首页 / 国际专利分类库 / 作业;运输 / 微观结构技术 / 圆片级芯片尺寸封装的测试方法

圆片级芯片尺寸封装的测试方法

申请号 CN201510686666.1 申请日 2015-10-21 公开(公告)号 CN105329850B 公开(公告)日 2017-03-08
申请人 美新半导体(无锡)有限公司; 发明人 赵阳; 文彪; 蒋乐跃; 刘海东; 程安儒; 李斌;
摘要 本 发明 提供一种圆片级芯片尺寸封装的测试方法,其包括:将一张圆片级芯片尺寸封装的圆片划片切割为多个圆片条带,每个圆片条带包括有多个未划片的芯片尺寸封装器件;将每个圆片条带放置于对应的条带载具上;利用测试设备对放置于所述条带载具上的圆片条带中的各个芯片尺寸封装器件进行测试;和将测试完成后的圆片条带划片分割成单个的芯片尺寸封装器件。由于不是将众多分割后的芯片一个一个装入插座,而是将有限的几个圆片条带放入条带载具,这样流程阻塞得以避免。
权利要求

1.一种圆片级芯片尺寸封装的测试方法,其特征在于,其包括:
将一张圆片级芯片尺寸封装的圆片划片切割为多个圆片条带,每个圆片条带包括有多个未划片的芯片尺寸封装器件;
将每个圆片条带放置于对应的条带载具上;
利用测试设备对放置于所述条带载具上的圆片条带中的各个芯片尺寸封装器件进行测试;和
将测试完成后的圆片条带划片分割成单个的芯片尺寸封装器件。
2.如权利要求1所述的测试方法,其特征在于,每个圆片条带具有上表面和下表面,每个芯片尺寸封装器件具有位于所述上表面的多个测试电极,在利用测试设备对放置于所述条带载具上的圆片条带中的各个芯片尺寸封装器件进行测试时,将所述测试设备的测试探针卡电性接触所述圆片条带中的芯片尺寸封装器件的测试电极。
3.如权利要求1所述的测试方法,其特征在于,在将每个圆片条带放置于对应的条带载具上后,利用测试设备对放置于所述条带载具上的圆片条带中的各个芯片尺寸封装器件进行测试前,所述测试方法还包括:
施加外部激励;
检测所述条带载具上的参考传感器的响应,
基于该参考传感器的响应来调整所述条带载具的位置,以完成所述圆片条带的位置校准。
4.如权利要求3所述的测试方法,其特征在于,所述条带载具包括与对应的圆片条带形状相匹配并容纳对应的圆片条带的凹槽。
5.如权利要求1所述的测试方法,其特征在于,所述将测试完成后的圆片条带划片分割成单个的芯片尺寸封装器件包括:
将测试完成后的不同圆片条带分别放置在蓝胶带上;
将放置在所述蓝胶带上的不同圆片条带进行单独的划片分割以得到单个的芯片尺寸封装器件。
6.如权利要求1所述的测试方法,其特征在于,所述将测试完成后的圆片条带划片分割成单个的芯片尺寸封装器件包括:
将测试完成后的同一张圆片的多个圆片条带装入同一划片夹具,所述划片夹具有分别与同一张圆片的多个圆片条带形状匹配的多个凹槽,其中所述圆片条带的上表面面向所述划片夹具的凹槽;
在该张圆片的多个圆片条带的下表面上贴上蓝胶带使得所述多个条状圆片重新组成一张完整圆片,移除所述划片夹具;和
对重组的该张圆片进行划片分割以得到单个的芯片尺寸封装器件。
7.如权利要求6所述的方法,其特征在于,所述划片夹具是由圆片制成。
8.如权利要求6所述的方法,其特征在于,所述划片夹具是由圆片、玻璃圆片或者石英圆片制成,其中制成所述划片夹具的圆片的尺寸大于被划片切割成多个圆片条带的圆片的尺寸。
9.如权利要求1所述的方法,其特征在于,沿一个或多个平行的平划片槽或竖直划片槽将一张圆片级芯片尺寸封装的圆片划片切割为多个圆片条带。
10.如权利要求1所述的方法,其特征在于,所述芯片尺寸封装器件为MEMS传感器。
11.如权利要求10所述的方法,其特征在于,所述MEMS传感器为加速传感器或磁场传感器。

说明书全文

圆片级芯片尺寸封装的测试方法

技术领域

[0001] 本发明涉及圆片级芯片尺寸封装器件测试,具体涉及微电子机械系统(micro-electro-mechanical-system,MEMS)的圆片级芯片尺寸封装的测试方法。

