特低热膨胀堇青石结构体的制造方法

申请号 CN99814045.7 申请日 1999-11-30 公开(公告)号 CN1189418C 公开(公告)日 2005-02-16
申请人 康宁股份有限公司; 发明人 D·M·比尔; G·A·默克尔;
摘要 本 申请 揭示了一种 烧结 陶瓷制品,其主晶相是堇青石,其分析 氧 化物组成是49-53%重量SiO2,33-38%重量Al2O3,12-16%重量MgO。其25°-800℃的 热膨胀 系数不大于4.0×10-7/℃,其横向I比值不小于0.92。本申请也揭示了一种生产烧结堇青石陶瓷制品的方法,它包括制备可塑化原料混合物,上述混合物包括镁源物质、SiO2源物质和另一种组分,后者是(a)表面积大于5m2/g的不含粘土的Al2O3源物质,或(b)粘土和Al2O3源物质的混合物,所述粘土占此总无机混合物的30重量%,所述Al2O3源物质的表面积大于40m2/g。此混合物成形为所需形状的生坯基材,干燥,在一定 温度 煅烧 一段时间,生成具有前述CTE和I比值的结构。
权利要求

1.一种具有烧结相组合物的陶瓷制品,该制品包含至少93重量%堇青石, 所述制品基本上由49-53%重量SiO2、33-38%重量Al2O3和12-16%重量MgO组成, 其25°-800℃温度范围内的至少一个方向上的热膨胀系数小于2.0×10-7/℃, 其横向I比值不小于0.92,其挠曲强度至少为2400psi,
所述的陶瓷制品由包括如下步骤的方法制得:
选择原料形成可塑化的无机原料混合物,所述混合物的化学组成基本上 为49-53%重量SiO2,33-38%重量Al2O3,12-16%重量MgO,所述混合物包括含 形态指数大于0.75的片状滑石的镁源物质、含结晶或无定形二氧化 硅的SiO2源物质和下列两种中的一种附加组分:
(a)表面积大于5m2/g且基本上不含粘土的Al2O3源物质;
(b)粘土和Al2O3源物质的混合物,其中粘土不大于该无机混合物总量的30% 重量,且此Al2O3源物质的表面积大于40m2/g,
添加含的有机粘合剂物系到所述无机混合物中,加以捏和,然后形成生坯,
干燥所述生坯,然后在1380℃-1450℃范围内的某一温度煅烧所述生坯一定 时间,结果生成含有至少93%堇青石,其横向I比值不小于0.92,在25°-800℃ 的热膨胀系数不大于2.0×10-7/℃的烧结陶瓷体,其挠曲强度至少为2400psi。
2.如权利要求1所述的陶瓷制品,其横向I比值至少0.93。
3.如权利要求1所述的陶瓷制品,其轴向I比值小于0.41。
4.如权利要求1所述的陶瓷制品,它是一种蜂窝体结构。
5.如权利要求1所述的陶瓷制品,其孔隙度大于15%。
6.一种制造具有堇青石作为其主晶相的陶瓷体的方法,包括如下步骤:
选择原料形成可塑化的无机原料混合物,所述混合物的化学组成基本上 为49-53%重量SiO2,33-38%重量Al2O3,12-16%重量MgO,所述混合物包括含 形态指数大于0.75的片状滑石的镁源物质、含结晶二氧化硅或无定形二氧化 硅的SiO2源物质和下列两种中的一种附加组分:
(a)表面积大于5m2/g且基本上不含粘土的Al2O3源物质;
(b)粘土和Al2O3源物质的混合物,其中粘土不大于该无机混合物总量的30% 重量,且此Al2O3源物质的表面积大于40m2/g,
添加含水的有机粘合剂物系到所述无机混合物中,加以捏和,然后形成生坯,
干燥所述生坯,然后在1380°-1450℃范围内的某一温度煅烧所述生坯一定 时间,结果生成含有至少93%堇青石,其横向I比值不小于0.92,在25°-800℃ 的热膨胀系数小于2.0×10-7/℃的烧结陶瓷体,其挠曲强度至少为2400psi。
7.如权利要求6所述的方法,其中组分(a)中的Al2O3源物质是中位颗粒直 径不大于1μm的高活性α氧化或氢氧化铝。
8.如权利要求6所述的方法,其中组分(b)中的Al2O3源物质选自中位颗粒 直径不大于1μm的过渡型氧化铝和式氢氧化铝。
9.如权利要求6所述的方法,其中所述生坯是一种蜂窝整体。
10.如权利要求6所述的方法,其中所述有机粘合剂物系包含选自甲基纤维 素、甲基纤维素生物以及其混合物的纤维素醚粘合剂组分,选自硬脂酸、硬脂 酸钠、硬脂酸铵、月桂基硫酸铵、月桂酸、油酸、棕榈酸和它们的混合物的表面 活性剂组分,以及含水溶剂
11.如权利要求6所述的方法,其中所述无机原料混合物是100重量份,表 面活性剂组分是0.2-2重量份,纤维素醚粘合剂组分是2.5-5重量份,水是20-50 重量份。

