首页 / 国际专利分类库 / 化学;冶金 / 无机化学 / 含有不包含在C01D或C01F小类中之金属的化合物 / 镍的化合物 / 金属氢氧化物固溶体、金属氧化物固溶体及其制造方法

金属氢化物固溶体、金属氧化物固溶体及其制造方法

申请号 CN98106623.2 申请日 1998-04-15 公开(公告)号 CN1129630C 公开(公告)日 2003-12-03
申请人 达保化学工业株式会社; 发明人 栗栖裕文; 石桥龙一; 小谷登志一; 竹垣希;
摘要 本 发明 提供一种金属氢 氧 化物 固溶体 、金属氧化物固溶体及其制造方法,要旨在于该金属氢氧化物固溶体及金属氧化物固溶体之结晶外形系由平行之上下两个基底面及外周之六个 角 锥面所组成之8面体形状,且该角锥面呈由向上倾斜面与向下倾斜面交替配置之形态,同时基底面之长轴径与上下基底面间之厚度的比例(长轴径/厚度)为1~9,使其混拌于 树脂 时之流动性与加工性得以提高。
权利要求

1.一种金属氢化物固溶体,它是可满足下式(1), 其结晶外形由平行之上下两个基底面与外周六个锥面所组 成且呈8面体形状,而该角锥面系呈向上倾斜面与向下倾斜 面交替配置之形态,基底面之长轴径与上下基底面间之厚度 之比例为1~9,
          Mg1-xM2+x(OH)2………(1)
式(1)中,M2+为选自Mn2+、Fe2+、Co2+、Ni2+、Cu2+及Zn2+之至少一种二价金属离子,x表示0.01≤x<0.5范围之数。
2.如权利要求1中的金属氢氧化物固溶体,其中,基底 面之长轴径平均为0.1~10μm。
3.如权利要求1或2中的金属氢氧化物固溶体,其中, 上式(1)之M2+为Zn2+。
4.一种金属氧化物固溶体,它是可满足下式(2),其 结晶外形由平行之上下两个基底面与外周六个角锥面所组成 且呈8面体形状,而该角锥面系呈向上倾斜面与向下倾斜面 交替配置之形态,基底面之长轴径与上下基底面间之厚度之 比例为1~9,
       Mg1-xM2+xO………(2)
式(2)中,M2+为选自Mn2+、Fe2+、Co2+、Ni2+、Cu2+及Zn2+之至少一种二价金属离子,x表示0.01≤x<0.5范围之数。
5.如权利要求4中的金属氧化物固溶体,其中,基底面 之长轴径平均为0.1~10μm。
6.如权利要求4或5中的金属氧化物固溶体,其中,上 式(2)之M2+为Zn2+。
7.一种金属氢氧化物固溶体之制造方法,该金属氢氧化 物固溶体系可满足下式(1),其结晶外形为由平行之上下两个 基底面及外周六个角锥面所组成而呈8面体形状,且该角锥面 系呈向上倾斜面与向下倾斜面交替配置之形态,而基底面之长 轴径与上下基底面间之厚度之比例为1~9;该方法系将下式 (3)所示之复合金属氧化物在选自羧酸、羧酸之金属盐、无机 酸及无机酸之金属盐中的至少一种对上述复合金属氧化物为0.1 ~6摩尔%之共存媒体中于40℃以上以叶片搅拌机以旋转周 速5m/s以上搅拌4-6小时,使其水合反应为特征;
       Mg1-xM2+x(OH)2………(1)
式(1)中,M2+为选自Mn2+、Fe2+、Co2+、Ni2+、Cu2+及Zn2+中的至少一种二价金属离子,x表示0.01≤x<0.5范围之数
       Mg1-xM2+xO………(3)
式(3)中,M2+为选自Mn2+、Fe2+、Co2+、Ni2+、Cu2+及Zn2+中的至少一种二价金属离子,x表示0.01≤x<0.5范围之数。
8.如权利要求7中的金属氢氧化物固溶体之制造方法, 其中,基底面之长轴径平均为0.1~10μm。
9.如权利要求7或8中的金属氢氧化物固溶体之制造方 法,其中,该式(3)之M2+为Zn2+。
10.如权利要求7或8中的金属氢氧化物固溶体之制造方 法,其中,该式(3)所示之复合金属氢氧化物之BET比表面 积为10m2/g以下。
11.一种金属氧化物固溶体之制造方法,该金属氧化物固 溶体系可满足下式(2),其结晶外形系由平行之上下两个基底 面与外周之六个角锥面所组成而且呈8面体形状,该角锥面呈 向上倾斜面与向下倾斜面交替配置之形态,而基底面之长轴径 与上下基底面间之比例为1~9;该方法系将下式(3)所示之 复合金属氧化物在选自羧酸、羧酸之金属盐、无机酸及无机酸 之金属盐之至少一种对上述复合金属氧化物为0.1~6摩尔%之 共存水媒体中于40℃以上以叶片搅拌机以旋转周速5m/s以上 搅拌4-6小时,使其水合反应,继将反应物在400℃以上温度煅烧为特征:
         Mg1-xM2+xO………(2)
式(2)中,M2+为选自Mn2+、Fe2+、Co2+、Ni2+、Cu2+及Zn2+中的一种二价金属离子,x表示0.01≤x<0.5范围之数
         Mg1-xM2+xO………(3)
式(3)中,M2+为选自Mn2+、Fe2+、Co2+、Ni2+、Cu2+及Zn2+ 中的一种二价金属离子,x表示0.01≤x<0.5范围之数。
12.如权利要求11中的金属氧化物固溶体之制造方法, 其中,基底面之长轴径平均为0.1~10μm。
13.如权利要求11或12中的金属氧化物固溶体之制造方 法,其中,该式(3)之M2+为Zn2+。
14.如权利要求11或12中的金属氧化物固溶体之制造方 法,其中,该式(3)所示之复合金属氧化物之BET比表面积 为10m2/g以下。

