径向结半导体纳米结构的低温制造方法、径向结器件以及包括径向结纳米结构的太阳能电池

申请号 CN201380007966.1 申请日 2013-01-03 公开(公告)号 CN104221126B 公开(公告)日 2017-05-31
申请人 道达尔销售服务公司; 科学研究国家中心; 综合工科学校; 发明人 L·于; P·罗卡伊; 卡瓦鲁卡斯;
摘要 本 发明 涉及在基底上(2)低温制造径向 电子 结 半导体 纳米结构的方法,包括步骤:a)在基底(2)上形成金属集聚物(2),该金属集聚物能电掺杂第一半导体材料;b)在存在第一半导体材料的一种或多种非 掺杂剂 前体气体的条件下气相生长掺杂的半导体 纳米线 (1),基底(2)被加热至金属集聚物处于液相的 温度 ,掺杂的半导体纳米线(1)的气相生长被金属集聚物(3)催化;c)使残余金属集聚物(3) 钝化 ;及d)在存在掺杂剂气体和一种或多种前体气体的条件下 化学气相沉积 第二半导体材料的至少一个薄层以在纳米线与至少一个掺杂 薄膜 之间形成至少一个径向电子结纳米结构。本发明还涉及包括多个根据本发明制造的径向电子结纳米结构的 太阳能 电池 。
权利要求

1.一种在基底(1)上低温制造至少一个径向电子半导体纳米结构的方法,所述方法包括以下步骤:
a)在所述基底(1)上形成金属集聚物,所述金属集聚物能够以第一掺杂类型来电掺杂第一半导体材料,所述第一半导体材料从和锗中选择,所述金属集聚物由与从铋和镓中选择的材料的合金、铋、或镓构成,铋以及铋锡合金在硅中产生n型电掺杂,镓以及锡镓合金在硅中产生p型电掺杂;
b)在被金属集聚物覆盖的所述基底(1)上的所述第一半导体材料中气相生长掺杂的半导体纳米线(2),所述基底(1)被加热至高于或等于所述金属集聚物的共晶温度的温度,掺杂的半导体纳米线(2)的气相生长在存在所述第一半导体材料的一种或多种前体气体的条件下被所述金属集聚物催化,所述一种或多种前体气体是非掺杂剂气体;
c)钝化残余金属集聚物;
d)在存在一种或多种前体气体和一种掺杂剂气体的条件下在所述掺杂的半导体纳米线(2)上化学气相沉积第二半导体材料的至少一个薄层(4),所述掺杂剂气体能够以第二掺杂类型来电掺杂所述第二半导体材料,并且第二半导体材料的所述至少一个薄层(4)被保形地沉积在所述掺杂的半导体纳米线(2)上,以在以第一掺杂类型掺杂的所述半导体纳米线(2)与以第二掺杂类型掺杂的所述至少一个薄层(4)之间形成至少一个径向电子结纳米结构,
-所述步骤a)形成金属集聚物、b)生长掺杂的半导体纳米线、c)钝化金属集聚物以及d)化学气相沉积在同一真空沉积室中被顺序地执行。
2.如权利要求1所述的低温制造至少一个径向电子结半导体纳米结构的方法,包括在步骤c)钝化残余金属集聚物与步骤d)化学气相沉积第二掺杂半导体材料的至少一个薄层之间的中间步骤,所述中间步骤包括在存在一种或多种前体气体的条件下在所述掺杂的半导体纳米线(2)上保形地化学气相沉积第三本征半导体材料的另一薄层(3),所述掺杂的半导体纳米线(2)被p型掺杂且第二半导体材料的所述至少一个薄层(4)被n型掺杂,以形成p-i-n径向电子结半导体纳米结构,或者,所述掺杂的半导体纳米线(2)被n型掺杂且第二半导体材料的所述至少一个薄层(4)被p型掺杂,以形成n-i-p径向电子结半导体纳米结构。
3.如权利要求1或2所述的低温制造至少一个径向电子结半导体纳米结构的方法,其中,步骤c)钝化残余金属集聚物包括将温度降低至低于所述金属集聚物的共晶温度的温度的步骤,和/或化学气相蚀刻的步骤,和/或施加氢还原等离子体的步骤。
4.如权利要求1或2所述的低温制造至少一个径向电子结半导体纳米结构的方法,其中,步骤d)化学沉积第二掺杂半导体材料的至少一个薄层(4)包括在存在包括第二半导体材料的前体气体和掺杂剂气体的气体混合物的条件下化学气相沉积的步骤或等离子体增强化学气相沉积的步骤。
5.如权利要求2所述的低温制造至少一个径向电子结半导体纳米结构的方法,其中,所述第二半导体材料和/或所述第三本征半导体材料是从硅和锗中选择的。