说明书全文

1.发明领域

本发明涉及用作催化剂载体的堇青石陶瓷体,具体涉及具有特低热膨胀系 数,用作纯化汽车废气催化剂载体的堇青石体,以及制造该堇青石结构体的方法。

2.现有技术

使用燃料如烃气体、汽油或柴油的内燃系统放出的废气会对大气造成严重 的污染。这些废气中的许多污染物当中有烃和含化合物,后者包括氮的氧化物 (NOx)和一氧化(CO)。汽车工业多年来设法减少由汽车发动机系统排出的污染物 的量,第一批装备有催化转化器的汽车在二十世纪70年代中期已经推向市场。

一般形式为蜂窝体的堇青石基材很早就优选用作承载汽车上催化转化器用的 催化活性组分的基材,其部分原因是堇青石陶瓷的抗热震性很高。抗热震性与热 膨胀系数成反比。就是说,热膨胀低的蜂窝体具有良好的抗热震性,能够经受其 在使用时遇到的很大温度波动。一般知道,堇青石结晶无规取向的堇青石多晶体, 其在25°-800℃的热膨胀系数约为18×10-7/℃。

由含镁源、源和源物质如粘土和滑石的矿物料制造堇青石 (2MgO·2Al2O3·5SiO2)的方法,是人们熟知的。这种方法在美国专利2,684,919 中有述。美国专利3,885,977揭示了从粘土/滑石料制造抗热震的堇青石蜂窝陶瓷 的方法。该方法包括对该料进行挤压,将挤出物煅烧,获得沿至少一个方向膨胀 系数非常低的陶瓷。而且,该专利描述了令堇青石结晶取向使其C结晶轴在蜂窝 板材平面内的原理,其结果是热膨胀系数低达5.5×10-7/℃。

制造厂家在不断研究优化堇青石基材的特性,为的是提高其作为催化剂载体 的可用性。具体说来,制造厂家在不断努优化堇青石基材的抗热震性和强度。 下述的一些专利均是涉及制造显示改进的热震性和热膨胀系数(CTE)的陶瓷蜂窝体 的制造方法。

美国专利4,434,117(Inoguchi等人)揭示了使用包含片状滑石颗粒和非片 状其它陶瓷材料颗粒的混合物,将此混合料进行非等向成形,为的是片状滑石颗 粒呈平面取向,然后干燥与煅烧获得成形的陶瓷体。Inoguchi专利中成形的陶瓷 体的CTE低达7.0×10-7/℃。

美国专利5,144,643(Beall等人)揭示了一种制造堇青石体的方法,该方法 包括选择形成所需堇青石体的一些特定原料。具体说来,这些选用的原料不应包 括粘土和滑石,应包括粒度分别不大于15μm和8μm的产生MgO的组分和产生Al2O3 的组分。将原料一起混合,然后干燥和煅烧,煅烧所用的温度和时间足以形成前 述的堇青石体。按Beall专利形成的陶瓷体,其CTE在约25°-1000℃小于大约9 ×10-7/℃。

最后,美国专利5,258,150(Merkel等人)揭示了形成堇青石的一种方法,所 用的原料混合物含有某些选定的原料,包括0-48%小片型或分层的粘土和一种粒 度3-8μm或小于3μm的产生氧化铝的组分。该方法包括将原料与一种粘合剂体系 混合,将混合物挤压形成生坯,然后将生坯在最低为1390℃的温度煅烧,获得堇 青石烧结体。按Merkel专利形成的这种陶瓷体,其CTE在约25°-1000℃小于约 4×10-7/℃,其孔隙度大于约42%,其中值孔隙直径约5-40μm。然而,据披露这 种陶瓷体的I比值不大于约0.91。