说明书全文

发明系关于一种金属氢化物固溶体、金属氧化物固溶体及其 制造方法。

习知氢氧化镁系由微细结晶相聚集而形成二次粒子径平均为 10μm~100μm程度之聚集体。以此等聚集体为原料所制成之氧化镁也 只能获致粒径不均匀之成品。因此,该氢氧化镁或氧化镁使用作树脂 添加剂时,分散性不良,不能充分发挥其添加剂之功能,也有损及树 脂原本性质之缺失。

为解决此等问题,已有结晶成长优良之氢氧化镁制造法(特公 昭63-48809号公报)、高分散性氧化镁之制造法(特开平2-141418 号公报)等提案,此外亦有性能更佳之镁类金属氢氧化物固溶体及 镁类金属氧化物固溶体(特开平6-41441号、特开平5-209084号及 特开平6-157032号公报)等各种提案,并获得某种程度的效果改善。 再者,为改善其补强性等而形成之大粒径制品则有高型数比之镁类 金属氢氧化物固溶体及镁类金属氧化物固溶体(特开平2-259235号 公报)之提案。

[发明欲解决之课题]

然而,上述习知之氢氧化镁、氧化镁、镁类金属氢氧化物固溶体、 镁类金属氧化物固溶体、高型数比镁类金属氢氧化物固溶体及镁类金 属氧化固溶体即使结晶粒径有大小,但均为薄六柱状结晶。因此, 当作添加剂混拌在合成树脂中时,树脂之粘度会上升,流动性或加工 性变差,有成形速度降低使生产性不良,或无法高密度填充之问题。 而且,有时由于树脂用途对象之不同,会因形状因素而使其在树脂中 之分散性变差,或是无法充分发挥其添加剂之功能。

本发明系鉴于此等情形而研发成功者,其目的在提供一种混拌于 树脂时之流动性与加工性得以提高之金属氢氧化物固溶体与金属氧化 物固溶体及其制造方法。 [用以解决问题之手段]

为达成上述之目的,本发明之金属氢氧化物固溶体系以满足下式 (1)之条件,且其结晶外形为由平行之上下两个基底面及外周之六 个角锥面所组成之8面体形状,且该角锥面系呈向上倾斜面与向下倾 斜面交替配置之形态,而基底面之长轴径与上下基底面间之厚度之比 例(长轴径/厚度)在1~9之范围为其要旨。

           Mg1-xM2+x(OH)2………(1)

[式(1)中,M2+系为选自Mn2+、Fe2+、Co2+、Ni2+、Cu2+及 Zn2+之至少一种二价金属离子,x表示0.01≤x<0.5范围之数]

再者,本发明之金属氧化物固溶体系以满足下式(2)之条件, 且其结晶外形为由平行之上下两个基底面与外周之六个角锥面所组成 之8面体形状。且该角锥面系呈向上倾斜面与向下倾斜面交替配置之 形态,其基底面之长轴径与上下基底面间之厚度之比例(长轴径/厚度) 在1~9范围为要旨