背景技术

[0002] 圆片级芯片尺寸封装(Wafer-level chip scale packaging,简称WLCSP)广泛应用在MEMS行业。由于WLCSP不需要引线框架引线键合,低廉的封装成本使得它很受欢迎。特别是在消费类电子产品领域,基于MEMS的WLCSP产品将取代采用传统工艺封装的传感器
因此需要一种准确高效的方法测试基于MEMS的WLCSP产品。
[0003] 为了达到高效率的测试,传统上封装好的传感器通常被一个一个放在复杂且昂贵的载具或测试插座里进行并行测试。使用贴片机处理单个封装好的传感器有可能造成流程阻塞,进而造成产品良率的损失。另外,位置误差会影响可重复性以及测试的准确性。
[0004] 因此,需要一种新的高效率的测试方法来测试WLCSP产品,以克服上述问题。

发明内容

[0005] 本发明解决的技术问题之一在于提供了一种圆片级芯片尺寸封装器件的测试方法,其可以解决现有技术中存在的流程阻塞的问题。
[0006] 为了解决上述问题,根据本发明提供一种圆片级芯片尺寸封装的测试方法,其包括:将一张圆片级芯片尺寸封装的圆片划片切割为多个圆片条带,每个圆片条带包括有多个未划片的芯片尺寸封装器件;将每个圆片条带放置于对应的条带载具上;利用测试设备对放置于所述条带载具上的圆片条带中的各个芯片尺寸封装器件进行测试;和将测试完成后的圆片条带划片分割成单个的芯片尺寸封装器件。
[0007] 进一步的,在将每个圆片条带放置于对应的条带载具上后,利用测试设备对放置于所述条带载具上的圆片条带中的各个芯片尺寸封装 器件进行测试前,所述测试方法还包括:施加外部激励;检测所述条带载具上的参考传感器的响应,基于该参考传感器的响应来调整所述条带载具的位置,以完成所述圆片条带相对于外部激励的位置校准。
[0008] 进一步的,所述将测试完成后的圆片条带划片分割成单个的芯片尺寸封装器件包括:将测试完成后的不同圆片条带分别放置在蓝胶带上;将放置在所述蓝胶带上的不同圆片条带进行单独的划片分割以得到单个的芯片尺寸封装器件。
[0009] 进一步的,所述将测试完成后的圆片条带划片分割成单个的芯片尺寸封装器件包括:将测试完成后的同一张圆片的多个圆片条带装入同一划片夹具,所述划片夹具有分别与同一张圆片的多个圆片条带形状匹配的多个凹槽,其中所述圆片条带的上表面面向所述划片夹具的凹槽;在该张圆片的多个圆片条带的下表面上贴上蓝胶带使得所述多个条状圆片重新组成一张完整圆片,移除所述划片夹具;和对重组的该张圆片进行划片分割以得到单个的芯片尺寸封装器件。
[0010] 进一步的,所述芯片尺寸封装器件为MEMS传感器。所述MEMS传感器为加速传感器或磁场传感器。
[0011] 与现有技术相比,在本发明中的测试方法中,将整张圆片级芯片尺寸封装的圆片划片切割为多个圆片条带,每个圆片条带包含有多个未划片的芯片尺寸封装器件,所述测试设备直接测试所述圆片条带上的多个芯片尺寸封装器件,这样可以解决流程阻塞的问题。附图说明
[0012] 以下的附图仅揭示代表性的实施例,本发明并不局限于附图所揭示的内容。
[0013] 图1展示了一个典型的包含有传感器芯片阵列的圆片,单个传感器之间通过划片槽隔开;
[0014] 图2示出了本发明中的圆片级芯片尺寸封装的测试方法在一个实施例中的流程图
[0015] 图3(a)和图3(b)示出了一整张圆片被划片切割成多个圆片条带的一个示例;
[0016] 图4(a)和图4(b)示出了多个圆片条带被装入对应条带载具的一个示例;
[0017] 图5(a)示出了测试设备的测试板的示例,
[0018] 图5(b)示出了利用测试版对多个圆片条带进行测试的示例;
[0019] 图6a为本发明中提出的划片夹具的俯视示意图;
[0020] 图6b为本发明中提出的划片夹具的截面示意图;
[0021] 图7a至7d为圆片条带的划片过程示意图。