尽管这些陶瓷相对于使用先前方法制造的挤出堇青石陶瓷来说已改善了CTE 性质,但仍有待进一步改善其CTE特性,特别是不要使陶瓷强度有明显的下降。 由于现在的趋势是制造蜂窝密度更高,催化转化效率更高,反压更低的薄壁堇青 石蜂窝体作为催化剂载体,在堇青石蜂窝基材的制造中,强度已成为越益重要的 考虑因素。

因此,本发明的主要目的是提供强度足够但热膨胀系数特别低的改进的堇青 石陶瓷,以及其制造方法。

发明的概述

本发明提供一种烧结陶瓷基材及其制造方法,该陶瓷基材具有堇青石主晶相 (Primary crystallization phase),并显示特低的CTE和比预料还高的强度。

具体说,本发明的烧结陶瓷制品含有至少93重量%堇青石主晶相,其分析 氧化物组成按重量百分数计,基本上为49-53%SiO2,33-38%Al2O3,12-16%MgO, 其至少一个方向上的CTE在约25°-800℃温度范围内小于大约2.0×10-7/℃,并 且其横向I比值不小于约0.92,其挠曲强度至少为2400psi,所述的陶瓷制品由 下述的方法制得。

本发明还涉及制造烧结堇青石陶瓷制品的方法,该方法包括如下步骤:选择 原料形成可塑化的无机原料混合物,所述混合物的化学组成基本上为49-53%重 量SiO2、33-38%重量Al2O3、12-16%重量MgO,所述混合物包括含形态指数大 于0.75的片状滑石的镁源物质、含结晶二氧化硅或无定形二氧化硅的SiO2源 物质和下列两种中的一种附加组分:(a)基本上不含粘土的Al2O3源物质,其表 面积大于约5m2/g;或者(b)粘土和Al2O3源物质的混合物,其中粘土不大于此无 机混合物总量的约30%重量,且此Al2O3源物质的表面积大于约40m2/g。表面积大 于约5m2/g的该Al2O3源物质较好是中值颗粒直径不大于约1μm的活性氧化铝或氢 氧化铝;而表面积大于约40m2/g的该Al2O3源物质较好是中值颗粒直径不大于约 1μm的一些“过渡型”氧化铝或式氢氧化铝,这里的中值颗粒直径是用利用沉 降方法的粒度分析仪测定的。在上述原料混合物中添加含的有机粘合剂物系以 后,加以捏和,就成形为所需构形的生坯基材,继以干燥,再在足以形成具有上 述CTE和I比值性质的结构体的温度煅烧一定时间,结果生成上述的陶瓷制品。 优选的煅烧温度是在1380-1450℃范围内的某一温度。

附图简述

图1是本发明实施例和对比例的CTE与I比值关系的比较图。

本发明详细描述

本发明涉及具有堇青石主晶相的陶瓷制品以及制造这种制品的方法。上述方 法采用的是包含特定铝源、镁源、硅源物质的粘土含量低或不含粘土的原料的选 择性混合物。具体地说,本发明陶瓷制品是从可塑化的原料混合物形成的,该混 合物中各原料及其相对量经过选择,以便形成分析氧化物组成为49-53%重量 SiO2,33-38%重量Al2O3,12-16%重量MgO的烧结陶瓷制品。

前已指出,已发现在混合料中采用特定的形成镁和氧化铝的原料,此混合料 就能制成其特点为含有堇青石初晶并具有特低CTE和高的横向I比值综合性能的 烧结陶瓷制品。具体地说,本发明陶瓷体的特点是25°-800℃的CTE小于约4.0 ×10-7/℃,且横向的I比值不小于0.92。较好的情况是,本发明堇青石体在25~ 800℃的CTE不大于3.0×10-7℃。本发明堇青石的另一个特点是在低CTE的情况 下,强度仍较高,至少约2400psi。

按照本发明,提供一种制备上述陶瓷制品的可塑化混合物。该混合物包含SiO2 源物质,含形态指数大于约0.75的片状滑石的镁源物质,以及选自下列两种的另 一种组分:(a)表面积大于约5m2/g,不含粘土的Al2O3源物质;或(b)粘土和Al2O3 源物质的混合物,该粘土不超过该无机混合物总量的30重量%,且该Al2O3源物 质的表面积大于约40m2/g。

SiO2源物质是SiO2原料,包括熔凝SiO2,胶体二氧化硅;结晶二氧化硅如石 英或方晶石或氧化铝含量低且基本上不含碱的沸石。此二氧化硅源物质还可以是 受热时会形成游离二氧化硅的化合物,例如硅酸或有机硅金属化合物。