        Mg1-xM2+xO………(2)

[式(2)中,M2+为选自Mn2+、Fe2+、Co2+、Ni2+、Cu2+、Zn2+之至少一种二价金属离子,x表示0.01≤x<0.5范围之数]

其次,本发明之金属氢氧化物固溶体之制法系将下式(3)表示 之复合金属氧化物,在选自羧酸、羧酸之金属盐、无机酸及无机酸之 金属盐之至少一种对该复合金属氧化物约呈0.1~6摩尔%之共存媒 体中,实施强搅拌,令其产生水合反应为要旨。

          Mg1-xM2+xO………(3)

[式(3)中,M2+为选自Mn2+、Fe2+、Co2+、Ni2+、Cu2+及Zn2+之至少一种二价金属离子,x表示0.01≤x<O.5范围之数]。

其次,本发明金属氧化物固溶体之制造方法系以利用上述制法所 得之金属氢氧化物固溶体在400℃以上煅烧为要旨。

因此,本发明之金属氢氧化物固溶体在结晶外形上系由平行之 上下两个基底面与外周之六个角锥面所组成之8面体形状,且该角 锥面系呈向上倾斜面与向下倾斜面交替配置之形态,其基底面之长 轴径与上下基底面间之厚度之比例(长轴径/厚度)为1~9。故与 习知金属氢氧化物固溶体之薄六角柱状结晶相比,呈现出完全不同 的晶癖(habit)外形,且厚度方向之结晶成长较大。因此,混拌于 合成树脂中作为添加剂时,与习知制品相比,本发明可使树脂之流 动性与加工性均提高,成形速度较快,生产性非常优良,同时填充 性亦提升,而且在树脂中之分散性较佳,当作树脂之难燃剂,紫外 线吸收剂,补强剂,散热剂等之添加剂来使用时,能够充分发挥其 功能。

本发明之金属氢氧化物固溶体中,其基底面之长轴径平均为0.1~ 10μm之情形下,当作添加剂混拌在合成树脂时之流动性或加工性得以 更佳,用于树脂成形时之生产性极优良。

而且,本发明之金属氢氧化物固溶体中,上式(1)之M2+为Zn2+时,可借由将Zn2+固溶于Mg(OH)2而提高其白色色度,同时紫外线吸 收性亦优良。

再者,本发明之金属氧化物固溶体亦和上述金属氢氧化物固溶 体一样,其结晶外形系由平行之上下两个基底面与外周之六个角锥 面所组成之8面体形状。且该角锥面系呈向上倾斜面与向下倾斜面 交替配置之形态,其基底面之长轴径与基底面间之厚度之比例(长 轴径/厚度)为1~9。因此,与习知之氧化物及金属氢氧化物结晶 相较,本发明呈现完全不同之晶癖外形,且厚度方向之结晶成长较 大。因此,与习知制品相比,将本发明制品当作添加剂混拌于合成 树脂中时,树脂之流动性与加工性提高,成形速度较快,生产性非 常优良,同时填充性亦增加。而且,在树脂中之分散性较佳,作为 树脂难燃剂、紫外线吸收剂,补强剂,散热剂等之添加剂来使用时, 能够充分发挥其功能。

本发明之金属氧化物固溶体中,基底面之长轴径为平均0.1~10μm 时,当作添加剂混拌于合成树脂时之流动性与加工性更为提升,用于 树脂成形时之生产性极佳。

其次,本发明之金属氧化物固溶体中,上式(2)之M2+为Zn2+时,可借由将Zn2+固溶于MgO,使白色色度提高,同时紫外线吸收性 亦优异。

[发明之实施形态]

其次详细说明本发明之实施形态。

本发明之镁类金属氢氧化物固溶体可以满足下式(1),而以M2+ 表示之二价金属离子系固溶于Mg(OH)2。此处之x系表示0.01≤x<0.5 范围之数目。该金属氢氧化物固溶体所显示之结晶构造系与氢氧化镁 相同,呈现出六方晶系之氢氧化镉型构造。

              Mg1-xM2+x(OH)2………(1)

再者,本发明之镁类金属氧化物固溶体可以满足下式(2),而 以M2+表示之二价金属离子系固溶于MgO,而此处之x则表示0.01≤x <0.5范围之数目。该金属氧化物固溶体之结晶构造与普通氧化镁相 同,属于立方晶系之岩盐型构造,其为具备有上述氢氧化物固溶体形 态之一种氧化物者。

