停靠在装卸平台的车辆的支承系统及其方法

申请号 CN200480041834.1 申请日 2004-12-17 公开(公告)号 CN1926034B 公开(公告)日 2011-05-11
申请人 莱特-海特控股公司; 发明人 M·斯弗伊姆; M·图尔多特; D·霍尔姆; D·克伦布;
摘要 为了帮助在装卸平台(14)装卸货物时 卡车 (12)的拖车底座(16)或拖车保持稳定,可 变形 的车辆支承系统(200)向拖车的后冲击防护件(18)施加基本和有限的向上反作用 力 ,抵抗拖车的向下移动。在某些 实施例 中,支承系统在一定的 载荷 限度内保持拖车底座静止,当载荷超过限度时,向拖车底座提供可控的或阻尼的下降。在某些情况下,支承系统施加的向上反作用力随拖车底座的下降速度增加。反作用力可通过一个或多个减压 阀 ,通过 流量限制器 的液压 流体 , 刹车 , 弹簧 或其各种组合形成。支承系统的一些实施例包括调节后冲击防护件 水 平移动的机构。
权利要求

1.一种车辆支承系统,用于对装卸平台装卸货物作出反应而容易垂直移动的车辆,车辆支承系统包括:
支承件,安装在装卸平台上,可移动到车辆附近的预备位置,使车辆能够向支承件施加,推动支承件从预备位置向下移动;和
控制系统,连接到支承件,所述控制系统可使支承件向车辆施加相对于施加力的反作用力,当车辆向下移动时,支承件可延缓车辆下降。
2.根据权利要求1所述的车辆支承系统,其特征在于,所述反作用力受到限制不大于预定的最大许可力,以保护车辆免于承受过大的反作用力。
3.根据权利要求2所述的车辆支承系统,其特征在于,所述反作用力的大小基本等于施加力,可达到预定的最大许可力。
4.根据权利要求1所述的车辆支承系统,其特征在于,所述反作用力响应支承件向下速度增加而增加。
5.根据权利要求1所述的车辆支承系统,其特征在于,车辆可移动支承件到预备位置。
6.根据权利要求1所述的车辆支承系统,其特征在于,所述控制系统移动支承件到预备位置。
7.根据权利要求1所述的车辆支承系统,其特征在于,所述支承件包括承重表面,适合与车辆接合,所述承重表面可平移动以配合车辆的水平移动。
8.根据权利要求1所述的车辆支承系统,其特征在于,还包括:
设置在所述控制系统的活塞/圆筒,其机械连接到支承件;低压减压,结合到所述控制系统,与活塞/圆筒流体连通,其中当施加力小于预定的屈服力时,低压减压阀基本关闭,当施加力大于预定屈服力时,低压减压阀打开。
9.根据权利要求8所述的车辆支承系统,其特征在于,所述系统还包括结合到控制系统的高压减压阀,其与活塞/圆筒流体连通,其中当施加力在预定屈服力和预定最大许可力之间时,高压减压阀基本关闭;当施加力大于预定最大许可力时,高压减压阀打开,预定屈服力小于预定的最大许可力。
10.根据权利要求1所述的车辆支承系统,其特征在于,所述系统还包括:
结合到控制系统的活塞/圆筒,机械连接到支承件;和
结合到控制系统的流量限制器,与活塞/圆筒流体连通,其中流量限制器提供压差,使支承件施加反作用力到车辆。
11.根据权利要求10所述的车辆支承系统,其特征在于,所述控制系统包括单向阀,与所述流量限制器形成旁路关系,使得支承件向上移动比向下更自由。
12.根据权利要求1所述的车辆支承系统,其特征在于,所述系统还包括载荷传感器,用于检测车辆何时装卸货物,反作用力的大小至少部分根据载荷传感器确定。
13.根据权利要求1所述的车辆支承系统,其特征在于,所述控制系统包括刹车,可操作地连接到支承件,刹车形成的摩擦使得支承件施加反作用力到车辆。
14.根据权利要求1所述的车辆支承系统,其特征在于,所述控制系统包括弹簧,可操作地连接到支承件,弹簧储存的能量使得支承件可施加反作用力到车辆。
15.根据权利要求1所述的车辆支承系统,其特征在于,所述系统还包括车辆固定件,突出到支承件以上,以防止车辆仓促地从装卸平台移开。
16.根据权利要求15所述的车辆支承系统,其特征在于,所述车辆固定件可相对支承件移动。
17.根据权利要求15所述的车辆支承系统,其特征在于,所述车辆固定件与支承件一起移动。
18.一种响应车辆后缘的向下移动操作车辆支承系统的方法,其中车辆支承系统连接到装卸平台,所述方法包括使车辆支承系统向车辆后缘施加向上的反作用力,延缓车辆后缘下降。
19.根据权利要求18所述的方法,其特征在于,所述方法还包括响应车辆后缘下降的增加,使反作用力增加。