用于本发明的Al2O3源物质是受热时会生成Al2O3的化合物。关于表面积大于 5m2/g的Al2O3源物质,可以选自氧化铝、氢氧化铝、碱式氢氧化铝或它们的混合 物。特别适用的Al2O3源物质是中值颗粒直径约为1μm或更小的高活性α氧化铝或 氢氧化铝。关于表面积大于40m2/g的Al2O3源物质,它包括选自“过渡型”或活 性氧化铝(如γ一氧化铝和碱式氢氧化铝)的化合物。此氧化铝源物质的中值粒度不 大于1μm;最好是勃姆石或假勃姆石。

这里用的粘土指的是经焙烧的粘土,也可以是未经焙烧的粘土,最好是一种 高岭土

镁源物质是片状滑石,也就是说其颗粒呈片状形态,即是两维尺寸长而一维 尺寸短的颗粒,或者说,是长和宽都比厚度大得多的小薄片。较好的是该滑石应 具有大于0.75的形态指数。形态指数(见美国专利5,141,686)是滑石扁平度的 一种衡量。测量形态指数的一个代表性方法,是将样品置入一个样品座中,使片 状滑石的取向程度在样品座的平面方向上达到最大。然后对此取向的滑石进行X 射线衍射测定。形态指数按下式半定量地建立了该滑石的扁平特征与XRD峰强度 的关系:

M = I x I x + I y

式中,Ix是(004)峰的强度,Iy是(020)峰的强度。

在一个混合步骤中将可塑化混合物所用的上述原料加以均匀混合,使得它们 在以后的热处理过程中反应完全。此时加入一种粘合剂物系,以便形成可成形、 可模制、可挤压的混合物。本发明所用的一种较佳粘合剂物系包含选自甲基纤维 素、甲基纤维素生物和它们的混合物的纤维素醚粘合剂组分,表面活性剂组分, 较佳是硬脂酸或硬脂酸钠、硬脂酸铵、月桂基硫酸铵、月桂酸、油酸、棕榈酸和 它们的混合物,以及含水的溶剂。使用一种粘合剂物系已经获得了优良的效果。 含氧化铝源物质、氧化硅源物质和滑石的无机原料混合物是100重量份,表面活 性剂组分(如硬脂酸钠)是0.2-2重量份,纤维素醚(如甲基纤维素或羟丙基甲基 纤维素)粘合剂组分是2.5-5.0重量份,水是20-50重量份。

将粘合剂物系的各组分与一定量无机粉末材料例如滑石、氧化铝源物质和氧 化硅源物质的混合物,以适当的已知方式混合制成能够例如用挤压法成形为陶瓷 体的陶瓷材料与粘合剂物系的均匀混合物。例如,可以将粘合剂物系的所有组分 预先互相混合,再将此混合物加入到陶瓷粉末材料。在此情况下,全部粘合剂物 系可以一次添加,也可以将粘合剂物系分成若干部分以适当时间间隔依序添加。 或者,可以将粘合剂物系的各组分分别一个个地加入到陶瓷材料中,还可以将由 两种或多种组分预先制备的混合物分别加入。另外,可将粘合剂物系先与陶瓷粉 末材料的一部分混合,然后将陶瓷粉末的其余部分加到此制成的混合物中。无论 是哪种情况,粘合剂物系必须以预定的比例与陶瓷粉末均匀混合。可以采用已知 的捏和法实现粘合剂物系与陶瓷粉末材料的均匀混合。

所得的紧密而均匀的可挤压的混合料然后用任何已知的陶瓷成形方法,例如 挤压、注入模制、粉浆浇注、离心浇注、压注、干压等方法成形为生坯。对于制 备适用作催化剂载体的薄壁蜂窝基材来说,通过模子的挤压法是优选的。

制成的陶瓷生坯然后在煅烧之前干燥约5-20分钟,可用任何常规方法,例 如热空气干燥或高频干燥。然后此经干燥的生坯在一个足够高的温度煅烧足够长 的时间,获得含堇青石作为其主晶相的煅烧陶瓷体。煅烧条件可视一些因素如具 体组成、生坯尺寸以及设备特点而异。然而,某些优选的煅烧条件如下:

将生坯加热至1380°-1450℃之间的某一温度,在该温度保温约6-16小时, 然后冷却至室温。

如上所述,堇青石陶瓷体当例如用挤压法成形为蜂窝结构后,其进一步的特 点是其堇青石结晶的择优取向,这是其特征性的高横向I比值和低轴向I比值所 表明的。具体地说,本发明堇青石体的特点是不小于0.92的横向I比值和小于0.41 的轴向I比值,且其孔隙度大于15%。

I比值这个特性是取煅烧的堇青石蜂窝体的一个切片进行X射线衍射分析来 测定的。如果构成堇青石的结晶的负膨胀C轴按一特定方向择优取向,则由沿垂 直于该方向切成的切片测出的(001)反射应比如果结晶为无规取向情况下要强些。 同时,由平行于负膨胀C轴(且垂直于001面)的晶面衍射的(hko)那些反射,其 强度与不存在择优取向的情况相比要小些。第一次在美国专利3,885,977中所述 的下列比值即I比值(IR)可用来表征择优取向的程度:

I R = I ( 110 ) I ( 110 ) + I ( 002 )

式中I(110)和I(002)分别是由(110)和(002)晶面(基于六方的堇青石结晶结构)产生 的X射线反射的峰高;这两个反射分别对应于约4.9和4.68埃的d间距。

轴向和横向的I比值是就在X射线束中堇青石蜂窝体的不同择优取向而言 的。X射线束是以一定度投射到一个平表面上的。具体说到横向I比值的测定, 进行X射线测量的样品平表面即X射线投射上去的平表面是蜂窝体的挤压成形壁 表面构成的平表面。换言之,进行横向I比值的测量时,所用的切片是对堇青石 蜂窝基材进行切割暴露出其与挤压方向平行的平切片,在此平切片上进行X射线 衍射,计算观测的衍射峰强度。如果所得的横向IR值大于0.65(0.65是完全无规 取向结晶即粉末的堇青石体的IR值),表示堇青石结晶有择优取向,即大部分堇 青石结晶的取向是这些结晶的C轴在蜂窝体基材的挤压方向平面上。横向I比值 为1.00表示所有的堇青石结晶均是这样的取向;即它们的负膨胀C轴均在基材的 挤压方向平面内,因此横向I比值(IT)若越接近1.00,这种平面取向程度越大。 现在具体讲到轴向I比值的测定,其测定是在垂直于蜂窝孔长度的平面上进行的 (也即在与供测定横向I比值的平面垂直的平面上进行的),此时X射线投射上去 的平表面是蜂窝体基材的横截端面。换言之,X射线测定是在垂直于挤压方法的 堇青石蜂窝体表面上进行的。如果轴向I比值(IA)小于0.65,这同样表示堇青 石结晶显示有择优取向。具体地说,因为堇青石结晶择优取向,其C轴位于基材 的平面中,所以由(002)平面反射的强度预料要比堇青石体中堇青石结晶完全无规 取向的情况要大些。

简言之,如果相对于堇青石体挤压方向,在横向上测出的I比值大于0.65, 或者在挤压方向上测出的I比值小于0.65,则堇青石结晶是显著取向的,它们的 C轴在基材的平面内。

已经清楚,影响堇青石蜂窝体在轴向(平行于蜂窝孔的方向)上的CTE的因 素有:堇青石结晶在其显微结构上的非无规(择优)取向程度、煅烧后堇青石体中 微开裂程度以及是否存在其它高膨胀外来相。通常的情况是,较大的横向I比值 即相应地较小的轴向I比值相应于较小的轴向测量的CTE。实质上这是由于堇青 石结晶的负膨胀方向在基材平面的取向连同与取向结晶大区域的热膨胀各向异性 相关联的应变引起的微裂缝的综合效应的缘故。

前面指出,这里所述的混合物的主要用途是用来制备可用作催化剂载体的高 强度堇青石蜂窝基材。虽然本发明对制造薄壁蜂窝体特别有用,本发明的这种混 合物也可用来制备壁较厚的蜂窝结构体。在此蜂窝结构体上施加催化剂的方法以 及其例如在汽车排气系统中的用途,此领域的人们是熟知的。该混合物对制备其 它高强度堇青石体(如过滤器)也是适用的。

实施例

为了进一步说明本发明的原理,下面将描述按本发明形成的陶瓷体的几个实 施例,以及几个对比例。但要理解,给出这些实施例仅是用于说明,本发明并不 受其限制。在不偏离本发明精神情况下,可以在本发明中作出种种修改和变化。