       Mg1-xM2+xO………(2)

上述式(1)及式(2)中,M2+表示选自Mn2+、Fe2+、Co2+、 Ni2+、Cu2+、Zn2+之至少一种二价金属离子,其中以Zn2+特别理想, 因为可借Zn2+固溶于Mg(OH)2或MgO而令白色色度提高,同时为该 固溶体带来优良之紫外线吸收性。

此外,本发明之金属氢氧化物固溶体及金属氧化物固溶体系由平 行之上下两个基底面与外周六个角锥面而组成8面体形状,该角锥面 系由向上倾斜面与向下倾斜面交替配置之形态。

更详言之,习知氢氧化镁、镁类金属氢氧化物固溶体之结晶构造 为六方晶系,如第1图所示,以米勒布拉贝(Miller-Bravais indices) 指数而言,系为以(00.1)面表示之上下两个基底面10及属于{10.0} 形面之六个角锥面11围绕外周而形成之六角柱状。由于其在[001]方向 (C轴方向)之结晶成长较少,故呈薄六角柱状。

相对的,如第2图所示,本发明之金属氢氧化物固溶体及金属氧 化物固溶体可借由结晶成长时之结晶习性控制。而且备以(00.1)面表示 之上下两个基底面12且以属于{10.1}形面之六个角锥面13围绕于外周 之8面体形状,且该角锥面13系由(10.1)面等向上倾斜面13a及 {10.-1}等向下倾斜面13b交替配置而成特殊结晶习性。而且,C轴方向之 结晶成长亦较习知者为大。第2图所示之结晶形状虽接近于板状,且 C轴方向之结晶成长较进步,故其结晶习性乃显著呈现而呈第3图所示之 等方晶系构造。因此,本发明之金属氢氧化物固溶体及金属氧化物固 溶体亦包括接近正八面体之形状者。亦即,基底面之长轴径与基底面 间之厚度之比例(长轴径/厚度)以1~9为适当。该长轴径与厚度之 比例上限值以7更为适当,此外,上述米勒布拉贝指数中,「1杠」 以「-」表示。

如此,本发明之金属氢氧化物固溶体及金属氧化物固溶体中,围 绕外周之六个面之所以为属于{10.1}之角锥面,由下述说明即可知晓。 亦即,以扫描型电子显微镜从C轴方向观察本发明之金属氢氧化物固 溶体及金属氧化物固溶体之结晶时,该结晶呈现以C轴为旋转轴之三 次旋转式对称形态。而且,使用粉末X光绕射所得之晶格常数测定值 之(10.1)面与{10.1}形面之面间角度计算值系与扫描型电子显微镜 观察时之面间角度测定值大致一致。

再者,本发明之金属氢氧化物固溶体及金属氧化物固溶体中,粉 末X光绕射之(110)面尖峰半宽度B110与(001)面尖峰半宽度 B001之比(B110/B001)为1.4以上。由此即可确认C轴方向之结晶 性良好,且厚度有所成长,亦即,习知氢氧化镁等之结晶中,结晶未 朝C轴方向成长,(001)面之尖峰较宽,半宽度B001亦较大。因 此,(B110/B001)之值较小。相对地,本发明之金属氢氧化物固溶 体及金属氧化物固溶体中,由于C轴方向之结晶性良好,故(001) 面之尖峰较锐,较细,半宽度B001亦较小。因此,(B110/B001)之 值较大。

亦即,本发明之金属氢氧化物固溶体及金属氧化物固溶体具有晶 癖完全不同于习知制品之结晶外形,同时C轴方向之结晶成长亦甚显 著,故而具有前所未见之新颖结晶形状。

本发明之金属氢氧化物固溶体及金属氧化物固溶体之平均粒径以 0.1~10μm范围较适当。该平均粒径之较佳下限值为0.5μm,1μm更 佳,较佳上限值为5μm,更佳值则为3μm,而且以几无二次聚集情形 者较理想。

本发明之金属氢氧化物固溶体可以例如下述方法制成。亦即,首先 在氢氧化镁水溶液中添加水溶性M2+化合物而获得作为原料之部分固 溶化氢氧化物,借由将该原料在800~1500℃之范围,或1000~1300 ℃之较佳范围加以煅烧,获得复合金属氧化物。该复合氧化物可以下 式(3)来表示,其BET比表面积为10m2/g以下,但以5m2/g较佳: 将该复合金属氧化物在选自羧酸、羧酸之金属盐、无机酸及无机酸之 金属盐之至少一种对该复合金属氧化物约呈0.1~6摩尔%之共存水媒 体中实施强力搅拌,同时令其于40℃以上温度水合反应,即可制得本 发明之金属氢氧化物固溶体。