20.根据权利要求18所述的方法,其特征在于,所述方法还包括水平移动车辆支承系统的一部分,以配合车辆后缘的水平移动。
21.根据权利要求18所述的方法,其特征在于,所述延缓车辆后缘下降的步骤通过使流体通过流量限制器来实现。
22.根据权利要求18所述的方法,其特征在于,所述方法还包括感应何时车辆进行装卸。
23.根据权利要求18所述的方法,其特征在于,所述延缓车辆后缘下降的步骤通过施加摩擦阻力来实现。
24.根据权利要求18所述的方法,其特征在于,所述延缓车辆后缘下降的步骤通过弹簧储存能量来实现。
25.根据权利要求18所述的方法,其特征在于,所述方法还包括升高车辆固定件来限制车辆水平移动。
26.一种装卸平台组件,包括:
调整机构,包括可枢轴转动地安装到装卸平台的台板,和安装到台板前端的唇板,该唇板可在台板和停靠在装卸平台的车辆间形成桥接件;和
车辆支承系统,固定到装卸平台附近,可变形地接合车辆,使得车辆因其上载荷造成的垂直变形减小。

说明书全文

停靠在装卸平台的车辆的支承系统及其方法

技术领域

[0001] 本发明大体上涉及一种用于车辆装卸平台的设备,具体地,涉及一种支承系统及其操作方法,可在车辆装卸货物时,帮助抑制车辆的垂直移动,增强车辆的悬挂。

背景技术

[0002] 建筑物的典型卡车装卸平台包括带有高台的外通道,高台用于车辆,如卡车和拖车,进行装卸。许多装卸平台具有平台调整器,以弥补装卸平台和相邻的运货车,如卡车和拖车,的底座之间的高度差。典型的平台调整器包括台板,也称作斜板或平台板,其后缘可枢轴转动地铰接连接,以变化其前缘的高度。延伸板或唇板从台板的前缘向外延伸,以跨越拖车底座后沿和平台前缘之间的空隙。从台板前缘延伸的唇板靠在卡车底座上,形成平台和底座之间的桥接件。这样人员和物资处理装置如叉车,在进行装卸操作时,可容易地移进移出车辆。
[0003] 当叉车行走越过平台调整器到达拖车底座时,叉车的重量和其上携带的货物重量向卡车底座施加了很大的载荷。类似地,当叉车离开卡车底座时,使拖车减少重量。因此,在装卸货物的过程中,施加到拖车的载荷重复变化。拖车的悬挂可响应这些载荷的变化,使得拖车同步上升或下降。
[0004] 不幸的是,拖车产生的垂直移动可能过大,带来某些问题。例如,拖车的后缘或侧缘通常接合某些类型的平台密封件,密封件通常沿平台的通道安装在固定位置,拖车过大的垂直运动可过早磨损密封件。另外,叉车当进入拖车时产生的突然下降可使叉车司机惊恐。当拖车设有空气悬挂系统时这个问题更严重。
[0005] 对于空气悬挂系统,压空气的弹性容器支承拖车和货物的重量。空气悬挂系统一般包括空气压缩机,保持罐,和各种控制,互相配合施加或从弹性容器释放可控数量的的空气,帮助保持拖车处于一定高度。所以,当叉车进入拖车时,压力空气被迫进入弹性容器,补偿叉车施加的重量。由于悬挂系统的延迟反应,当叉车刚进入时拖车开始下沉,然后上升恢复到预定的高度,或在叉车离开后上恢复到预定高度。当叉车离开并从拖车取出货物时,新加入到弹性容器的空气升起拖车,超过其设计的高度。系统通过从弹性容器释放一些空气来弥补过调节,直到拖车回到其原始高度。拖车的上下循环随着每次叉车送入拖车载荷和从拖车取出载荷重复进行。与其他悬挂系统比较,空气悬挂系统通常可提供更好的垂直运动。由于典型空气悬挂系统的机械连接机构,拖车的垂直移动通常伴随着一般是相同数量的平移动。
[0006] 为了减少拖车的重复运动,空气悬挂系统可在加载或卸载过程开始之前从弹性容器排放空气或完全将空气排空。这使得拖车下降直到悬挂系统降至最低点。从而悬挂系统不工作。当拖车进行装货或卸货时,拖车保持处于其最低位置。尽管这样可改正拖车在装货和卸货期间拖车移动所带来的问题,但拖车底座处于低位可带来另外的问题。平台调整器要到达这样极低位置的拖车底座,需要台板设置成很陡的倾斜,使得叉车难以移动越过平台。这个问题有时可通过使用非常长的平台调整器来解决,但长平台调整器价格高,并损失了有价值的货仓地面面积。
[0007] 一些装卸平台会设置车辆限制件,以便防止卡车或拖车偶然从平台移开。这样的车辆限制件通常包括钩件或阻挡物,延伸到车辆的后冲击防护构件或ICC杆的前部。这些车辆限制件的示例在美国专利6,488,464和6,431,819公开。与阻挡车辆在装卸期间的垂直运动不同,这些专利的车辆限制件只是相对阻挡,接收或允许车辆自由垂直移动。专利No.6,431,819公开了一种弹簧,在受到ICC杆施加的向下力时压缩。类似地,专利