实施例1-14

适合于生成堇青石作为其主晶相的陶瓷体的无机粉末混合料,其组成以重量 百分数列于表1中,该表有实施例1-7,还有对比例8-14。组合物1-14均是将表 I所示特定无机混合物的组分干混在一起结合而成的。在这些混合物中添加表I 所列量的有机粘合剂物系,然后该中间混合物与去离子水进一步混合形成塑化的 陶瓷混合料。表I详列的粘合剂物系各组分均以基于100份总的无机物重量份数 表示。

表II报导了各实施例所用商购原料的各种性质,具体是那些认为对形成低 CTE,高I比值堇青石实例重要的性质。表中包括下列原料的重要特征性质:形态 指数、B.E.T.法测出的表面积(m2/g)和沉降法测出的平均颗粒直径。

各种经塑化的混合料,均在既适合于形成4英寸(101.6毫米)长,具有1.0 英寸(25.4毫米)直径和8密(0.20毫米)蜂窝壁厚的400蜂窝/英寸2(62蜂窝 /厘米2)的蜂窝基材的条件下,又在适合形成0.25英寸(6.35毫米)棒的条件下, 挤压通过一挤压机。由这14种批料组合物各自形成的生坯陶瓷棒和蜂窝体均经充 分干燥,除去可能存在的水或液体相,然后进行加热和煅烧过程,其条件应足以 除去有机粘合剂物系并烧结这些挤压棒和挤压蜂窝体。具体地说,各种类型基材 的生坯均加热至1405°-1430℃,保温约10小时,即所用的煅烧条件适合于形成 具有堇青石作为其主晶相的陶瓷体。

表I还列举了从该表混合料制成的陶瓷的一些选择的性质。对各陶瓷体列入 的性质是:用四点负荷法测定的陶瓷棒挠曲强度(MOR)(psi),除实施例5外,用 膨胀计法在25°-800℃温度范围测定的陶瓷棒的平均CTE(×10-7/℃),用压汞孔 隙测量法测定的体积百分数孔隙度和中值孔隙直径(μm)。而且,表I包括了横向 I比值IT,对有些实施例,还有轴向I比值IA,均按上述方法测定计算之。

                                                                表I   1   2   3   4   5   6   7   8   9 无机物 滑石1 滑石2 滑石3   -   -   42.29   -   42.29   -   -   41.92   -   -   39.88   -   -   39.88   -   -   -   42.29   -   40.13   -   40.78   -   -   40.86   -   - 经煅烧的粘土   -   -   -   -   -   -   15.71   26.48   32.60 未煅烧粘土   -   -   -   -   -   -   9.12   15.37   12.82 粗α氧化铝   -   -   -   -   -   -   -   15.35   - 细α氧化铝   34.20   34.20   28.94   -   -   34.20   -   -   13.72 勃姆石   -   -   5.83   37.94   37.94   -   25.46   -   - 二氧化硅1 二氧化硅2 二氧化硅胶体溶液 氧化硅3-熔凝的   23.52   -   -   23.52   -   -   23.31   -   -   22.18   -   -   16.60   5.55   -   -   -   23.5   -   9.59   -   2.03   -   -   -   -   - 有机粘合剂物物系 甲基纤维素   4.0   4.0   4.0   2.7   4.0   3.0   4.0   4.0   4.0 硬脂酸   1.0   1.0   1.0   0.6   1.0   0.6   1.0   1.0   1.0 水   28.0   31.0   32.0   38.0   38.0   28.0   40.0   30.0   30.0 氧化物百分数 SiO2   51.35   51.35   51.50   52.42   52.41   51.34   52.07   51.45   51.42 Al2O3   34.90   34.90   34.70   33.53   33.54   34.90   33.99   35.00   35.05 MgO   13.76   13.76   13.80   14.05   14.05   13.76   13.95   13.55   13.53 性质 CTE(10-7/℃)   1.5   1.1   0.0   -0.2   -0.5   1.8   1.9   6.3   4.2 IT   0.96   0.93   0.93   0.93   0.94   0.93   0.93   0.80   0.86 IA   0.34   -   -   -   -   0.37   -   0.50   0.44 %开孔孔隙度   33.0   33.7   33.6   21.0   19.8   32.7   14.3   36.0   28.5 中值孔径(μm)   2.2   2.7   2.4   2.7   2.7   2.5   2.5   3.3   3.1 MOR(psi)   2900   2600   2600   2400   -   2800   4000   2500   3300