6.如权利要求5所述的低温制造至少一个径向电子结半导体纳米结构的方法,其中,所述第一半导体材料是p型掺杂的晶体硅,所述第二半导体材料是n型掺杂的非晶硅,且/或所述第三本征半导体材料是本征非晶硅。
7.如权利要求2所述的低温制造至少一个径向电子结半导体纳米结构的方法,其中,第三本征半导体材料的所述另一薄层(3)包括非晶硅,并且,所述方法包括在步骤c)钝化残余金属集聚物之后且在沉积本征非晶硅的所述另一薄层(3)的步骤之前的附加步骤,所述附加步骤包括在存在一种或多种前体气体的条件下在所述掺杂的半导体纳米线(2)上保形地化学气相沉积具有与掺杂的半导体纳米线(2)相同的掺杂类型的半导体材料的非晶薄层的步骤。
8.如权利要求1或2所述的低温制造至少一个径向电子结半导体纳米结构的方法,包括在步骤d)之后的至少一个以下附加步骤:
e)沉积半导体材料的多个薄层的至少一个其他叠层,所述薄层的至少一个其他叠层被保形地沉积在所述至少一个径向电子结半导体纳米结构上,且所述多个薄层具有各自的掺杂,所述掺杂适于形成至少一个双径向电子结半导体纳米结构。
9.如权利要求1或2所述的低温制造至少一个径向电子结半导体纳米结构的方法,其中,步骤a)、b)、c)和d)期间的基底温度保持为低于400℃。
10.如权利要求1或2所述的低温制造至少一个径向电子结半导体纳米结构的方法,其中,所述基底是非纹理的金属基底、单晶或多晶硅、玻璃或聚合物
11.如权利要求10所述的低温制造至少一个径向电子结半导体纳米结构的方法,其中,所述基底是塑性材料。
12.一种径向电子结器件,包括:
-基底(1);
-由以从n型掺杂剂和p型掺杂剂中选择的第一掺杂类型掺杂的第一半导体材料制成的至少一个掺杂的半导体纳米线(2),所述至少一个掺杂的半导体纳米线从所述基底延伸,其中所述第一半导体材料从硅和锗选择,并且其中铋为所述n型掺杂剂,并且其中镓为所述p型掺杂剂;
-具有第二掺杂类型的第二半导体材料的至少一个薄层(4),第二半导体材料的所述至少一个薄层(4)被保形地沉积在所述至少一个掺杂的半导体纳米线(2)上,以在所述掺杂的半导体纳米线(2)与所述第二半导体材料的所述至少一个薄层(4)之间形成至少一个径向电子结半导体纳米结构。
13.如权利要求12所述的径向电子结器件,还包括保形地沉积在所述至少一个掺杂的半导体纳米线(2)上以及第二半导体材料的所述至少一个薄层下方的第三本征半导体材料的另一薄层(3),所述至少一个掺杂的半导体纳米线(2)被p型掺杂且第二半导体材料的所述至少一个薄层(4)被n型掺杂,以形成至少一个p-i-n径向电子结半导体纳米结构,或者,所述至少一个掺杂的半导体纳米线(2)被n型掺杂且第二半导体材料的所述至少一个薄层(4)被p型掺杂,以形成至少一个n-i-p径向电子结半导体纳米结构。
14.如权利要求12或13所述的径向电子结器件,还包括多个半导体薄层的至少一个其他叠层,所述多个半导体薄层的所述至少一个其他叠层被保形地沉积在所述至少一个径向电子结半导体纳米结构上,且所述多个半导体薄层具有各自的掺杂,所述掺杂适于形成至少一个双径向电子结半导体纳米结构。
15.如权利要求12或13所述的径向电子结器件,其中,所述至少一个掺杂的半导体纳米线(2)包括至少一个硅掺杂的纳米线。
16.一种太阳能电池,包括多个如权利要求12到15中的一项所述的径向电子结纳米结构。

说明书全文

径向结半导体纳米结构的低温制造方法、径向结器件以及包

括径向结纳米结构的太阳能电池

技术领域

[0001] 本发明一般涉及从半导体纳米线网络形成的(例如,n-i-p、p-i-n、n-p、p-n或串叠电池(tandem-cell)类型的)径向结电子结构的制造。本发明特别地找到在低成本光伏太阳能电池的制造中的应用。

背景技术

[0002] 太阳能是支持人类社会可持续发展的可再生能源的最丰富来源。推动光伏能技术以减少温室气体排放是至关重要的。然而,光伏技术在每瓦成本方面达到相对于常规电费率来说是平价的也是很关键的。
