制造弯曲陶瓷声衰减板的方法

申请号 CN201480006643.5 申请日 2014-01-29 公开(公告)号 CN104955643B 公开(公告)日 2017-12-15
申请人 赫拉克勒斯公司; 发明人 S·弗凯; S·斯门尼斯; E·菲利普; E·古里安;
摘要 一种制造弯曲形状的声衰减板的方法,所述方法包括如下步骤:用陶瓷前体 树脂 浸渍确定网格结构(150)的 纤维 结构;使所述陶瓷前体树脂聚合化,同时将纤维结构保持在呈现弯曲形状的 工件 上,所述弯曲形状对应于网格结构(150)的最终形状;将网格结构(150)与第一和第二表层对接,所述第一和第二表层各自由用陶瓷前体树脂浸渍的纤维结构(200;300)形成,各表层在所述表层的树脂聚合化之前或之后对接至所述网格结构;使由所述网格结构和第一和第二表层构成的组件 热解 ;和·通过化学气相渗透法致密化所述组件。
权利要求

1.一种制造弯曲形状的声衰减板的方法,所述方法包括如下步骤:
·用陶瓷前体树脂浸渍确定网格结构的纤维结构;
·使所述陶瓷前体树脂聚合化,同时将纤维结构保持在呈现弯曲形状的工件上,所述弯曲形状对应于网格结构的最终形状;
·将所述网格结构与第一和第二表层对接,以封闭所述网格结构的网格单元,各表层由陶瓷前体树脂浸渍的纤维结构形成,各表层在所述第一和第二表层的树脂聚合化之前或之后与所述网格结构对接,并且,各表层在对所述网格结构进行任何热解处理之前与所述网格结构对接;
·使由所述网格结构和第一和第二表层构成的组件热解;和
·通过化学气相渗透法致密化所述组件。
2.如权利要求1所述的方法,其特征在于,两个表层中至少一个在使该表层的浸渍树脂聚合化之前对接至所述网格结构,并且所述方法包括在该对接步骤之后和热解步骤之前使该表层的树脂聚合化的步骤。
3.如权利要求2所述的方法,其特征在于,将两个表层中的一个置于工件上,所述工件具有穿透所述表层的针,将所述网格结构与置于该工件上的所述表层对接,从而在所述表层上制造穿孔。
4.如权利要求1所述的方法,其特征在于,在与所述网格结构对接之前使两个表层中至少一个聚合化,在聚合化过程中,使所述表层保持在工件上,所述工件呈现与所述网格结构的弯曲形状相似的弯曲形状,并且其中将至少包含陶瓷前体树脂的粘合剂置于即将与所述表层接触的所述网格结构的部分上。
5.如权利要求4所述的方法,其特征在于,所述粘合剂还包含由耐火材料粉末构成的固体填料。
6.如权利要求1所述的方法,其特征在于,将第一表层对接至所述网格结构,并且其中所述方法在将第二表层对接至所述网格结构之前包括在第一表层中制造多个穿孔的步骤,第二表层在所述制造多个穿孔的步骤之后对接至所述网格结构。
7.如权利要求1所述的方法,其特征在于,所述方法包括制造确定网格结构的可延展纤维结构。
8.如权利要求7所述的方法,其特征在于,所述可延展的纤维结构由三维结构编织或多层编织制成。
9.如权利要求1所述的方法,其特征在于,所述网格结构和所述两个表层的纤维结构由纤维制成。
10.如权利要求1所述的方法,其特征在于,所述网格结构和所述两个表层的浸渍树脂是碳化硅前体树脂,并且其中致密化的步骤包括碳化硅的化学气相渗透。

说明书全文

制造弯曲陶瓷声衰减板的方法

背景技术

[0001] 本发明涉及声衰减板的一般领域。更具体地,涉及用于减少由航空发动机(例如燃气涡轮)或其排气装置产生的噪音的声衰减板。
[0002] 为了减少燃气涡轮的排气管中的噪音,已知在确定所述管的元件表面提供声衰减板。那些板通常由具有多孔表面的壁和固体反射壁构成,其中所述多孔表面对于其希望削减的声波具有可透过性,所述固体反射壁具有网格结构(cellular structure),例如蜂窝状结构或多孔结构,其被安排在那两个壁之间。根据熟知的方法,所述板形成Helmholtz型共鸣器,其作用是削减所述管中产生的某一频率范围的声波。