*对比例

料二氧化硅胶体溶液——实施例5中用的是13.9重量份的二氧化硅胶体溶 液,含5.55重量份二氧化硅和8.3重量份水,此水包括在混合料所用的38.0重 量份的总水中。实施例7中用的24.0重量份的二氧化硅胶体溶液,含9.59重量 份二氧化硅和14.4重量份水,此水包括在混合料所用的40重量份的水中。

                                     表I(续)     10*     11*     12*     13*     14*   无机物   滑石1   滑石2   滑石3     42.29     ---     ---     ---     ---     ---     ---     ---     42.29     ---     ---     41.14     ---     ---     42.29   经煅烧的粘土     ---     ---     ---     ---     20.0   未煅烧粘土     ---     ---     ---     19.46     ---   煅烧的MgO     ---     13.7     ---     ---     ---   粗α氧化铝     ---     ---     34.20     ---     ---   细α氧化铝     34.20     34.90     ---     25.57     25.01   二氧化硅1     23.52     51.40     23.52     13.83     12.71   有机粘合剂物   系   甲基纤维素     4.0     2.73     4.0     4.0     4.0   硬脂酸     1.0     0.6     1.0     1.0     1.0   水     27.0     23.0     29.0     29.0     32.0   氧化物百分数   SiO2     51.35     51.40     51.35     51.36     51.36   Al2O3     34.90     34.90     34.90     34.88     34.89   MgO     13.76     13.70     13.76     13.76     13.76   性质   CTE(10-7/℃)     2.7     5.5     12.4     3.5     5.2   IT     0.88     0.80     0.88     0.91     0.90   IA     0.39     -     0.42     0.39     0.42   %开孔孔隙度     28.2     29.6     43.6     34.1     35.6   中值孔径(μm)     4.1     2.6     7.2     2.2     2.0   MOR(psi)     2800     2900     2700     3300     3200

                           表II   形态指数   中值颗粒直径     (μm) 表面积 (m2/g)   滑石1     0.75     8.0   滑石2     0.95     1.6   滑石3     0.95     3.4   经煅烧的粘土     1.6   未煅烧的粘土     0.8   经煅烧的MgO     0.8   粗α氧化铝     4.5 ~1.0   细α氧化铝     0.3 9.4   勃姆石     0.1 180

表I结果表明,组合物实施例1-7代表着本发明的堇青石陶瓷体,它们的CTE 都是特低的,小于约2.0×10-7/℃(-0.5至1.9×10-7/℃)。而且要指出的是,所 有本发明实施例的横向I比值(IT)均不小于0.92,具体范围为0.93至0.96,这 表明堇青石的结晶C轴取向在陶瓷蜂窝体蜂窝壁平面内的择优取向程度很高。这 种现有技术末曾报导过的高度取向归结于这些实施例所用的滑石原料的片状特 征、氧化铝原料的大表面积以及低粘土含量的新颖结合。应该指出,实施例3、4、 5表明,使用碱式氢氧化铝原料具体即勃姆石生成的堇青石体,其CTE为0×10-7/ ℃乃至更小,I比值至少为0.93。

虽然不打算拘泥于理论解释,但可以认为本发明堇青石蜂窝体的CTE非常小 不仅是由于堇青石结晶的平面择优取向度的增大,而且是由于微裂缝程度的增加。 在能够证明微裂程度有了增加以前,必须先确立在平行于蜂窝体孔方向上测量的 CTE与横向I比值的关系。这里需要阐明CTE与结晶取向之间以及结晶取向与I 比值之间的关系。

人们都知道,堇青石沿其三个晶轴的CTE都不同。具体言之,25°-800℃温 度范围内平均CTE的文献数据,a轴方向是31.9×10-7/℃,b轴方向是25.9×10-7 /℃,c轴方向是-14.5×10-7/℃(Derek,Taylor,1988,热膨胀数据XIII,具有链 状、环状和层状结构的复合氧化物和磷灰石,Br.Cer.Trans.&Jour.,Vol.87, No.3,88-95页,表3)。

由前面关于X射线衍射测定的堇青石I比值的讨论,如果所有堇青石结晶都 取向为它们的c轴垂直于蜂窝孔壁平面,则测出的横向I比值是零。这个情况称 为完全的反取向。而且,因为所有结晶的c轴与沿之测量CTE的蜂窝体轴向是垂 直的,所以只有沿a轴和b轴的CTE对于此轴向CTE有贡献。因此,假设堇青石 陶瓷体没有微裂纹,在堇青石结晶是完全反取向情况下堇青石陶瓷体的轴向CTE 将等于a轴CTE和b轴CTE的平均值CTE(a,b),其计算值是(31.9×10-7/℃+25.9 ×10-7/℃)/2=28.9×10-7/℃。