6,488,464的车辆限制件包括减压阀,可设置成保持限制件自身的重量,但减压阀不意味着减弱车辆的向下运动。
[0008] 一种可想到的实心的不动的支承结构,如液压千斤顶,可设置在ICC杆的下面,以完全消除车辆的任何垂直移动或车辆的实际升高;但是,这样的支承结构可导致过大的向上反作用力施加到ICC杆和杆连接的拖车底座下侧。更具体地,如果拖车底座保持不动的话,任何施加的货物重量或进入拖车的叉车重量可通过ICC杆传递到框架,ICC杆和框架的设计都不能承受这样大的载荷。因此,保持拖车底座完全不动将损坏ICC杆或其他拖车部件。
[0009] 这种实心车辆支承系统可从现有技术了解。示例包括美国专利2,637,454和6,065,923,以及日本专利摘要6114930A。但是,这些系统显示出是专用设计,涉及到装卸平台的特殊结构,并只能用于专设计和制造的能够与支承件相互作用的拖车。这些应用场合大部分都设有自动装载系统,要求平台面和拖车面之间精确对准,通常在捕捉到拖车垂直和有时水平的移动之前使拖车升高,并完全阻止了拖车的悬挂系统的操作。这些设计都不能应用于普通的日常装卸平台的操作。
[0010] 需要能够解决这些由装卸货物导致的车辆移动问题的方法和/或装置,装置可容易地安装在装卸平台的前部,与大范围的货物运输车辆互相作用,不要求对车辆进行改进或特殊的装卸平台设计。

发明内容

[0011] 在某些实施例中,车辆支承系统相对停靠在装卸平台的车辆至少一部分的垂直移动,包括减少或抑制垂直移动分量。
[0012] 在一些实施例中,车辆支承系统基本可防止车辆的向下运动,反作用力可达到车辆施加的最大向下许可力。
[0013] 在一些实施例中,车辆支承系统基本可防止车辆的向下移动,反作用力可达到车辆施加的最大向下许可力,当车辆施加的力超过最大许可力时,允许车辆进行可控的向下运动。
[0014] 在一些实施例中,车辆支承系统施加相对车辆的向上反作用力,向上的反作用力随车辆的向下力增加而增加。
[0015] 在一些实施例中,车辆支承系统施加相对车辆的向上反作用力,其中垂直构件的反作用力大于水平构件的反作用力。
[0016] 在一些实施例中,车辆支承系统包括减压阀,可当车辆施加一定向下力时,使车辆支承系统阻止车辆向下移动。
[0017] 在一些实施例中,车辆支承系统包括减压阀,可当车辆施加最大许可向下力时,使车辆支承系统阻止车辆向下移动,当车辆施加的向下力超过最大许可力时,允许车辆作可控的向下移动。
[0018] 在一些实施例中,车辆支承系统包括流量限制器,可使车辆支承系统施加相对车辆的向上反作用力,其中反作用力随车辆向下力的增加而增加。
[0019] 在一些实施例中,车辆支承系统包括流量限制器和旁路阀,可使车辆支承系统向上移动比向下移动更自由。
[0020] 在一些实施例中,车辆支承系统对传感器作出响应,传感器确定叉车或其他物体是否已经或将进入车辆。
[0021] 在一些实施例中,车辆支承系统包括刹车,可使车辆支承系统阻挡停靠在装卸平台的车辆的垂直移动。
[0022] 在一些实施例中,车辆支承系统包括弹簧,可使车辆支承系统阻挡停靠在装卸平台的车辆的垂直移动。
[0023] 在一些实施例中,车辆支承系统可接合车辆后冲击防护件,以阻挡停靠在装卸平台的车辆的垂直移动。
[0024] 在一些实施例中,车辆支承系统通过增强车辆悬挂操作使车辆的变形最小。
[0025] 在一些实施例中,当垂直变形最小但未完全消除时,车辆支承系统可结合调整机构。
[0026] 在一些实施例中,车辆支承系统可无须改进现有的装卸平台进行安装,如安装到地面或现有平台表面,或安装到通道。
[0027] 在一些实施例中,可相对车辆施加向上的反作用力的车辆支承系统结合车辆限制件,有助于防止车辆偶然从装卸平台移开。附图说明
[0028] 图1是安装在装卸平台的车辆支承系统的一个实施例的透视图;
[0029] 图2是图1的车辆支承系统的侧视图,其中显示出车辆后退到支承系统,移动车辆支承系统的支承件到预备位置;
[0030] 图3是与图2类似的侧视图,但显示出车辆支承系统的支承件位于预备位置,平台的调整器的唇板延伸到车辆的后部;
[0031] 图4与图3类似,显示出叉车移动通过平台调整器,进入或离开车辆的拖车底座;
[0032] 图5类似于图4,显示出叉车的重量使车辆向下移动;