[0003] 大约50年前,基于晶体晶片的使用的第一代太阳能电池自从其引入以来就在光伏市场占支配地位。晶体硅的能带结构使其在光吸收上不是特别有效,这要求晶体硅的厚度为100到300微米。而且,太阳能电池的尺寸受到晶体硅晶片尺寸的限制。这导致了用于基于晶体硅的太阳能电池的高材料成本。为了降低每瓦成本,第二代太阳能电池采用了多晶硅或非晶硅薄膜沉积技术。薄膜太阳能技术成本低,且可容易地适于不同的支持尺寸(在玻璃上高达6平米,在辊上超过1千米长)。在薄膜太阳能电池中,不同掺杂层的叠层被沉积以在例如两个薄膜电极之间产生p-i-n或n-i-p类型的结。电极用于收集光生载流子的电流。由于非晶硅或多晶硅的厚度大,因此光吸收率特别重要。然而,由于光生载流子的扩散长度小,电极间距离不得不受到限制。因此,在薄膜平面太阳能电池中,发现如下两方面之间的折衷:一方面是大厚度以确保材料中足够的光吸收程度,另一方面是相对于电池厚度的足够长的扩散长度以允许收集大部分的光生载流子。应注意:除了扩散,由掺杂层生成的电场允许电子空穴对的分离。薄膜太阳能电池的性能通常受非晶或单晶硅的差的电特性的限制。
[0004] 已开发了除了薄膜平面结外的其他类型的太阳能电池电子结。最近已提出了具有p-i-n径向结类型设计的电子结以克服这些限制和缺点。这种新的径向结设计首先在于制造用于纳米线的网络,该网络用作对通过沉积p型掺杂半导体层、随后沉积本征半导体层(i),最后沉积n型掺杂的半导体层而获得的p-i-n电子结的物理支持。由此在纳米线网络上方实现具有3D结构的p-i-n径向结。纳米线林(forest)呈现出全向光俘获,并允许可光谱近红外的宽波长范围内的吸收。径向结结构允许光吸收长度与载流子的分隔的距离无关。
[0005] 径向结太阳能单元的可行性首先在单硅纳米线(Tian,Zheng等,2007)或在III-V半导体纳米线(Thunich,Prechtel等,2009)上被验证。已在有序或随机的垂直硅纳米线的网络上做出径向结太阳能电池(Tsakalakos,Balch等,2007;Yu,O’Donnell等,2010)。可通过在晶体硅中自上而下的蚀刻技术(Garnett和Yang,2010;Lu和Lal,2010),或通过自下而上生长技术,例如,气-液-固(VLS)技术(Schmid、Bjork等,2008;Yuan、Zhao等,2009;Schmidt、Wittemann等,2010),获得适合该应用的硅纳米线网络。
[0006] VLS方法在于使用液相催化剂的滴剂来催化纳米线从气相前体(precursor)的生长,并生长诸如纳米线的一维固态结构。VLS技术在各个方面改进了纳米线制造方法。VLS纳米线制造方法更加可控。VLS方法允许以高效率在大尺寸基底上按比例缩放。最后,VLS方法还与低生长温度兼容,并适用于许多低成本基底。然而,硅纳米线上的由VLS技术制成的径向结太阳能电池的性能仍然非常有限,效率目前是大约0.1-2%(Tsakalakos、Balch等,2007;Th、Pietsch等,2008;Gunawan和Guha,2009;Perraud、Poncet等,2009)。该有限的效率证明了这样的事实,为平面晶体硅或径向结构的薄膜电池而建立的认识向3D的转移不是一项普通的任务。迄今已在硅纳米线网络上制成p-i-n径向结的光学设计。该新的结构引入了具有3D结构的高性能太阳能电池的设计和制造的全新方面。现今,制成了效率达到5-6%的径向结电池。
[0007] 通过VLS方法生长硅纳米线最常见的是用金作为金属催化剂。然而,金的熔点(Tm=1064℃)要求高温度的基底。而且,金有个主要缺陷,其在硅禁带的中间在深能级处引入电子缺陷。金引起的污染以及其极高的成本解释了为什么在VLS生长步骤与薄层叠层的沉积步骤之间实施回收残余金的步骤。已进行了使用金属催化剂铟、、镓来通过VLS方法生长硅纳米线的生长(Alet、Yu等,2008;Yu、Alet等,2008,Yu、ODonnell等,2009)。具有较低熔点的诸如锡的金属催化剂的使用允许硅纳米线在低于200℃的温度下生长(Yu、Alet等,2008;Yu、O’Donnell等,2009)。而且,锡不会像金一样在硅禁带的中间引入电子缺陷。