[0003] 所述类型的板的组成元件(壁和网格体)一般由金属材料制成,如文件US 5 912 442和GB 2 314 526所述。然而,在通常需要考虑减轻重量的技术领域(例如航空航天)中,采用金属材料制成的声衰减板是相对不利的。
[0004] 文件US 8 043 690表述了具有由复合材料(由基质致密化的纤维强化件)制成的壁和网格体的声衰减板,由此相较于传统利用的金属材料而言实现了减重。但是,该文件仅公开了平面形状的板或板亚部件(subassembly),从而,如果要提供带有声学处理的圆柱形或截头圆锥形的部件,就需要在该部件的壁上排列许多平面或直线形的声衰减次部件。这种制造计数需要大量的操作来用平面亚部件制成声学板,由此不利于所述板制造中相关的优化和成本问题。
[0005] 需要一种使声衰减板能够由复合材料制成(尤其是由陶瓷基质复合(CMC)材料制成),并且具有与需要隔音的部件形状相配的弯曲形状的方案。
[0006] 本发明的目的和内容
[0007] 为此,本发明提供一种制造声衰减板的方法,所述声衰减板由弯曲形状的陶瓷基质复合(CMC)材料制成,所述方法包括如下步骤:
[0008] ·用陶瓷前体树脂浸渍确定网格结构的纤维结构;
[0009] ·使所述陶瓷前体树脂聚合化,同时使网格结构的纤维结构保持在呈现弯曲形状的工件上,所述弯曲形状对应于该网格结构的最终形状;
[0010] ·将所述网格结构与第一和第二表层对接,以封闭所述结构的网格单元,各表层由陶瓷前体树脂浸渍的纤维结构形成,各表层在所述表层的树脂聚合化之前或之后与所述网格结构对接;
[0011] ·使由所述网格结构和第一和第二表层构成的组件热解;和
[0012] ·通过化学气相渗透法(CVI)致密化所述组件。
[0013] 因此,根据本发明的方法,先制成网格结构,然后通过浸渍树脂的聚合化使所述网格结构以所需的弯曲形状加固。在该阶段,即在聚合化之后和通过热解将树脂转化成陶瓷之前,所述网格结构显示具有足够硬度以自我支持并保持其弯曲形状,同时仍具有一定量的挠性或可形变性。同样地,将所述表层组装至网格结构,同时其处于浸渍阶段或聚合化阶段,即,在其浸渍树脂热解之前。因此,声衰减板可采用CMC材料制成,并且具有与其待纳入的部件的形状准确相配的弯曲形状。
[0014] 当把声学板的组成部件(处于浸渍阶段)组装在一起时,其仍显示挠性或可形变性,这能够减小待组装到一起的部件之间的空隙,从而使待制造的声学板成品具有更佳的形状容差(shape tolerance)。
[0015] 此外,加固的网格结构还有作为表层的保持和形状支持物的作用,由此使那些元件无需采用成形工件就能热解并致密化,因此降低了该声衰减板的制造成本。
[0016] 通常利用CVI来使声学板的元件致密化(共致密),CVI的作用是强化那些元件之间的接合。
[0017] 在本发明方法的第一方面,在使表层的浸渍树脂聚合化之前,使两个表层中至少一个对接至所述网格结构,所述方法包括在该对接步骤之后和热解步骤之前使表层的树脂聚合化的步骤。
[0018] 在本发明方法的第二方面中,将两个表层中的一个置于工件上,所述工件具有穿透所述表层的针,将网格结构与置于该工件上的所述表层对接,从而在所述表层上穿孔。因此,在声学表层上制造穿孔,同时将所述表层与所述网格结构组装。
[0019] 在本发明方法的第三方面,在与网格结构对接之前使两个表层中至少一个的树脂聚合化,在聚合化过程中,使所述表层保持在具有与网格结构的弯曲形状相似的弯曲形状的工件上,并且其中将至少包含陶瓷前体树脂的粘合剂置于即将与表层接触的网格结构的部分上。