[0033] 图6是控制图1的车辆支承系统的液压回路的示意图;
[0034] 图7是另一车辆支承系统的侧视图,显示出车辆后退,其后冲击防护件位于支承系统的支承件之上;
[0035] 图8是图7的车辆支承系统的侧视图,显示出车辆支承系统位于预备位置;
[0036] 图9是类似于图8的侧视图,显示出叉车移动通过平台调整器,进入或离开车辆的拖车底座;
[0037] 图10是类似图9的侧视图,车辆支承系统的支承件部分部分剖开,以显示车辆支承系统如何响应拖车底座的移动。
[0038] 图11是图7的车辆支承系统的顶视图;
[0039] 图12是图7的车辆支承系统的前视图;
[0040] 图13是控制图7的车辆支承系统的液压回路的示意图;
[0041] 图14是控制图7的车辆支承系统的另一液压回路的示意图;
[0042] 图15是控制图1的车辆支承系统的液压回路的示意图;
[0043] 图16是控制图7的车辆支承系统的另一液压回路的示意图;
[0044] 图17是另一车辆支承系统的侧视图;
[0045] 图18是类似图17的侧视图,显示出车辆支承系统升高和平台调整器处于操作位置;
[0046] 图19是另一车辆支承系统的侧视图;
[0047] 图20是类似图19的侧视图,显示出车辆支承系统升高,平台调整器处于操作位置;
[0048] 图21是理想的车辆支承系统的概念示意图。

具体实施方式

[0049] 对于停靠在装卸平台的货物运输车辆,如卡车或拖车,可使用各车辆支承系统的实施例,以便当车辆进行装卸货物时,通过增强车辆设置的悬挂系统,保持车辆后缘稳定(尤其是垂直方向)。虽然将介绍各种车辆支承系统,但各车辆支承系统都包括可移动到预备位置的支承件,在预备位置支承件可提供相对车辆的向上反作用力,反作用于车辆施加的相对支承件的向下力。在一些实施例中,控制系统移动支承件到预备位置,在另外的情况下,车辆自身移动支承件到预备位置。
[0050] 一旦处于预备位置,支承件施加的向上相对车辆的反作用力的大小取决于车辆支承系统的具体实施例。在一些情况下,反作用力基本等于但反向于车辆相对支承件施加的向下力,因此车辆基本保持静止,提供的向下力不大于某个限度。当操作超过该限度时,在一些情况下,支承件提供通常恒定的反作用力,其反向但小于车辆施加的向下力;在另外的情况下,反作用力随车辆的向下力或向下速度的增加而增加。在各种情况下,反作用力延缓了车辆的下降,无论反作用力是否是恒定或是变化的。
[0051] 图1到6显示了稳定停靠在装卸平台的车辆13的车辆支承系统200的第一实施例。图1是透视图,图6是示意图,图2到5是各种操作条件下的车辆支承系统200的侧视图。术语“车辆”代表了任何有轮货物运输工具,包括但不限于卡车或拖车。为了帮助限制车辆12的向下移动,图3到5显示的车辆支承系统200的支承件202接合车辆的后缘,后缘实际上包括车辆12的任何部件,包括但不限于,拖车底座16的后底表面或后冲击防护件,如ICC杆18。
[0052] 对于车辆支承系统200,车辆12后退到平台14的移动使支承件202从图2所示的升高的储存位置移动到图3所示的预备位置。一旦处于预备位置,图6所示的控制系统204使得支承件202施加反作用力32,其等于或反向于车辆12施加的向下力34,使得支承件202在预备位置保持基本静止,直到力34超过预定的最大许可力。如果力34超过最大许可力,则向下力34克服反作用力32,使得车辆支承系统200屈服,允许支承件202向下移动。在下降的同时,支承件202仍施加通常为恒定的反作用力32,尽管小于向下力34,但足以适当地或显著地延缓支承件202和其上车辆12的位置下降。低于最大许可力时,车辆支承系统200的支承件202帮助车辆12的后端保持位于基本固定的高度;超过最大许可力时,车辆支承系统200屈服,延缓车辆12下降,防止反作用力32弯曲或损坏杆18或车辆12的其他部分。最大许可力可根据车辆框架的设计参数选择处于这样的水平,即低于该水平车辆不会发生损坏。
[0053] 在车辆支承系统200的一些实施例中,车辆支承系统200包括固定到装卸平台14的台面的基板206,连接到支承件202的铰接的引导件208,和连接到装卸平台14的垂直壁的导轨210,用于引导支承件202的移动。为使支承件202施加反作用力32,车辆支承系统200的控制系统204包括一个或多个活塞或圆筒52,其上端连接到支承件202,下端连接到基板206。显示为张力弹簧211的偏压件向上朝储存位置推动支承件202,如图1和图2所示。