[0008] 另一方面,由化学气相沉积进行的电子结的掺杂(p-n、n-p、p-i-n或n-i-p)通常是在化学气相沉积工艺期间基于若干种掺杂剂气体的使用。电子结的制造一般要求使用至少两种掺杂剂气体,第一种掺杂剂气体用于n型掺杂,另一种掺杂剂气体用于p型掺杂。现在,若干种掺杂剂气体的使用会引入用于清洁沉积室的复杂问题,以避免不同沉积层之间的交叉污染。掺杂剂气体实际上覆盖沉积室的内壁,并且在随后的沉积不同掺杂层的步骤期间,掺杂剂气体被回收。在p-i-n或n-i-p结的情况下,很难避免本征层被在同一沉积反应器中沉积的本征层的下方的p或n掺杂剂被污染。另一方面,诸如B2H6或PH3的掺杂剂气体是有毒气体。

发明内容

[0009] 本发明的目的之一是简化太阳能电池的制造方法。本发明的另一个目的是减少p-i-n或n-i-p本征层被在反应器中使用的掺杂剂或下伏(underlying)层的掺杂剂的污染。特别地,避免在半导体材料的禁带中心处产生电子捕获中心这一点是必需的。避免用于电子结的n掺杂层和p掺杂层的交叉污染也是很重要的。本发明的另一个目的是限制诸如B2H6或PH3的有毒掺杂剂气体的使用。
[0010] 本发明的目的是解决现有技术的缺陷,且特别涉及在基底上低温制造至少一个径向电子结半导体纳米结构的方法,包括以下步骤:
[0011] a)在所述基底上形成金属集聚物(aggregate),所述金属集聚物能够以第一掺杂类型来电掺杂第一半导体材料;
[0012] b)在被金属集聚物覆盖的所述基底上的所述第一半导体材料中气相生长掺杂的半导体纳米线,所述基底被加热至高于或等于所述金属集聚物的共晶温度(eutectic temperature)的温度,掺杂的半导体纳米线的气相生长在存在所述第一半导体材料的一种或多种前体气体的条件下被所述金属集聚物催化,所述一种或多种前体气体是非掺杂剂气体;
[0013] c)钝化残余金属集聚物;
[0014] d)在存在一种或多种前体气体和一种掺杂剂气体的条件下在所述掺杂的半导体纳米线上化学气相沉积第二半导体材料的至少一个薄层,所述掺杂剂气体能够以第二掺杂类型来电掺杂所述第二半导体材料,并且第二半导体材料的所述至少一个薄层被保形地(conformally)沉积在所述掺杂的半导体纳米线上,以在以第一掺杂类型掺杂的所述半导体纳米线与以第二掺杂类型掺杂的所述至少一个薄层之间形成至少一个径向电子结纳米结构,
[0015] -所述步骤a)形成金属集聚物、b)生长掺杂的半导体纳米线、c)钝化金属集聚物以及d)化学气相沉积在同一真空沉积室中被顺序地执行。
[0016] 根据优选实施例,制造至少一个径向电子结半导体纳米结构的方法包括在步骤c)钝化残余金属集聚物与步骤d)化学气相沉积第二掺杂半导体材料的至少一个薄层之间的中间步骤,所述中间步骤包括在存在一种或多种前体气体的条件下在所述掺杂的半导体纳米线上保形地化学气相沉积第三非掺杂(或本征)半导体材料的另一薄层,所述掺杂的半导体纳米线被p型掺杂且第二半导体材料的所述至少一个薄层被n型掺杂,以形成p-i-n径向电子结半导体纳米结构,或者,所述掺杂的半导体纳米线被n型掺杂且第二半导体材料的所述至少一个薄层被p型掺杂,以形成n-i-p径向电子结半导体纳米结构。
[0017] 根据本发明的方法的各个特定方面:
[0018] -步骤c)钝化残余金属集聚物包括将温度降低至低于所述金属集聚物的共晶温度的温度的步骤,和/或化学气相蚀刻的步骤,和/或施加氢还原等离子体的步骤;
[0019] -步骤d)化学沉积第二掺杂半导体材料的至少一个薄层包括在存在包括第二半导体材料的前体气体和掺杂剂气体的气体混合物的条件下化学气相沉积的步骤或等离子体增强化学气相沉积的步骤;
[0020] -所述第一半导体材料、所述第二半导体材料和/或所述第三半导体材料是从硅和锗中选择的;