[0020] 在本发明方法的第四方面,所述粘合剂还包含固体填料,该固体填料由耐火材料粉末构成。
[0021] 在本发明方法的第五方面,在第一表层的浸渍树脂已经聚合化之后,并且在将第二表层对接至所述网格结构之前,将该第一表层对接至所述网格结构,所述方法包括在第一表层中制造多个穿孔的步骤,第二表层在所述多个穿孔制造步骤之后对接至所述网格结构。
[0022] 在本发明方法的第六方面中,所述方法包括制造确定网格结构的可延展纤维结构。所述可延展纤维结构可具体通过三维编织或多层编织制成。
[0023] 所述网格体和相关联的表层由热结构复合材料即复合材料制成,尤其是/碳复合材料或陶瓷基质复合材料。当这些元件由陶瓷基质复合材料制成时,所述网格体和表层的结构可以具体由碳化纤维制成,而网格结构和表层的浸渍树脂可以是碳化硅前体树脂,并且其中致密化步骤包括碳化硅的化学气相渗透。附图说明
[0024] 本发明的其它特点和优势通过下文关于本发明具体实施方式的描述并参照附图而显见,所述具体实施方式以非限制示例的形式给出,附图中:
[0025] ·图1是根据本发明的实施方式的已弯曲的声衰减板的图解透视图;
[0026] ·图2是根据本发明的一个实施方式的制造弯曲声衰减板的方法的步骤流程图
[0027] ·图3是用于制造网格结构的可延展纤维结构的图解透视图;
[0028] ·图4A~4C显示根据本发明一个实施方式的可延展纤维结构的制造方法;
[0029] ·图5A~5C显示根据本发明另一个实施方式的可延展纤维结构的制造;
[0030] ·图6A和6B根据本发明一个实施方式的可延展的纤维结构的两个连续编织平面的分别的放大图;
[0031] ·图7A~7L显示根据本发明的另一个实施方式的用于制造与图6A和6B的纤维结构类型相同的纤维结构的编织平面,但其中纬纱经纱相对于网格单元轴以45°取向;
[0032] ·图8是显示在成形工件上延展的纤维结构的图解透视图;
[0033] ·图9是根据本发明的一个实施方式用于声衰减板的弯曲网格结构的透视图;
[0034] ·图10是根据本发明的一个实施方式用于形成声衰减板的板的两种纤维结构的图解视图;和
[0035] ·图11是显示浸渍阶段的表层与聚合化阶段的网格结构组装的图解分解透视图。
[0036] 实施方式详述
[0037] 本发明的声衰减板,或更准确地,其组成元件,由热结构复合材料(即具有良好机械性质并能够在高温下保持这些性质的复合材料)制成。典型的热结构复合材料有:由用碳基质致密化进行碳纤维强化的碳纤维形成的碳/碳(C/C)复合材料,和由用陶瓷基质(至少部分)致密化进行耐火纤维强化(碳或陶瓷纤维)的陶瓷基质复合(CMC)材料。CMC的示例有:C/SiC复合物(碳纤维强化和碳化硅基质)、C/C-SiC复合物(碳纤维强化和包含碳相(一般离纤维较近)和碳化硅相的基质),和SiC/SiC复合物(均由碳化硅制成的强化纤维和基质),和化物/氧化物复合物(均由氧化制成的基质和强化纤维)。可在强化纤维和基质之间置入相间层,以改善材料的机械强度。
[0038] 采用热结构复合材料来制造部件是熟知的。
[0039] 图1显示具有网格结构11的声衰减板10,该网格结构排在具有穿孔13的声学表层12和结构表层14之间,本文所述实施例中的这些元件全部由CMC材料制成。
[0040] 在本发明方法的一个实施方式中,如图2中所示,根据本发明制造声衰减板,由制造网格结构或网格体开始,这涉及制备耐火纤维的纤维结构,尤其是碳或陶瓷纤维,以确定网格结构(步骤S1),例如图3中所示的纤维结构100,其结构具有确定六边形网格单元102的垂直壁101。