[0054] 参考图2,车辆12后退到平台14启动操作。当车辆12向后移动,杆18或车辆12的其他表面接合引导件208,其提供了斜面或凸轮动作,推动支承件202向下,克服弹簧212的推动力,直到杆18越过支承件202的顶部。当车辆12推动支承件202向下到达预备位置时,活塞/圆筒52自由缩回,因图6的去激励电磁阀214开放了圆筒的活塞侧通向罐96。
[0055] 接下来,图3显示出杆18位于支承件202的顶部,平台调整器22显示出其斜面24上升和唇板26延伸,提供了从平台14的台面28到车辆12的拖车底座16的桥接件。这样就形成了叉车30和/或其他货物处理装置的路径,在车辆12和台面28之间运输货物,如图4所示。由于车辆支承系统200允许车辆12垂直移动(施加的力超过最大许可力),使用时最好结合调整装置,如平台调整器22。在使用总是保持刚性的车辆支承系统的情况下,当桥接板悬置在固定表面之间时,装卸平台和车辆之间的桥接板不改变其位向。但是,车辆可能垂直移动,所以桥接板可垂直调节地安装到装卸平台,以配合这样的移动。应当理解,传统的平台调整器包括可枢轴转动安装于装卸平台台面的主台板结构件和安装到前部的唇板结构件,可桥接平台到车辆底座间的空隙,并提供了大范围的垂直调节性能(以配合车辆的垂直移动),能够保持最小的坡度,以便叉车移动通过。另一种不具有台板/唇板这类平台调整器水平长度的调整装置不能在保持足够小的坡度以便叉车进行操作的同时提供相同的垂直调节范围。
[0056] 为了叉车30移进和移出拖车底座16时帮助保持车辆12的后端稳定,可对图6的电磁阀214通电。在罐96和圆筒52的活塞侧之间设置了单向阀216。当叉车30或其他重量使车辆下降时,单向阀216可防止支承件202下降,但是,单向阀216允许支承件202跟着车辆12向上运动。
[0057] 如果施加到拖车底座16的过大重量产生的力34超过预定的最大许可力时,减压阀98预先设置成可释放通向罐96的管线62的过大压力。这样能够限制管线62的压力,形成最大许可反作用力32去延缓车辆12下降。因此,通过防止车辆12下降到最大许可力限度,支承件202增强了车辆悬挂系统操作。超过最大许可力限度时,车辆支承系统200屈服,但支承件202通过施加通常为恒定的向上反作用力32继续增强车辆悬挂,延缓车辆12的下降。
[0058] 当车辆12下降时,在某些情况下,车辆还因车辆悬挂系统的设计而水平移动。车辆的垂直和水平移动在图5中用箭头100显示。在某些情况下,引导件208可包括枢轴连接件218,防止车辆12的向下移动使引导件208弯曲或破坏。为了适应车辆12的水平移动,支承件202可包括上承重件220,下承重件222,和其间的抗摩擦件224。上承重件220安装成可相对下承重件222水平滑动,件224减小了件220和222之间的摩擦。减小摩擦有助于防止车辆12拖拉杆18通过上承重件220,因此可防止杆18和上承重件220之间产生损伤性磨损或弯曲力。使得车辆支承系统不阻止车辆12的全部垂直移动,使得车辆的悬挂系统通常可形成水平移动,水平移动线性正比于垂直移动。希望具有调节性水平移动,以防止出现垂直变形,车辆形成极大的应力。当车辆12朝保险杠236方向移动,或完全离开平台14时,弹簧238可推动上承重件220回到其初始位置,位于下承重件222的上方。
[0059] 为了防止车辆12偶然地或过早地从平台离开,车辆支承系统200可设置固定的或可移动的钩件230(如可枢轴转动的),或其他类型的车辆固定件。钩件230,例如,可选择地在如图1和2所示的收缩位置和图3到5所示的车辆固定位置之间移动。钩件230以及引导件208的另外的结构和功能细节可参考美国专利6,116,839,其内容本文参考引用。
[0060] 除了通过弹簧212提升上支承件202外,图7到13显示的车辆支承系统10带有动力推动的支承件20。对于车辆支承系统10,图13的控制系统36可从图7的储存位置提升支承件20到图8的预备/操作位置。在储存位置,车辆12可退回到平台14,杆18位于垂直支承件20上方,如图7所示。
[0061] 车辆12后退到平台14后,平台调整器22提升其斜面板24和延伸其唇板26,提供了从平台14的表面28到车辆12的拖车底座16的桥接板,支承件20上升,如图8所示。应当指出,提升支承件20和放置唇板26于拖车底座16的顺序可以反过来进行。