[0021] -所述第一半导体材料是p型掺杂的晶体硅,所述第二半导体材料是n型掺杂的非晶硅,且/或所述第三半导体材料是本征非晶硅;
[0022] -步骤a)形成金属集聚物包括形成由铋、镓、或锡与从铋、铟和镓中选择的材料的合金构成的集聚物,铋以及铋锡合金能够在硅中产生n型电掺杂,镓以及锡镓或锡铟合金能够在硅中产生p型电掺杂。
[0023] 根据特定实施例,所述第三本征半导体材料薄层包括非晶硅,并且所述方法包括在步骤c)钝化残余金属集聚物之后并且在沉积所述本征非晶硅薄层之前的附加步骤,所述附加步骤包括在存在一种或多种前体气体的条件下在所述掺杂的半导体纳米线上保形地化学气相沉积具有与所述掺杂的半导体纳米线相同的掺杂类型的半导体材料的非晶薄层的步骤。
[0024] 根据本发明的方法的其他特定方面:
[0025] -在步骤a)、b)、c)和d)期间的基底温度保持为低于400℃。
[0026] -基底由非纹理的(non-textured)金属基底、单晶或多晶硅、玻璃、聚合物或塑性材料制成。
[0027] 根据特定实施例,本发明的方法包括在步骤d)之后的至少一个以下附加步骤:
[0028] e)沉积半导体材料的多个薄层的至少一个其他叠层,所述薄层的至少一个其他叠层被保形地沉积在所述至少一个径向电子结半导体纳米结构上,且所述多个薄层具有各自的掺杂,所述掺杂适于形成至少一个双径向电子结半导体纳米结构(串叠电池)。
[0029] 本发明还涉及一种径向电子结器件,其包括基底、由以第一掺杂类型掺杂的第一半导体材料制成的至少一个掺杂的半导体纳米线、具有第二掺杂类型的第二半导体材料的至少一个薄层,所述至少一个掺杂的半导体纳米线从所述基底延伸,第二半导体材料的所述至少一个薄层被保形地沉积在所述至少一个掺杂的半导体纳米线上,以在所述掺杂的半导体纳米线与第二掺杂半导体材料的所述至少一个薄层之间形成至少一个径向电子结半导体纳米结构。
[0030] 根据特定实施例,径向电子结器件还包括保形地沉积在所述至少一个掺杂的半导体纳米线上以及第二半导体材料的所述至少一个薄层下方的第三本征半导体材料的另一薄层,所述至少一个掺杂的半导体纳米线被p型掺杂且第二半导体材料的所述至少一个薄层被n型掺杂,以形成至少一个p-i-n径向电子结半导体纳米结构,或者,所述至少一个掺杂的半导体纳米线被n型掺杂且第二半导体材料的所述至少一个薄层被p型掺杂,以形成至少一个n-i-p径向电子结半导体纳米结构。
[0031] 根据特定实施例,径向电子结器件还包括:多个半导体薄层的至少一个其他叠层,所述薄层的至少一个其他叠层被保形地沉积在所述至少一个径向电子结半导体纳米结构上,且所述多个半导体薄层具有各自的掺杂,所述掺杂适于形成至少一个双径向电子结半导体纳米结构(换句话说,串叠电池)。
[0032] 根据特定实施例,径向电子结器件包括至少一个硅掺杂的纳米线。
[0033] 本发明还涉及一种太阳能电池,其包括多个根据本发明的实施例之一的径向电子结纳米结构。
[0034] 本发明将在高效率太阳能电池的低成本制造中发现特别有益的应用。
[0035] 本发明还涉及以下特征:这些特征将在以下描述中被揭示,且将孤立地或者根据任何技术上可能的其组合而被考虑。附图说明
[0036] 当参考附图阅读仅通过示例性而非限制性实例给出的对本发明的一个(或多个)特定实施例的描述时,将更好的理解本发明,且本发明的其他目的、细节、特征和优点将更清楚地显现。
[0037] 图1A示出了通过VLS生长从纯液体铋催化剂获得的硅纳米线的显微照片;图1B示出了图1A的纳米线的放大图;
[0038] 图2示出了通过VLS生长从由铋和锡的合金形成的催化剂获得的硅纳米线的显微照片;
[0039] 图3示出了通过VLS生长从由纯锡形成的催化剂获得的硅纳米线的显微照片;
[0040] 图4示出了铋和锡的合金随着这两种元素的相对比例和温度而变化的相图
[0041] 图5示意性地示出了根据本发明实施例制造径向电子结纳米结构的步骤;
[0042] 图6示意性地示出了根据本发明实施例的径向电子结纳米结构的分解图;