[0041] 用于形成网格结构的强化的纤维结构可以多种方式制成,具体见述于文件US 5 415 715。具体而言,并且如图4A~4C所示,其可如下制成:将织物111(例如由碳化硅(SiC)纤维制成)的交错构造层堆叠并接合在一起,以形成织构110。层111之间的接合沿平行条板
112进行,条板112位于层的一个面上,相对于位于另一面上的那些偏移(图4A)。层111之间的接合112的条板可具体由粘合剂或通过缝合制成。垂直于粘合剂条板,将层的堆叠切成片段113(图4B)。然后使各片段沿垂直于层面的方向(图4B中的箭头f1)延展,从而生成该实施例中具有六边形网格单元114的形变网格结构1100(图4C)。
[0042] 在图5A~5C中所示的变化形式中,重叠二维层121(例如由SiC纤维制成),并将其缝合在一起,以形成织构120(图5A)。层121是,例如,编织织物层或编织织物和纤维网制成的复合物层,纤维网提供在缝合过程中易于被针捕获的纤维,从而通过层被植入。如图5B中所示,切口122是槽的形式,并且在织构120中以交错构造产生,例如,采用喷器或激光,其中切口尺寸和位置确定网格单元的尺寸和形状。在切口形成之后,将织构120以垂直于切口平面的方向(图5C中箭头f2)延展,从而形变时产生该实施例中具有六边形网格单元124的网格结构1200。
[0043] 而在另一个变化形式中,形成网格结构加强件的纤维结构可通过如下方式制成:将编织织物条放在网格单元的壁的平面中,然后将这些条在网格单元之间的接合点处接合在一起。
[0044] 而在另一个变化形式中,可延展的纤维结构由三维或多层编织制成。
[0045] 通过多层编织制备可延展的纤维结构600的一种方式以图解方式示于图6A和6B,其分别是多平面型编织的两个连续编织平面的放大视图,显示部分纬纱。在该实施例中,结构600具有六层纬纱T1~T6,以对应于网格结构的网格单元的轴的Z方向延伸。在图6A和6B,各层纬纱通过经纱C1~C6互连,各纱属于经纱的相应层。纤维结构的厚度,以及后续通过延伸结构600而形成的网格单元的高度以方向Z延伸,并由纬纱以及经纱编织的长度决定,即由图6A和6B的平面的重复数量决定。结构600的长度和宽度分别由经纱(Y方向)的编织层的数量确定。
[0046] 出于简化目的,在该实施例中显示六层经纱和六层纬纱。当然,视希望获得的纤维结构的维度(宽度和厚度)而定,该结构可由大量经纱和纬纱的层制成,尤其是为了增加纤维结构中Y方向的网格单元的数量时。同样地出于简明原因,在该实施例中仅显示22根纬纱,以显示两个相邻的菱形网格单元如何制备,如图6A所示。当然,每层的纬纱数量可以更大,以增加纤维结构中X方向上的网格单元的数量。
[0047] 部分611~617的互连在纬纱的两个相邻层的纱之间形成。这些互连的部分限定了非互连621~628的区域,一旦纤维结构展开,其各形成网格单元的全部或部分。
[0048] 上述纤维结构600由其纬纱平行于网格单元轴(0°),而经纱垂直与网格单元轴(90°)而编织。但是,纬纱和经纱可相对网格单元轴具有不同取向。具体而言,纤维结构可这样编织:纬纱和经纱相对于网格单元轴具有45°取向,因而使纤维结构在其延展时能够形变成至更大程度,因而促进在弯曲表面上的良好成形。
[0049] 图7A~7L显示适于制备与上述结构600类型相同的纤维结构700的编织平面,即适于形成菱形网格单元,但其中经纱和纬纱相对于各网格单元轴具有45°取向的纤维结构。纤维结构700与结构600的编织的不同之处在于,每两个平面的两个纬纱之间的互连部分发生偏移,在该实施例中通过两根纬纱,如图7A和7C、7B和7D以及7C和7E等之间的互连部分711~717所示。