[0062] 车辆支承系统10包括基板38和导轨40,导轨连接到平台14。托架42安装成可沿导轨40垂直移动。在某些情况下,滚轮44可减少托架42和导轨40之间的摩擦。托架42包括凸缘46,可防止托架水平脱离导轨40。托架42的结构可支承一个或多个垂直支承件20,和可选择设置的钩件48,钩件48代表可与杆18的前缘50接合的任何结构件,防止车辆12偶然离开平台14。
[0063] 在图示实施例中,钩件48相对托架42固定。为了阻挡或释放杆18,托架42可分别上升和下降以移动钩件48。在另一实施例中,钩件48可枢轴转动或者相对托架42移动,使得钩件48可选择阻挡或释放杆18,无须托架42沿导轨40移动。
[0064] 为了移动托架42,一个或多个液压缸52(活塞/圆筒)安装在托架42和板38之间。缸52具体代表任何能够上下移动托架的促动器。这样的促动器可想象到安装在任何适当位置或结构,在任何适当的工作原理下工作。这样的促动器的示例包括但不限于,填充气体的活塞/圆筒,填充液体的活塞/圆筒,无杆液压缸,弹簧复位的活塞/圆筒,汽车操作的促动器,线性马达,链条和链轮齿条齿轮绞盘,电动马达,液压马达气动马达,压力流体填充弹性容器,弹簧等。
[0065] 对于图示的实施例,液压缸52设有销接到基板38的下端,和销接到轴54的上端,轴54可以是滚轮的轴,如图所示,或是只用于液压缸52的单独件。液压缸52延伸以提升托架42,其带有钩件48和垂直支承件20。图13的控制系统36可用于控制液压缸52的操作。
[0066] 各液压缸52有一个连接到系统36的液压管线58的端口56,和连接到管线62的第二端口60。管线58和62的液体压力决定了液压缸52的动作。液压64通过普通方式使系统36具有液压力。泵64可根据需要循环关闭和打开,或者泵可连接到适当的系统减压阀,和/或泵64可以是变量泵。无论如何,泵64都要提供液压流体于排放管路68。
[0067] 为了提升支承件20到相对杆18的操作位置,对双位4通阀86去激发,传递管线68的压力到管线62和液压缸52的活塞侧。支承件20上升直到限位开关92与杆18接触,使泵64去激发。减压阀66设定成提供给管线68的压力仅足够提升托架42和支承件20的重量。单向阀232可防止支承件20轻易地向下返回。但是,如果力34到达预定的最大许可限度,第二减压阀98预先设定成,释放管线62中的过大压力到罐96。因此,通过防止车辆下降到最大许可力限度,支承件20增强了车辆12的悬挂,最大许可力限度由减压阀98的设定所决定。超过最大许可限度,车辆支承系统10屈服,但支承件20仍施加通常恒定的向上反作用力32,其由减压阀98决定,以延缓车辆12的下降。
[0068] 在某些情况下,尤其是在空气悬挂系统时,向下移动一英寸,拖车底座16将水平离开平台14移动大约一英寸。该移动在图10中用箭头100显示。为了更好地配合水平移动,各垂直支承件20可包括弹簧加载的套管102,套管可在支承杆104上滑动。当杆18水平移动离开平台14时,杆18使得套管102一起移动,因此减小了杆18和支承件20之间的磨损,并可能防止杆18的弯曲。在套管102和支承杆104之间安装摩擦片,线性支承件或其他抗磨件可减少其间的摩擦。当杆18上升离开支承件20,或杆18朝托架42移动时,弹簧106将套管102拉回到支承杆104的上方。
[0069] 受到上面介绍的控制的车辆支承系统10和200的优点在于,车辆支承系统10和200可在大范围的力34内保持车辆12基本静止。当叉车30继续运送货物到车辆12时,力
34逐渐累加,所以最终累加的货物重量可超过最大许可力34,这时对放置到车辆12的货物的少量增量的反应,可使得支承件20大量下降。为解决这个问题,在一些情况下,希望车辆支承系统在发生载荷增量时或出现后不久可控地屈服。
[0070] 例如,对车辆支承系统10进行的控制可以是对图9所示的负载传感器108作出的反应。负载传感器108在图中示意地显示,可代表任何可传感何时重量施加/取出或将于何时施加/取出于车辆12的器件。传感器108的示例包括但不限于,接近开关,光电子眼,平台调整器22、托架42或拖车底座16的应变或移动的反应开关,运动探测器,红外线探测器,和感应电磁场的天线,应变片,测压元件等。通过对传感器108作出反应,控制系统110可提供压力液压流体到液压管线112,和三通弹簧复位电磁阀114对传感器108作出反应,确定支承件20可相对杆18施加的反作用力32。