[0043] 图7A示出了通过本发明的制造方法获得的由硅纳米线形成的径向电子结纳米结构的显微照片;图7B示出了图7A的径向电子结纳米结构的放大图;图7C示出了图7A的径向电子结纳米结构的横截面图;
[0044] 图8示出了不同电子结纳米结构的电流-电压(或I-V)曲线。

具体实施方式

[0045] 我们利用VLS型制造方法以简化方法制造径向电子结纳米结构。
[0046] 更精确地,通过金属催化生长硅纳米线允许解决下伏的掺杂层的掺杂剂气体导致的对本征半导体材料层的污染的问题,如下文中所解释的。
[0047] 我们已开发了在常规的PECVD等离子体沉积系统中将硅纳米线结构并入薄膜太阳能电池结构的特殊技术。具有低熔点的诸如铟和锡的催化剂的使用允许硅纳米线在低于200℃的温度下生长,同时避免由诸如金的催化剂产生的在禁带中间的深能级处的污染。本发明使用金属催化生长步骤通过催化作用来原位掺杂n型或p型半导体纳米线,而不使用掺杂剂气体。
[0048] 我们使用不同的金属催化剂来执行半导体纳米线(例如,硅纳米线)的中心的掺杂。例如,铋被用于在硅纳米线中引入低深n型掺杂。镓或铟在硅纳米线中产生p型掺杂。在半导体纳米线的生长期间掺杂剂的并入可以在等离子体增强化学沉积(PECVD)的常规装置中在纳米线生长的VLS型方法期间原位地进行。
[0049] 为了避免掺杂剂在p-n或p-i-n型径向结构中扩散,将沉积温度精确控制为尽可能最低。沉积温度的降低对于低成本薄膜结构沉积方法中半导体纳米线的并入来说是重要的一点。我们选择铋或其与锡的合金来降低半导体纳米线的生长温度。
[0050] 根据本发明的优选实施例,我们使用铋或铋合金作为金属催化剂以在低温下制造硅纳米线,并通过在硅纳米线中包含金属催化剂来控制掺杂。铋在较浅能级处(在硅导带下方160mV处)引入n型掺杂。图1A和1B示出了在350℃下以VLS方法从(纯)铋的小滴制造的硅纳米线。图1B示出了图1A的硅纳米线的放大图。如可从图1A和1B观察到的,从纯铋催化剂获得的硅纳米线显示出相对随机的曲率和取向。因此催化剂也可被用来控制硅纳米线的形态。
[0051] 纳米线具有的长度可以包括在几十纳米与几百纳米或甚至若干微米之间。
[0052] 图2和3示出了在500℃的温度下通过VLS方法获得的硅纳米线。在图2的情况下使用的金属催化剂是铋与锡的合金,在图3的情况下使用的金属催化剂是纯锡。添加锡以形成铋与锡的合金,这导致纳米线的更直线的形态(如可从图3中观察到的)以及在相同的温度下纳米线的更快的生长速度。纯锡不会引入硅的掺杂。
[0053] 我们提出使用铋合金用于硅纳米线的n型掺杂,或使用镓合金用于硅纳米线的n型掺杂,来精确控制硅纳米线的生长温度。更精确地,铋(或镓)与锡的合金的熔化温度可被显著降低。图4示出了铋与锡的合金随着这两种元素的相对比例而变化的相图。液相曲线界定了Bi-Sn是完全液态的范围(用L表示)。固相曲线界定了Bi-Sn合金是完全固态的范围。在液相曲线和固相曲线之间,合金是部分液态和部件固态。在大范围的Bi-Sn合金组成中,对于包括在0%与43%之间的Bi比例,合金的熔化温度保持为低于232℃。对于43%的Bi的相对浓度,共晶点被降低到仅139℃。这允许非常显著地降低硅纳米线的生长温度,并提供用于硅纳米线应用的发展的非常有益的前景。
[0054] 我们也提出了使用铋合金(对于n型掺杂)或镓合金(对于p型掺杂)有效地控制在硅纳米线生长期间并入的掺杂剂的浓度的方法。实际上,锡不会在硅纳米线中引入掺杂。当与其他生长参数(特别地,温度)组合时,在与锡的合金中铋或镓的浓度的控制是控制硅纳米线中的Bi或Ga掺杂剂的并入的有效方式。该途径也允许控制硅纳米线的形态。
[0055] 基于使用包括铋的金属催化剂通过VLS方法获得的硅纳米线,我们制成了具有径向电子结结构的太阳能电池。
[0056] 图5示意性地示出了根据本发明实施例的径向电子结纳米结构的制造方法的步骤。