上式(3)中,M2+表示选自Mn2+、Fe2+、Co2+、Ni2+、Cu2+、 及Zn2+之至少一种二价金属离子,其中以Zn2+特别理想。

上述方法中,原料并不限定于以上述方法制得之部分固溶化氢氧 化物,只要是可以煅烧制得复合金属氧化物之原料均得使用,并无特 别限定。例如,以共沉淀法制得之复合金属氢氧化物或选自氢氧化镁、 氧化镁及酸镁等组群之至少一种与选自M2+之氢氧化物、M2+之氧 化物及M2+之盐类等组群之至少一种的混合物均可。再者,水合反应 时之搅拌,为得以提高均匀性或分散性以及增加羧酸、无机酸及/或彼 等之金属盐之接触效率,以强力搅拌为佳,而且强力之高剪断式搅拌 更佳。例如,以叶片旋转式搅拌机而言,此种搅拌以叶片旋转周速在 5m/s以上为佳,7m/s以上更佳。而且,搅拌叶片之形状以剪断力较强 之滑轮叶片或DS叶轮叶片等为佳。

上述羧酸并无特别限定,但较理想者有一元羧酸、羟酸(含氧酸) 等。上述一元羧酸中包括例如甲酸、乙酸、二乙基甲、丁酸、戊酸、 己酸、丙烯酸、丁烯酸等。上述羟酸(含氧酸)有例如乙二醇、乳酸、 羟基丙酸、α-羟基丁酸、甘油酸、水杨酸、苯(甲)酸、五倍子酸 等。再者,上述羧酸之金属盐虽无特别限定,但以乙酸镁、乙酸锌等 为佳。

其次,以无机酸而言,虽无特别限定,但较佳者有硝酸盐酸等。 又,以该无机酸之金属盐而言,虽无特别限定,较佳者有硝酸镁、硝 酸锌等。

而且,本发明之金属氧化物固溶体可以借由将以上述方式制得之 金属氢氧化物固溶体在约400℃以上,而以500~1200℃较佳之温度 下煅烧制成。

本发明之金属氢氧化物固溶体及金属氧化物固溶体可以借由施 以各种表面处理而产生对树脂之亲和性、耐酸性、疏水性、紫外线 吸收性等种种功能。如上所述,本发明之金属氢氧化物在水中之分 散性优良,以上述方式借由表面处理赋与功能时,亦能充分发挥其 功能。

用以提高该等固溶体与树脂之亲和性的表面处理剂有例如:高级 脂肪酸或其金属盐、磷酸酯、有机烷偶合剂、多元醇之脂肪酸酯 等。用以提高耐酸性、疏水性者有以甲基硅酸盐、乙基硅酸盐水解所 产生之二氧化硅被覆;二氧化硅被覆后以大约500~1000℃锻烧所产 生之硅酸金属盐被覆、硅油、聚氟烷基磷酸酯盐等之被覆等。再者, 为提高紫外线吸收性,可例如将硫酸水解反应以提供二氧化钛被 覆。 [发明之效果]

如上所述,本发明之固溶体所呈现之晶癖外形与习知金属氧化物 固溶体之薄六角柱状结晶完全不同,而且厚度方向之结晶成长较大。 因此,与习知制品相较,本发明制品当作添加剂混拌在合成树脂中时, 树脂之流动性或加工性均提高,成形速度更快,生产性非常良好,同 时,填充性亦提升。而且,树脂中之分散性更佳,当作树脂之难燃剂、 紫外线吸收剂、补强剂、散热剂等之添加剂来使用时,能够充分发挥 此等功能。