其次,我们考虑所有堇青石结晶取向为它们的c轴在槽形蜂窝壁平面内,但 c轴在此平面内是纯无规取向的情况。这种情况称为完全平面取向。这种堇青石 蜂窝体的横向I比值应等于1.0。沿此物体(若无微裂纹)轴向的CTE,应等于c 轴CTE与a轴CTE和b轴CTE平均值CTE(a,b)的平均值,其计算值为(-14.5×10-7/ ℃+28/9×10-7/℃)/2=7.2×10-7/℃。

由此分析,不难得出结论,即由于堇青石结晶呈平面择优取向程度增加引起 的CTE降低率,在没有微裂纹程度变化以及其它相的量无变化的情况下,等于完 全平面取向和完全反取向时这两个轴向CTE之差除以这个两极端情况的横向I比 值之差。这个变化率的计算值即是每单位I比值变化产生的CTE变化为(7.2×10-7 /℃-28.9×10-7/℃)/(1.0-0.0)=-21.7×10-7/℃。

现在看图1,该图是表I中本发明实施例和对比例(不包括对比例12)的CTE 值与相应横向I比值的关系图。实线是对比例数据的最小二乘方拟合。虚线代表 在没有改变微裂纹程度情况下因结晶取向程度增加引起的CTE相对于对比例8的 CTE的下降。本发明各实施例数据的比较表明,它们的热膨胀低于图1实线所示 根据对比例数据的走向所预测的值。数据还说明本发明实施例的CTE为1.3×10-7 至3.8×10-7/℃,低于根据相对于对比例仅由于堇青石结晶的平面取向程度增加 所预测的值。这个差别说明本发明堇青石蜂窝体有如此意外低的CTE不仅是由于 结晶取向程度的增加,还由于微裂纹程度的增加,因为微裂纹程度的增加会进一 步降低热膨胀的。

尽管所得的特低CTE是由于晶粒取向程度增加(即高的I比值)以及相应的 微裂纹增加,但值得注意的是本发明堇青石陶瓷体的强度仍然高,可以接受。本 发明实施例具体的强度值不小于约2400psi(2000-4000psi),这是CTE是本发明 实施例2至3倍的堇青石陶瓷体才能预料有的强度。

现在看对比例,所有对比例即实施例8-14的CTE大于2.0×10-7/℃(2.6-12.4 ×10-7/℃),其横向I比值(IT)是0.91或较小即0.80-0.91。这么低的取向度 表明,使用粘土而无表面积足够高的氧化铝物质和/或扁平度不够高的滑石,生成 的陶瓷体的CTE和I比值都在本发明范围之外。

对比例8和9代表标准的商购堇青石陶瓷,其数据表明使用粘土原料组分和 扁平度不够的滑石产生的堇青石体,其结晶取向度较低(分别由0.80和0.86的I 比值所表明),因此其CTE大于2.0×10-7/℃。

对比例10表明,使用扁平度不够高即形态指数仅为0.75的滑石,即使对不 含粘土的混合料结合使用所需的表面积大于5m2/g的Al2O3源物质,产生的堇青石 体的取向仍小于所需的程度,I比值为0.88,因此增高了其CTE至2.7×10-7/℃。

对比例12表明,使用的氧化铝原料是粗的氧化铝时,尽管结合了片状形态 的滑石,所产生的堇青石体的I比值为0.88,CTE为12.4×10-7/℃,都在本发明 范围之外。

对比例13和14表明,在混合料中使用高岭土或焙烧的高岭土,对这种含粘 土的混合料结合使用的Al2O3源物质的比表面小于所要求的大于40m2/g时,即使 结合使用足够的片状滑石,所得的堇青石陶瓷体的各性质都在本发明范围之外。

应该理解,虽然结合某些说明性的具体实施方案已经对本发明作了详细描 述,但本发明不应被认为受这些实施方案的限制,因为在不偏离所附权利要求书 所限定的本发明精神和宽范围情况下,可以进行许多改变的。

本发明要求Beall等人题为“特低热膨胀堇青石结构体的制造方法”,提交 于1998年12月7日的美国临时申请No.60/111,192的优先权。

发明背景

QQ群二维码
意见反馈