[0057] 根据一个实施例,硅纳米线是从基于纯铋的金属催化剂的纳米滴生长而成的-步骤a)和b)。由氢等离子体进行的基底(由被~1μm的掺有Al的ZnO和薄铋层的层覆盖的玻璃板构成)预处理允许在PECVD反应器中在传输基底期间清洁铋的化表面。施加在铋上的氢等离子体允许去除在表面处的残余氧化物层,所述残余氧化物层会使得铋不活泼。氢等离子体也允许将铋层或金属合金层转变为纳米滴。纳米线的生长是在存在金属催化剂纳米滴和前体气体的条件下进行的,基底处于这样的温度下:在该温度下,催化剂处于液态。在催化剂是纯铋的情况下,生长温度是例如275℃(高于图4中的纯铋的熔点271.33℃)。在催化剂是合金的情况下,基底被加热至高于或等于合金的液化温度的温度,即,高于所考虑的合金的相图上的液相曲线的温度。由此获得被n型掺杂的硅纳米线覆盖的基底。硅纳米线的长度为约0.5到10微米。然后,基底温度被降低到低于催化剂的固化温度的值,例如,180℃,其中纯铋作为催化剂是固态的且是不活泼的(图5的方法的步骤c)。在催化剂是合金的情况下,温度随后被降低为低于所考虑的合金的相图中的固相曲线。在180℃的该温度下并在同一沉积室中,执行本征非晶硅的薄层的沉积以保形地覆盖硅纳米线(步骤e),这未在图5中示出。例如,在存在前体气体(硅烷)和氢的混合物的条件下通过等离子体沉积而沉积本征硅层,以形成未掺杂的氢化非晶硅层。本征硅层的厚度是均匀的这一点很重要,以优化径向结结构的电流-电压性能。最后,仍然在同一沉积室中,从前体气体(例如,硅烷)和p型掺杂剂气体(例如,比B2H6毒性低的三甲基或TMB)的混合物,执行p+掺杂的氢化非晶硅薄层的沉积(图5的方法的步骤d)。由此获得具有p-i-n型的完全径向结的纳米结构。观察到,单种掺杂剂气体被用来实现该径向结纳米结构,纳米线的中心的掺杂仅来自金属催化剂。单种掺杂气体的使用允许选择被分类为比诸如乙硼烷或膦(PH3)的掺杂剂气体的危险性低得多的气体的掺杂剂气体,例如TBM,这使得该制造方法具有提高的安全性。
[0058] 有利地,径向结中心处为n型掺杂的硅纳米线是由晶体硅制成的。在低于200℃的温度下基于微晶硅获得纳米线的生长以及继续p型掺杂的微晶层的生长(形成箍(nip)径向结,其中吸收剂是微晶硅)是容易的。
[0059] 根据特定实施例,在本征层基于非晶硅的情况下,该方法包括形成非晶层的附加步骤,该非晶层被称为缓冲层,在本征硅层的沉积之前被沉积在纳米线上,该缓冲层具有与纳米线相同的掺杂类型。具有大间隙和与晶体纳米线相同的掺杂类型的该缓冲层允许减少纳米线与本征层之间的界面处的电子-空穴对的复合,由此提高电池效率。
[0060] 根据另一特别方面,有可能在同一反应器中完成n型掺杂的非晶层、非晶i层和非晶p层的沉积,由此获得NIP/NIP串叠电池。
[0061] 在完成n型掺杂的硅纳米线生长之后使得催化剂不活泼的另一种方式是通过在与进行硅纳米线的生长以及用于形成径向结的薄层的沉积的反应器相同的反应器中施加氢等离子体来蚀刻剩余的催化剂。在这种情况下,蚀刻等离子体的施加持续时间被限制,以避免减小纳米线的尺寸或完全蚀刻纳米线。在另一个实施例中,催化剂可在纳米线生长步骤的最后已被完全消耗掉,在这种情况下,不必需在进行到在掺杂的半导体纳米线上保形沉积薄层的步骤之前钝化催化剂。
[0062] 本发明的制造方法在200℃与400℃之间的温度下在单个沉积室中完全实施。
[0063] 基于锡与铋的合金或者铋而使用的金属催化剂的优点在于有可能使其不活泼或在纳米线生长和薄层沉积的同一反应器中去除该催化剂。不是必须打开真空沉积室,也不用取出样品或是将其转移到另一室以在纳米线生长的最后去除催化剂。通过比较,在金被用作催化剂的VLS方法中,必须在纳米线生长的最后去除所有剩余的金,以避免污染本征层。
[0064] 图6示意性地示出了根据本发明优选实施例获得的径向结纳米结构。基底1是例如低成本基底,诸如被ZnO层覆盖的玻璃基底。纳米线2的中心被n型掺杂;纳米线2被本征硅的薄层3保形地覆盖,然后被p型掺杂的硅的薄层4保形地覆盖。本征硅的薄层3被例如用来吸收太阳光。由于高的内部电场,形成径向结的n型掺杂的纳米线2和p型掺杂的薄层彼此非常靠近,并产生载流子的增加的分离。