[0050] 待形成本发明的网格结构的加强件的纤维结构还可由多层或3D互型编织制成。本文所用术语"互锁型织法"指的是多层或3D织法,其中各经层互连多个纬层,其中相同经列中的所有纱在经纱与纬层相交的编织平面中具有相同移动。
[0051] 一旦制成该纤维结构100,其即用包含陶瓷材料的有机前体的液体组合物浸渍(步骤S2)。为此,纤维织构在包含树脂的浴(通常是用于该树脂的溶剂)中浸没。液体排干后,在炉中进行预固化(预聚合化)。该干燥需要在中等温度进行,以保持纤维织构的充分可形变性。
[0052] 可采用其它已知的浸渍技术,例如使所述纤维织构连续通过浸渍机、通过输注浸渍,或实际通过树脂传递模塑(RTM)进行。
[0053] 有机前体通常是聚合物形式,例如树脂,其能够在溶剂中稀释。例如,陶瓷(尤其是SiC)的液体前体,可以是聚碳硅烷(PCS)、聚硅氧烷(PSX)、含聚碳硅烷(PTCS)或聚硅烷(PSZ)型的树脂,而碳的液体前体可以是酚型树脂。
[0054] 然后,可使浸渍纤维结构100延展,并通过在支持工件400上成形而成形,该支持工件400显示在对应于待制造的网格体的最终形状的方向Dc上发生弯曲的形状,其本身接近于部件(其上待固定声衰减板)的形状(步骤S3,图8)。在当前描述的实施方式中,支持工件400是圆柱形,并且具有桩410,用于在工件400上保持所述结构。
[0055] 在纤维结构100已延展并在工件400上成形后,使树脂浸渍的纤维结构100聚合化,以使其具有一定程度的机械强度,使其能够在操作时保持其形状(步骤S4)。因此获得网格结构150,其显示弯曲形状,并且具有由壁151确定的多个网格单元152(图9)。
[0056] 之后,制造形成该声学板的第一和第二表层(即内表层和外表层)的两个平面纤维结构(步骤S5)。出于该目的,如图10所示制备两个纤维结构200和300。表层的纤维结构可由耐火纤维(碳或陶瓷纤维)制成的纤维织构获得。所用的纤维织构可具有多种类型和形状,具体示例如下:
[0057] ·二维(2D)编织;
[0058] ·三维(3D)编织,通过3D或多层织法获得,例如具体见述于文件WO2010/061140,其内容通过引用纳入本文;
[0059] ·针织;
[0060] ·编结;
[0061] ·通过以不同方向重叠多个单向(UD)片层并将UD片层接合在一起(例如,通过缝合、通过采用化学接合剂或通过针织),获得纱或粗纤维或多向(nD)片层的UD片层。
[0062] 还可以采用由编织织物、编带、针织物、毡、纱层、落纤等的多个重叠层制成的纤维结构,其中所述层接合在一起(例如通过缝合、通过植入纱或刚性元件,或通过针织)。
[0063] 一旦制成纤维结构200和300,即采用上述浸渍技术之一用包含至少一种有机树脂(陶瓷材料的前体)的固体组合物浸渍所述纤维结构(步骤S6)。
[0064] 接下来的步骤由将两个表层与网格体对接组成。如上所述,可在浸渍阶段或在聚合化阶段时,将各表层与网格体对接。
[0065] 在本发明的第一个实施方式中,纤维结构200和300与网格结构150在浸渍阶段对接,即,在使有机前体树脂聚合化之前(步骤S7)。为此,并如图11中所示,将纤维结构200置于工件500上,工件500与工件400类似,呈现对应于待制造的声学板形状以及部件(其上将放置该板)形状的弯曲形状。工件500的表面上还具有多根针510,以生成纤维结构200中的穿孔。然后将网格结构150置于浸渍的纤维结构200上。然后将浸渍的纤维结构300置于网格体(其形成结构300的形状支持物)的顶部,前提是其已被加固。使树脂浸渍的纤维结构200和300聚合化,从而使其具有足够的强度以在后续操作中保持其形状(步骤S8)。由此获得其间插有网格结构的两个板。为了增加表层和网格体之间的接合,可将粘合剂置于这些元件的接触部分之间。例如,所用粘合剂可由预陶瓷树脂(40重量%)和粒径为约9微米(μm)(60重量%)的碳化硅填料的混合物组成。可通过将网格结构浸渍在粘合剂浴中或通过将浆料形式的粘合剂施加在网格结构上来施加粘合剂。也可以采用基于陶瓷前体并且显示良好高温强度的任何粘合剂。