本发明中,基底面之长轴径平均为0.1~10μm时,当作添加剂混 拌于合成树脂得以更进一步提高树脂之流动性或加工性,对实施树脂 成形时之生产性极为良好。

而且,本发明中,上述式(1)及式(2)之M2+为Zn2+时,可 利用Z2+固溶于MgO或Mg(OH)2而提高白色度,紫外线吸收性亦优 良。

其次,配合比较例来说明各实施例。 实施例1

首先将硝酸镁与硝酸锌之混合溶液(Mg2+=1.6摩尔/公升,Zn2+=0.4摩尔/公升)20公升投入50公升容量之容器。一面搅拌一面加 入20公升(2.0摩尔/公升)的Ca(OH)2,继之,将反应所得之白色沉 淀过滤,水洗后使之干燥。以球磨机(ball mill)粉碎该干燥物,再 用电炉以1200℃煅烧2小时。以球磨机粉碎该煅烧物,令其以湿式法 通过200网目之筛子。将该煅烧物添加于装有10公升之乙酸(0.01 摩尔/公升)的20公升容器中,使氧化物浓度达100g/公升。其次,用 高速搅拌机(商品名:Homo-mixer,特殊机化公司制)进行搅拌,涡 轮叶片之周速为10m/s,同时于90℃温度进行水合反应4小时。随后 使反应物通过500网目之筛子,并进行过滤、水洗、干燥,获得本发 明之金属氢氧化物固溶体。

以扫描型电子显微镜观察上述金属氢氧化物固溶体之结果,呈现 外周为角锥面之8面体形状。而且,基底面之长轴径约为1.2μm,基 底面间之厚度约为0.36μm。因此,长轴径与厚度之比例(长轴径/厚 度)为3.3。该金属氢氧化物固溶体之扫描型电子显微镜照片示于第4 图。再者,对该金属氢氧化物固溶体进行粉末X光绕射之结果,其绕 射图除了稍向低角度侧移位之外,和氢氧化镁之绕射图相同,可确认 其为六方晶系之氢氧化镉型构造。 实施例2

将20公升的氢氧化镁浆液[Mg(OH)2 100g/公升]置于容量30公升 的反应容器中,一边搅拌一边加入浓度2.0摩尔/公升的ZnCl2 3.4公 升,使之反应。将所得之白色沉淀过滤、水洗、干燥。以球磨机粉碎 该干燥物后,用电炉在1000℃温度下煅烧2小时。以球磨机将该煅烧 物粉碎,依湿式法使其通过500网目之筛子。再将该煅烧物添加于20 公升容器内装有浓度0.03摩尔/公升之乙酸10公升中,使氧化物之浓 度达100g/公升。其次,使用流线涡轮(edge turbin)叶片式搅拌机, 叶片周速设定在12m/s,一面搅拌一面在90℃温度进行水合反应6小 时。随后使反应物通过500网目之筛子,并进行过滤、水洗、干燥, 获得本发明之金属氢氧化物固溶体。

以扫描型电子显微镜对该金属氢氧化物固溶体进行观察之结果, 呈现外周为角锥面之8面体形状。再者,基底面之长轴径约为2.4μm, 基底面间之厚度约为0.37μm,故长轴径与厚度之比例(长轴径/厚度) 为6.5。该金属氢氧化物固溶体之扫描型电子显微镜照片示于第5图。 又,对该金属氢氧化物固溶体进行粉末X光绕射结果,其绕射图除稍 微向低角度侧移位之外,和氢氧化镁之绕射图相同,可确认属于六方 晶系之氢氧化镉型构造。 实施例3

首先,将硝酸镁与硝酸锌之混合溶液(Mg2+=1.6摩尔/公升, Zn2+=0.4摩尔/公升)20公升置入50公升的反应容器中,一边搅拌 一边添加2.0摩尔/公升的Ca(OH)2 20公升,使之反应。继之,将所得 之白色沉淀过滤、水洗后,再令其干燥。以球磨机粉碎该干燥物,用 电炉在1200℃下煅烧2小时。以球磨机粉碎该煅烧物,用湿式法令其 通过200网目之筛子。将该煅烧物添加于容量20公升之容器中,其中 已装有浓度为0.08摩尔/公升之正丁酸10公升,使氧化物浓度达100g/ 公升。再用高速搅拌机(商品名:Homo-mixer,)进行搅拌,涡轮叶片 之周速设定在10m/s,同时在90℃进行水合反应4小时。随后使反应 物通过500网目之筛子,并进行过滤、水洗、干燥,获得本发明之金 属氢氧化物固溶体。

用扫描型电子显微镜观察该金属氢氧化物固溶体之结果,大致 呈8面体形状。再者,基底面之长轴径约2.5μm,基底面间之厚度 约2.2μm。因此,长轴径与厚度之比例(长轴径/厚度)为1.1。该 金属氢氧化物固溶体之扫描型电子显微镜照片示于第6图。而且, 就该金属氢氧化物固溶体进行粉末X光绕射结果,其绕射图除稍向 低角度侧移位之外,与氢氧化镁之绕射图相同,可确认属六方晶系 之氢氧化镉型构造。 实施例4