[0071] 操作中,当传感器108探测到叉车将移动到拖车底座16时,阀114的螺线管116受到激发,使得系统110的管线118与高压减压阀120流体连通,其设置成只当向下力34超过某个最大许可限度时,如10吨,液压流体连通到罐96。因此,支承件20增强了车辆设置的悬挂,保持拖车底座16基本刚性,除非过大的向下力施加到支承件20。当传感器108确定叉车30已经离开拖车底座16,系统110作出反应对螺线管116去激发。这使得管线118与低压减压阀122流体连通,其设置成管线62只保持足够压力来支承车辆底座10的可取出的重量。阀122允许拖车底座16位于新的低位,以响应拖车底座刚刚接受叉车卸下的载荷。当叉车继续输送载荷到拖车底座时,电磁阀114重复进行激发和去激发。阀114重复的循环允许拖车对施加的货物作出反应调节向下移动,从而使得车辆支承系统自身不必支承添加的货物重量。由于拖车底座下降发生在叉车位于平台时,叉车的司机不会经历进入拖车底座上时突然下降的惊恐感受。
[0072] 当叉车30从车辆20卸下货物时,拖车底座可随着负荷被取出而上升。系统110允许支承件20以类似于图13的控制系统36的方式随着杆18的向上移动而移动。
[0073] 当车辆准备离开时,促动阀86使支承件20下降。
[0074] 虽然载荷传感器108和控制系统110使车辆支承系统可当增量载荷发生或刚刚发生时作出反应,另一控制系统234通过使用流量限制器,如图15所示的孔236,可解决同一问题。控制系统234可通过下面介绍的方式控制图1到5的车辆支承系统200。
[0075] 去激发双位三通电磁阀238使得弹簧211偏压支承件202,向上到达图1和2的储存位置。去激发阀238允许车辆12的杆18回到支承件202以上,直到杆18位于图3所示的预备操作位置。然后激发阀238使管线62和液压缸52的活塞通过孔236与罐96流体连通。当力34增加时,由于重量施加到拖车底座16,该力推动支承件202向下,使得液压缸52缩回,这使得流体流过孔236。孔236两边所形成的压力差随流量增加。所以,管线62的压力以及支承件202施加到杆18的反作用力32随通过孔236的流量增加而增加,反作用力是车辆施加到件202的力的函数。如果力34超过减压阀98的释放设定所确定的最大许可力,则减压阀98打开,释放管线62的过大压力到罐96。当减压阀98打开时,通常为恒定的压力保持于管线62和液压缸52的活塞侧。这使得支承件202施加一般为恒定的向上反作用力32,延缓杆18的下降。
[0076] 因此,车辆支承系统20受到系统234的控制,支承件202的反作用力32相对于向下力34,增强了车辆设置的悬挂,减少了垂直变形,其中反作用力随杆18的向下力34或向下速度增加而增加,但最大只能增加到预定的最大许可力。当向下力34超过最大许可限度时,反作用力32一般是恒定的,可延缓杆18的下降。
[0077] 可控制图7到12的加电的车辆支承系统10以类似方式工作。当受到图16的系统36的控制时,支承件20的反作用力32相对于向下力34,可随杆18的向下力34或向下速度的增加而增加,但最大只能到预定的最大许可力。当向下力34超过最大许可限度时,支承件屈服,反作用力32一般是恒定的,可延缓杆18的下降。
[0078] 各液压缸52具有连接到系统36的液压管线58的一个端口56和连接到管线62的第二端口60。管线58,62的液体压力决定了液压缸52的动作。液压泵64通过传统的方式使系统36具有液压力。例如,泵64可根据需要循环开闭,或泵可连接到适当的系统减压阀66,和/或泵64可以是变量泵。无论如何,泵64都提供液压流体于排出管线68,输送到往复阀70。往复阀70连接排出管线68到管线72,其连通到流量限制器74(可以是孔)和旁路单向阀76。另一管线78连接流量限制器74和单向阀76到另一个单向阀80和第一减压阀82。另一管线84连接阀80,82到双位4通减压阀86,其可由螺线管90促动。装卸平台的工作人员使用连接到泵64的阀86提升或下降支承件20。
[0079] 使用时,平台工作人员可促动螺线管90,降低托架42,这使得车辆12退回到平台14,定位杆18于支承件20上方。促动螺线管90,使具有排放压力的液压流体连续通过管线