具体实施方式

[0022] 如附图所示,这里详细描述了具体的实施例,并通过大量细节描述提供对本发明的全面理解。在本发明所属技术领域中,只要掌握相关通常知识,就可以在本发明的技术要旨范围内,进行多种多样的变更。本发明的保护范围并不以所述实施方式为限,但凡根据本发明揭示内容所做的等效修饰或变化,皆应纳入权利要求书中记载的保护范围内。
[0023] 传统的WLSCSP封装的测试方法包括以下步骤:1)将整张圆片划片分割成单个芯片;2)将单个芯片装入载具;3)对芯片进行并行测试;4)将芯片装入卷带包装
[0024] 图1展示了一张典型的待测试圆片1,其包含有众多未分离的芯片尺寸封装器件2,所述圆片1分别具有上表面3和下表面4,所述芯片尺寸封装器件2在所述上表面3上具有多个测试电极5。所述芯片尺寸封装器件2为一个芯片,在本发明中,该芯片可以为MEMS芯片,其可以用来作为传感器使用,因此也可以被称为MEMS传感器。芯片2之间通过平划片槽6和竖直划片槽7分隔。在现有技术中,圆片经过划片后,单个芯片被分别放置在载具中,所述载具可以是包含有多个测试插座的测试电路板。测试通常并行完成以到达高效的目的。使用贴片机处理单个芯片尺寸封装器件可能造成流程阻塞并造成产品良率的损失。
[0025] 因此,本发明提出了一种新的高效率的测试方法来测试WLCSP产品,其可以解决现有技术中存在的流程阻塞的问题。
[0026] 如图2所示的,其示出了本发明中的WLSCSP封装的测试方法200在一个实施例中的流程示意图。所述测试方法200包括如下步骤:
[0027] 步骤210,将一张圆片级芯片尺寸封装的圆片划片切割为多个圆片条带,每个圆片条带包括有多个未划片的芯片尺寸封装器件。
[0028] 如图3(a)所示的,其示出了一张圆片级芯片尺寸封装的圆片100,其被沿三条平行的水平划片槽被划片切割成4个圆片条带,分别记为 100a、100b、100c和100d。在其他的实施例中,也可以被切割成其他数目个圆片条带,比如2、3、5、6等,还可以沿着平行的竖直划片槽进行划片。当然,也可以同时沿水平划片槽和垂直划片槽进行划片,得到扇形的圆片条带或其他各形状的圆片条带。应该注意的是,圆片条带不一定是条状的,也可能是任何形状。
[0029] 结合参考图1所示,每个圆片条带具有上表面和下表面,其也包括有多个未划片的芯片尺寸封装器件,每个芯片尺寸封装器件具有位于所述上表面的多个测试电极。所述芯片尺寸封装器件可以为MEMS芯片或传感器,比如加速传感器或磁场传感器等。
[0030] 在每个圆片条带上可以设置条带标识,通过所述条带标识可以确定每个圆片条带属于哪张圆片以及在该圆片上的位置,该条带标识可以用于重建圆片图表。
[0031] 步骤220,将每个圆片条带放置于对应的条带载具上。
[0032] 如图4(a)所示的,其示例性的示出了4个圆片条带100a、100b、100c和100d。如图4(b)所示的,其示例性的示出了装载有对应圆片条带100a、100b、100c和100d的四个条带载具400a、400b、400c和400d。
[0033] 所述条带载具包括与对应的圆片条带形状相匹配并容纳对应的圆片条带的凹槽。这样,可以将对应的圆片条带放置于所述条带载具的相应凹槽内。
[0034] 步骤230,利用测试设备对放置于所述条带载具上的圆片条带中的各个芯片尺寸封装器件进行测试。
[0035] 在一个实施例中,可以先将放置有所述圆片条带的条带载具放入所述测试设备,随后用所述测试设备对所述圆片条带上的各个芯片尺寸封装器件进行大规模的电气测试;在测试完成后,将放置有所述圆片条带的条带载具从所述测试设备中取出。
[0036] 所述测试设备可以采用采用技术中常规的测试设备,本发明中对其并无特殊要求或设计。同样的,所述测试设备也可以利用常规的测试方案对所述圆片条带上的芯片尺寸封装器件进行大规模的电气测试。
[0037] 如图5(a)所示的,其示例性的示出了所述测试设备的测试板510,所述测试板上形成有多个测试探针卡。在测试时,如图5(b)所示的,可以使得所述测试板510上的多个测试探针卡对准并电性接触各个芯 片尺寸封装器件的测试电极,进行电气测试。
[0038] 步骤240,将测试完成后的圆片条带划片分割成单个的芯片尺寸封装器件。
[0039] 在一个实施例中,所述步骤240可以包括如下步骤:
[0040] A1),将测试完成后的圆片条带从对应的条带载具上取下,并将测试完成后的不同圆片条带放置在蓝胶带上;
[0041] A2),将放置在所述蓝胶带上的圆片条带单独划片分割成单个的芯片尺寸封装器件。
[0042] 在该实施例中,对不同的圆片条带进行单独划片分割。
[0043] 然而,上述单独划片切割每个圆片条带得到单个的芯片尺寸封装器件的方式会增加划片成本。因此,在另一个实施例中,所述步骤240可以包括如下步骤:
[0044] B1),将测试完成后的圆片条带从对应的条带载具上取下,并将同一张圆片的多个圆片条带装入同一划片夹具。
[0045] 图6a为所述划片夹具600的俯视示意图,图6b为所述划片夹具600的截面示意图。如图6a和6b所示的,所述划片夹具600可以包括有多个凹槽,图中示例性的示出了4个。每个凹槽对应从一整张圆片划片得到多个圆片条带中的一个,每个凹槽和对应的圆片条带在形状上互相匹配,并具有能够容忍的公差,以使得该凹槽能够容纳该对应的圆片条带。在将圆片条带装入所述划片夹具时,所述圆片条带的上表面面向所述凹槽。
[0046] 在一个实施例中,所述划片夹具600可以由圆片(wafer)制成,比如由圆片、玻璃圆片、熔融石英圆片或者石英圆片制成。所述划片夹具600的尺寸可以大于划片得到多个圆片条带的圆片的尺寸。例如,对于6英寸圆片切割产生的圆片条带,划片夹具可以由8英寸圆片制作。制作工艺可以是标准的光刻工艺并采用湿法或干法刻蚀,相关的工艺已经广泛应用。例如,在8英寸硅圆片上旋涂光刻胶,并经低温烘烤,曝光显影形成圆片条带的图案;采用干法刻蚀或湿法刻蚀,例如SF6硅刻蚀工艺,以形成凹槽,随后移除残留的光刻胶。
[0047] 图7a示意出了将图3(a)中的圆片条带100a、100b、100c和100d分别放入所述划片夹具600中的对应凹槽610内后的状态。
[0048] B2),在该张圆片的多个圆片条带的下表面上贴上蓝胶带620使得 所述多个圆片条带重新组成一张完整圆片,如图7b所示的。
[0049] B3),移除所述划片夹具600,如图7c所示的。
[0050] B4),对重组的整张圆片进行统一划片分割得到单个的芯片尺寸封装器件,如图7d所示的。
[0051] 在这个实施例中,通过利用所述划片夹具600重新把多个圆片条带组装成为完整圆片进行划片,这样可以节省划片成本。
[0052] 在上述实施例中,整张圆片先被划片分割成圆片条带,之后圆片条带被放入条带载具,由于不是将众多分割后的芯片一个一个装入插座,而是将有限的几个圆片条带放入条带载具,这样流程阻塞得以避免。
[0053] 最后,在得到分离的单个的芯片尺寸封装器件后,可以将它们装入卷带包装。
[0054] 在现有技术中,将划片得到的单个芯片放入插座的过程中可能存在位置的偏差。此类位置偏差对于集成电路芯片测试的影响并不严重,因为只要位置偏差不大,测试探针可以正常接触即可完成测试。然而,对于MEMS器件,例如加速度传感器和磁场传感器的测试需要施加与方向或度相关的激励,此类位置误差产生的影响非常严重,会导致差的可重复性以及测试的不准确。
[0055] 因此,在一个优选的实施例中,本发明中提出的测试方法还可以达到高可重复性、高测试准确性、低成本的目的。
[0056] 在该优选的实施例中,在将每个圆片条带放置于对应的条带载具上之后(步骤220),利用测试设备对放置于所述条带载具上的圆片条带中的各个芯片尺寸封装器件进行测试(步骤230)之前,所述测试方法200还可以包括如下步骤:
[0057] 1),施加外部激励,比如施加一定方向的磁场;
[0058] 2),检测所述条带载具上的参考传感器的响应,其中所述条带载具设置有一个参考传感器;
[0059] 3),基于该参考传感器的响应来调整所述条带载具的位置,以完成所述条带载具相对于外部激励的位置校准。
[0060] 由于圆片条带中的未分离的芯片之间的相对位置固定,并且圆片条带与所述条带载具相对固定,因此所有的芯片可以与所述条带载具一起被位置校准,避免了对准偏差,从而提高了对外加激励的响应准 确度和可靠性。相比较现有技术中采用机械方法对准众多分离的芯片,尤其是微小尺寸芯片,此方法更精确省
[0061] 上述说明已经充分揭露了本发明的具体实施方式。需要指出的是,熟悉该领域的技术人员对本发明的具体实施方式所做的任何改动均不脱离本发明的权利要求书的范围。相应地,本发明的权利要求的范围也并不仅仅局限于所述具体实施方式。
QQ群二维码
意见反馈