[0066] 然后使该组件在惰性气体下进行热解处理,以将聚合物基质转化成陶瓷(步骤S9)。
[0067] 在该阶段,网格结构和表层仍呈现多孔性,其后续采用碳化硅通过本领域熟知技术化学气相渗透(CVI)减少至可测水平。为此,将由网格结构和表层构成的组件放置在炉内,其中给予反应气体。选择炉中的压强和温度和气体组成,以使气体扩散进入部件的孔中,从而在其中通过沉积固体材料而形成基质,所述固体材料源自气体分解成分,或源自其多种组分之间的反应。例如,气态陶瓷(尤其是SiC)前体,可以是甲基三氯硅烷(MTS),其通过MTS分解(可能氢气存在下)生成SiC。
[0068] 声衰减板的部件的该共致密作用提供部件之间的最终接合。
[0069] 因此获得图1中所示的声衰减板10,其呈现弯曲形状,并且具有位于具有穿孔13的声学板12和结构板14之间的网格结构11,这些元件均由CMC材料制成。
[0070] 可通过多种方式将表层对接至网格结构。在上述实施例中,所述表层都在浸渍阶段(即,形成表层的树脂浸渍的纤维结构聚合化之前)结合至网格结构。
[0071] 在本发明方法的一个变化实施方式中,第一表层(例如,声学表层)在其浸渍阶段对接至网格结构的底部,然后对其进行聚合化处理。然后使处于浸渍阶段并经历聚合化处理之前的第二表层(例如,该实施例中的结构表层)对接至网格结构的顶部。上述类型的粘合剂可处于网格结构和表层的接触部分之间。此外,一旦声学表层被对接和聚合化,即可在其中制造穿孔,例如,通过机械钻孔,或通过采用激光或喷水器,然后对接第二结构表层。这使得能够在声学表层中机械制造穿孔,而不承担任何破坏结构表层的险。
[0072] 在本方法的另一个变化实施方式中,两个表层之一或两者均经历聚合化处理,然后再与网格结构对接。在所述情况下,使用于形成表层的浸渍的纤维结构经历聚合化处理,而其保持在具有对应于网格结构形状的弯曲形状的成形工件上。然后,使以该方式加固的表层对接至网格结构,其中在网格结构和表层的接触部分之间纳入了上述类型的粘合剂。
[0073] 将该声学表层,即,具有穿孔的表层,置于网格结构的底部或顶部,这取决于所述板的声衰减需求。可在不同阶段,以不同方式制造声学表层中的穿孔。在浸渍阶段的纤维结构中制造穿孔时,使该结构经历聚合化处理,同时置于具有多根针的工件上,用于在该结构中形成开口,从而在上述聚合化之后构成穿孔(图11)。
[0074] 还可在声学表层已经经历聚合化、热解、或CVI致密化之后制造该声学表层中的穿孔。在所述情况下,通过机械钻孔、激光、压强下喷水等方式制造穿孔。
[0075] 本发明的声衰减板可一般用于任何燃气涡轮的排气管。具体而言,航空发动机管口(例如涡轮喷气机的排气管)的不同部分皆可适用于本发明。其也可以用于航空发动机引擎机舱的内表面,以削减由引擎核心传递的声波。本发明的声衰减板还可有利地用于航空发动机的反推装置,并具体用于此类反推装置范围。
[0076] 所述板的形状和尺寸根据其上待安装所述板的部件以及希望提供声衰减作用的区域的函数而定。
[0077] 用陶瓷基质复合材料制造所述声衰减板减轻了该部件的重量,同时提供高温(高于700℃)下的结构强度。例如,在排气系统中,在排气锥体和喷嘴中采用CMC声衰减板使其能够在航空发动机尾部具有声衰减功能,且不对排气系统的重量造成不利影响。
QQ群二维码
意见反馈