将实施例1所制取之金属氢氧化物固溶体以电炉在900℃温度下 煅烧2小时,获得本发明之金属氧化物固溶体。

以扫描型电子显微镜观察该金属氧化物固溶体之结果,呈现外周 为角锥面之8面体形状。再者,基底面之长轴约1.2μm,基底面间之 厚度约0.36μm,故长轴径与厚度之比例(长轴径/厚度)为3.3。该金 属氢氧化物固溶体之扫描型电子显微镜照片示于第7图。而且,就该 金属氢氧化物固溶体进行粉末X光绕射之结果,绕射图除稍向低角度 侧移位之外,和氧化镁之绕射图相同。 实施例5

用浓度0.01摩尔/公升之盐酸10公升取代实施例1之0.01摩尔/ 公升之乙酸10公升,其余步骤与实施例1相同,制得本发明之金属氢 氧化物固溶体。

就该金属氢氧化物固溶体以扫描型电子显微镜观察之结果,呈现 外周为角锥面之8面体形状。再者,基底面之长轴径约1.1μm,基底 面间之厚度约0.51μm,因此,长轴径与厚度之比例(长轴径/厚度) 为2.2。该金属氢氧化物固溶体之扫描型电子显微镜照片示于第8图。 而且,对该金属氢氧化物固溶体进行粉末X光绕射之结果,其绕射图 除稍向低角度侧移位之外,和氢氧化镁之绕射图案相同,可确认属于 六方晶系之氢氧化镉型构造。 实施例6

用浓度0.26摩尔/公升之硝酸10公升取代实施例1之浓度0.01摩 尔/公升之乙酸10公升,其他步骤与实施例1相同,制得本发明之金 属氢氧化物固溶体。

以扫描型电子显微镜观察该金属氢氧化物固溶体之结果,呈现外 周为角锥面之8面体形状。再者,基底面之长轴径约1.0μm,基底面 间之厚度约0.69μm,因此,长轴径与厚度之比例(长轴径/厚度)为 1.4。该金属氢氧化物固溶体之扫描型电子显微镜照片示于第9图。而 且,对该金属氢氧化物固溶体进行粉末X光绕射之结果,其绕射图除 稍向低角度侧移位之外,和氢氧化镁之绕射图相同,可确认属于六方 晶系之氢氧化镉型构造。 实施例7

使用乙酸镁0.004摩尔/公升与乙酸锌0.001摩尔/公升所组成之水 溶液10公升取代实施例1中之浓度0.01摩尔/公升约乙酸10公升,其 余步骤与实施例1相同,制得本发明之金属氢氧化物固溶体。

以扫描型电子显微镜观察该金属氢氧化物固溶体之结果,呈现外 周为角锥面之8面体形状。再者,基底面之长轴径约1.1μm,基底面 间之厚度约0.31μm,因此,长轴径与厚度之比例(长轴径/厚度)为 3.5。该金属氢氧化物固溶体之扫描型电子显微镜照片示于第10图。 就该金属氢氧化物固溶体实施粉末X光绕射之结果,其绕射图除稍向 低角度侧移位之外,和氢氧化镁之绕射图相同,可确认属于六方晶系 之氢氧化镉型构造。

实施例8

以乙酸0.01摩尔/公升与硝酸0.01摩尔/公升组成之水溶液10公升 取代实施例1中0.01摩尔/公升之乙酸10公升,其余步骤与实施例1 相同,而制得本发明之金属氢氧化物固溶体。

以扫描型电子显微镜观察该金属氢氧化物固溶体之结果,呈现外 周为角锥面之8面体形状。再者,基底面之长轴约1.0μm,基底面间 之厚度约0.52μm,因此,长轴径与厚度之比例(长轴径/厚度)为1.9。 该金属氢氧化物固溶体之扫描型电子显微镜照片示于第11图。而且, 就该金属氢氧化物固溶体进行粉末X光绕射之结果,其绕射图除稍向 低角度侧移位之外,和氢氧化镁之绕射图案相同,可确认属于六方晶 系之氢氧化镉型构造。

实施例9

以乙酸0.01摩尔/公升与硝酸镁0.005摩尔/公升所组成之水溶液10 公升取代实施例1中0.01摩尔/公升之乙酸10公升,其余步骤与实施 例1相同,制得本发明之金属氢氧化物固溶体。