[0065] 图7A、7B和7C示出了根据本发明实施例获得的径向结纳米结构的显微镜视图。径向结纳米结构形成单元径向结的林(forest),这提高了光的捕获。然而,径向结结构的总厚度保持为低于200nm。对于根据本发明的具有20nm的厚度并具有11-13mA/cm2的电流密度的径向结纳米结构,制造时间被缩短至大约20分钟。通过比较,厚度为2微米的量级的微晶太阳能电池的制造时间是大约2小时。具有硅纳米线的径向结结构的制造成本由此远远低于多晶硅的平面结的制造成本。
[0066] 图8示出了根据本发明的两个实施例获得的不同的电子结(特别地,径向结纳米结构)的电流-电压(或I-V)曲线。通过方形表示的曲线对应于参考样品,即,不具有铋掺杂的硅纳米线的平面型p-i-n结。通过圆形表示的曲线对应于从掺有铋的硅纳米线获得的p-i-n径向结纳米结构的样品,其中纳米线具有大约0.5μm的长度。通过三形表示的曲线对应于从掺有铋的硅纳米线获得的p-i-n径向结纳米结构的样品,其中纳米线具有大约为1μm的长度。在图8的I-V曲线中观察到,作为掺杂剂-催化剂的铋以及由此掺杂的硅纳米线的使用将电压值Voc从0.54V提高到0.72V。而且,使用长纳米线而不是短纳米线,很清楚地观察到短路电流的增加。长纳米线允许更好的光捕获效果,对于,电流从6mA/cm2增加到短纳米线(与2 2
有限的光捕获有关)的8mA/cm和长纳米线(与较强的光捕获有关)的12mA/cm 。这证实了使用铋作为催化剂,从硅纳米线制造径向结结构太阳能电池的可行性。I-V曲线也通过其Voc证实了在硅纳米线中由金属催化剂引起的有效n型掺杂,这种有效的掺杂在沉积反应器中没有任何n型掺杂剂气体的条件下引起电压Voc的增加。
[0067] 本发明的一个目的是制造太阳能电池,该太阳能电池对于单结而言具有10-12%的效率且对于串叠结而言具有14%的效率。利用掺杂的硅纳米线获得的最佳纹理(texture)能避免使用暗示了额外成本的用于纹理化玻璃或ZnO基底的表面的方法。
[0068] 该径向结纳米结构的制造方法在低温下执行。有利地,基底的温度保持为低于350-400℃的温度,这与PECVD薄膜沉积兼容。在催化剂是铋的情况下,温度可被保持为低于约275℃。根据优选实施例,我们使用锡与铋的合金(其中,例如~10%的Bi)来制造n型掺杂的纳米线,或者锡与镓的合金(其中,例如10%的Ga)来制造p型掺杂的纳米线。该方法适用于许多低成本的基底,例如,由玻璃、低成本金属、聚合物或塑性片制成的基底。而且,本发明适用于不同尺寸的基底,并与基于非晶硅和微晶硅的太阳能电池的当前制造线兼容。
[0069] 本发明的径向结结构也几乎没有斯特布勒-隆斯基(Staebler-Wronski)效应。由于径向结的层的厚度较薄,斯特布勒-隆斯基效应被限制为大约4%的饱和值,而不是非晶硅的薄膜结构中的20%。
[0070] 本发明的方法可以是允许制造径向结构的高效电子结的关键步骤。而且,与现有技术相比,本发明的方法被简化,因为其仅需要一种掺杂剂气体。
[0071] 使用诸如铋与锡的合金或铋的金属催化剂来催化硅纳米线的生长不会构成对半导体材料的电子毒害。相反,通常被用作硅纳米线生长中的催化剂的金必须在特定的处理室中被完全去除以避免对硅的任何污染。所使用的金属催化剂的另一个优点是其与金的成本相比很低的成本。
[0072] 本发明有利地允许在具有p-n或p-i-n结的薄膜太阳能电池的配置中制造光伏纳米线的径向结。纳米线的制造和掺杂可以通过催化处理在一个步骤中执行。
[0073] 在Bi的情况下,金属催化剂有利地具有在低于275℃的低温下的熔点。本发明允许在单个薄膜沉积室中仅使用一种掺杂剂气体,这允许简化制造方法。制造方法也会更快速,这允许降低整个制造方法的成本。本发明允许制造沉积厚度低、效率高的径向结结构。本发明特别适用于太阳能电池的制造方法。
QQ群二维码
意见反馈