纹理的石材替代品。同样,某些着色剂、染料、和/或色素可涂敷至水泥复合材料建筑制品的表面或散布在其中,从而获得各类石材的颜色
[0116] 未干的挤压的中间制品还可在处于未干状态时重塑以产生例如弯曲的制品或其它具有所需半径的建筑制品。这是相对于传统石材制品的显著优势,传统石材制品难以弯曲和/或所述传统石材制品必需经研磨和/或磨铣以具有弯曲的轮廓。在一个实施例中,可用使纤维暴露在表面处的方式打磨和/或磨光水泥复合材料建筑制品。由于纤维在制品中的高百分比,大量的纤维可暴露在表面处。这可提供有趣的和创造性的纹理,所述纹理可增加制品的美学质量。
[0117] 水泥复合材料建筑制品
[0118] 本发明提供了制造水泥复合材料建筑制品的能力,所述水泥复合材料建筑制品具有几乎任何所需尺寸和形状,无论是挤压成所需形状或是稍后切割、研磨、磨铣或以其它方式形成为所需尺寸和形状。范例包括建筑制品(例如台面、瓷砖、覆层、屋面瓦、等等)以及结构性制品(例如带有挤压或喷塑模压制品的预铸或成型元件)。相应地,水泥复合材料建筑制品可承载或不承载。因此,水泥复合材料建筑制品可用作石材替代品以供几乎任何建筑应用。
[0119] 固化的水泥复合材料制品可构造成具有各种特性以充当石材替代品。可充当石材替代品的固化的水泥复合材料制品的范例可具有以下特性的任何一种:具有类似于石材和其它固体表面材料的硬度和/或韧性以防止制品开裂和爆裂;具有高抗压强度以提供支承和耐久性以便用于类似石材的制品中;以及高抗弯强度以提供柔性以便用于操作制品和/或将制品弯折和弯曲成所需的制品形状。在实现这些特性的同时保持制品的堆密度显著低于天然石材和固体表面材料的堆密度。
[0120] 在一个实施例中,未干的中间状态挤压制品或水泥复合材料可制备成如前文所述的水泥复合材料建筑制品。就这一点而言,固化的水泥复合材料制品的一个实施例的特征在于具有的比重可大于约1.3或在从约1.3至约3.0的范围,更适宜从约1.3至约2.3,而最适宜从约1.6至约1.7,所述比重包含了微孔或孔隙构造。
[0121] 固化的复合材料的一个实施例的特征在于具有至少约6,000psi、更适宜至少约8,000psi、而更加适宜至少约10,000psi的抗压强度。
[0122] 在一个实施例中,固化的复合材料可具有至少约1,500psi、更适宜至少约2,000psi、更适宜至少约3,000psi、而更适宜至少约4,000psi,而更加适宜从约2,500psi至约
6,000psi的抗弯强度。例如,在一个实施例中,固化的复合材料具有高达约5,700psi的抗弯强度。
[0123] 本领域技术人员应认识到,当具有这些上述的强度时,固化的复合材料可充当天然石材和固体表面制品的替代品而无需采用增强元件(例如钢筋或玻璃纤维)。这为建筑材料提供了较不昂贵且较低劳动密集度的替代品。
[0124] 在一个实施例中,固化的复合材料还可具有至少约500,000psi、更适宜至少1,000,000psi、更加适宜从约500,000psi至约2,000,000psi,而更加适宜从约1,000,000psi至约1,750,000psi的弯曲模量。
[0125] 如前文所指出的,固化的复合材料还包括类似于石材和其它固体表面材料硬度的硬度。更特别地,固化的水泥复合材料制品包括至少4MOH的硬度;更适宜地,至少约5MOH;更适宜地,至少约6MOH,而更加适宜地,从约7MOH至约8MOH。
[0126] 本发明的实施例的范例
[0127] 范例1
[0128] 根据本发明制备了可挤压的水泥合成物。根据在前文以及本文所结合的参考文献中所述的正常混合程序混合了合成物的组分。如表1所示地配制了可挤压的合成物。
[0129] 表1
[0130]
[0131] 混合之后,通过模头挤压合成物,所述模头具有约1英寸乘约4英寸的矩形开口。制备了四个矩形板样品。当第一个板从挤压机出来时,它在相反的方向上被扭转并被放置在平面上。第二个板在塑料吊床中处理并放置在平面上紧邻第一个板。第三个板被直接拉扯至平面上而未搅动。所有的上述三个样品被直接放置在蒸汽养护室内处理7天。第四个样品被挤压并留置在运输件上固化而没有任何移动或搅动。在从固化开始24小时、48小时、72小时、7天、以及9天之后测试了板的各种物理特性。(平均)结果示于表2。
[0132] 表2
[0133]
[0134]
[0135] 随后目视检查板以确定是否具有因不同的操作方法而造成的外观差异。所有的板(除了放置在塑料吊床中的第二个板之外)呈现出包含裂纹,但是,裂纹被确定为硅砂线。
[0136] 范例2
[0137] 根据本发明制备了可挤压的合成物,所述合成物用于制造用于铺筑材料的Dahl瓷砖。根据在前文以及结合入本文的参考文献中所述的正常混合程序混合了合成物的组分。如表3所示地配制了可挤压的合成物。
[0138] 表3
[0139]组分 在合成物中的量
水 14.00
水泥 25.00
PVA纤维 1.50
HW 1.50
硅砂(#60) 15.00
甲基纤维素 0.80
总计 57.80
[0140] HW=硬木
[0141] 混合之后,合成物被挤压。挤压的合成物的三个样品在塑料中在室温条件下固化并随后被放置在蒸汽室中。随后样品被放置在干燥箱中,直至它们达到重量平衡。最终通过测试堆密度、抗弯强度、弯曲模量、以及韧性对样品进行表征。结果示于表4。
[0142] 表4
[0143]
[0144]
[0145] 由于在前文的阐述和方法中可作出各种改变而不偏离本发明的范围,因此包含于前文的描述中和示于附图中的所有事物应被理解为说明性的而不具有限制意义。
QQ群二维码
意见反馈