以扫描型电子显微镜观察该金属氢氧化物固溶体之结果,呈现外 周为角锥面之8面体形状。再者,基底面之长轴径约1.2μm,基底面 间之厚度约0.59μm,因此,长轴径与厚度之比例(长轴径/厚度)为 2.0。该金属氢氧化物固溶体之扫描型电子显微镜照片示于第12图。 而且,对该金属氢氧化物固溶体实施粉末X光绕射之结果,其绕射图 除稍向低角度侧移位之外,和氢氧化镁之绕射图相同,可确认属于六 方晶系之氢氧化镉型构造。 比较例1

首先,将硝酸镁与硝酸锌之混合溶液(Mg2+=1.6摩尔/公升, Zn2+=0.4摩尔/公升)20公升置于50公升之反应容器,一边搅拌一边 加入浓度为2.0摩尔/公升之Ca(OH)2 20公升,使之反应。继将所得白 色沉淀过滤、水洗后,令其干燥,以球磨机粉碎该干燥物,再用电炉 于1200℃煅烧2小时,以球磨机粉碎该煅烧物,并以湿式法置于200 网目之筛子过滤。将该煅烧物添加于容量20公升之容器中,其中装有 浓度0.15摩尔/公升之乙酸10公升,使氧化物浓度达100g/公升。继之 以桨叶式搅拌机施以搅拌,桨叶之周速设在4m/s,同时,在90℃温 度下进行水合反应4小时。随后使反应物通过500网目之筛子。并进 行过滤、水洗、干燥,制得干燥物。

对所获得之干燥物用扫描型电子显微镜观察之结果,呈现薄六角 柱状。再者,基底面之长轴径约5.5μm,基底面间之厚度约0.40μm, 因此,长轴径与厚度之比例(长轴径/厚度)为13.8。该金属氢氧化物 固溶体之扫描型电子显微镜照片示于第13图。而且,对该金属氢氧化 物固溶体进行粉末X光绕射之结果,其绕射图除稍向于低角度侧移位 之外,和氢氧化镁之绕射图相同。 比较例2

将硝酸镁与硝酸锌之混合溶液(Mg2+=0.9摩尔/公升,Zn2+=0.1 摩尔/公升)1公升置于3公升之反应容器中,一面搅拌,一面加入浓 度2.04摩尔/公升之NaOH 1公升,使之反应。继之,令该反应物在氯 离子浓度为1摩尔/公升之氯化钠水溶液中乳化,置于附设有搅拌机而 其容量为3公升之高压锅中,在150℃下进行水热处理2小时。然后 过滤、水洗、干燥,获得干燥物。

对于所制得之干燥物用扫描型电子显微镜观察之结果,呈现薄六 角柱状。再者,基底面之长轴径约0.66μm,基底面间之厚度约0.18μm, 因此,长轴径与厚度之比例(长轴径/厚度)为3.7。该金属氢氧化物 固溶体之扫描型电子显微镜照片示于第14图。而且,就该金属氢氧化 物进行粉末X光绕射之结果,其绕射图除稍向低角度侧移位之外,和 氢氧化镁之绕射图相同。

图式之简单说明

第1图为习知金属氢氧化物固溶体之外形说明图,其中,(a)为俯 视图,(b)为侧视图;

第2图为本发明金属氢氧化物固溶体之一外形例说明图,其中, (a)为俯视图,(b)为侧视图;

第3图为本发明金属氢氧化物固溶体之另一外形例说明图,其中, (a)为俯视图,(b)为侧视图;

第4图为实施例1之金属氢氧化物固溶体之扫描型电子显微镜照 片;

第5图为实施例2之金属氢氧化物固溶体之扫描型电子显微镜照 片;

第6图为实施例3之金属氢氧化物固溶体之扫描型电子显微镜照 片;

第7图为实施例4之金属氢氧化物固溶体之扫描型电子显微镜照 片;

第8图为实施例5之金属氢氧化物固溶体之扫描型电子显微镜照 片;

第9图为实施例6之金属氢氧化物固溶体之扫描型电子显微镜照 片;

第10图为实施例7之金属氢氧化物固溶体之扫描型电子显微镜照 片;

第11图为实施例8之金属氢氧化物固溶体之扫描型电子显微镜照 片;

第12图为实施例9之金属氢氧化物固溶体之扫描型电子显微镜照 片;

第13图为比较例1之金属氢氧化物固溶体之扫描型电子显微镜照 片;

第14图为比较例2之金属氢氧化物固溶体之扫描型电子显微镜照 片。

QQ群二维码
意见反馈