68,往复阀70,管线72,单向阀76和80,4通阀86和管线58,令管线58加压。
[0080] 一旦杆18位于支承件20的直接上方,平台工作人员去激发螺线管90,使泵64通电,对管线62加压,单向阀设定成只提供足够提升托架42和钩件48的压力,直到支承件20和托架42支承的限位开关92与杆18的下侧接合。开关92接合杆18时使泵64断电,但单向阀80和减压阀80的设置将保持管线62,84有足够压力,支承托架42,支承件20和钩件48的重量。使得钩件48现在的高度可防止车辆12偶然拉动杆18离开平台14,支承件20可通过下面介绍的方式稳定拖车底座16。
[0081] 如果一定的重量施加到拖车底座16,杆18将施加向下力34,推动支承件20向下。向下移动将使得液压流体从液压缸52和压力线62,84内的水平超过减压阀82保持的水平。响应压力增加,阀82将打开使液压流体进入管线78。液压流体从管线78连续通过流量限制器74,管线72,和往复阀70。阀门70然后将释放液压流体到与罐96连接的流管线94,罐向泵64提供液压流体。
[0082] 但是,当液压流体通过流量限制器74时,限制器产生的压力降使得管线62和液压缸52的压力增大。液压缸52增大的压力相对杆18的向下移动,使杆18具有可控下降(即适当地或显著地延缓杆18的下降)。由于限制器74产生的压降随通过限制器的流速而增加,支承件20的相对向上力32随杆18的下降速度而增加,杆18的移动是车辆施加到件20的力的函数。
[0083] 如果向下力34超过预定的最大许可限度,第二减压阀98设置成释放管线62的过大压力到罐96中,避免损坏汽车12。例如,如果汽车12设有空气悬挂系统,车辆的司机决定排放或排出系统的空气使系统去激发,拖车底座16可突然随其上全部载荷下降,从而使支承件20快速下降。这可导致管线62产生非常大的压力,可能导致过大的上升力32施加到杆18的下侧。过大的上升力可损坏杆或拖车的其他部分。减压阀98限制了支承件20可能施加到杆18的最大向上许可力。在某些实施例中,减压阀97设置成可提供5到10吨的最大向上许可力。
[0084] 如果车辆12未设置空气悬挂系统,或恒定空气源未设置于空气悬挂系统,则当叉车30离开或当大量的重物突然从车辆取出时,悬挂系统将快速提升拖车底座。因此,车辆12将升高杆18,离开限位开关92和支承件20。杆18离开开关92使泵64带电。使管线
68,72,78,84和62的压力上升提高托架42。单向阀76与流量限制器74形成旁路关系,允许托架42向上移动比向下移动更自由。托架42上升到开关92和支承件20再次接合杆18的下侧,帮助稳定拖车底座16。
[0085] 在图17和图18示意性显示的另一实施例中,车辆支承系统124包括摩擦式刹车126,使得支承件128可施加有助于稳定拖车底座16的反作用力32。在图17,支承件128显示处于较低位置,允许车辆12后退到杆18处于件128上方。一旦杆18位于支承件128的直接上方,释放刹车126,车辆支承系统124提升件128,直到件128接合杆18的底侧。这时,促动刹车126提供对杆18和支承件128向下运动的抗力,增强了车辆悬挂。
[0086] 为了实现这些操作,车辆支承系统124包括可转动导螺杆132的马达130。导螺杆132旋入连接到支承件128的螺帽134。所以转动导螺杆132可提升支承件128。反向地,使支承件128向下移动可转动导螺杆132,倘若导螺杆132的螺旋足够陡,导螺杆132和螺帽134之间的摩擦非常低,如同滚珠螺旋机构。刹车126包括刹车卡件136,其可选择性地接合导螺杆132上的刹车盘138。导轨140和托架142引导支承件128的垂直移动。为向上移动支承件128,刹车卡件136释放刹车盘138,马达130逆时针方向转动(向上)直到开关92接合杆18。与杆18接合的开关92去激发马达130,使得卡件136抓住盘138,形成预定的或可变的抗力量级。然后,当重量施加到拖车底座16时,杆18向下推动支承件
128,其推动导螺杆132顺时针转动。刹车126抵抗导螺杆132的转动,刹车126通过施加相对杆18的反作用力32,因此阻挡了杆18的向下运动,稳定了拖车底座16,使得支承件128增强了拖车的悬挂。
[0087] 在另一实施例中,如图19和20所示,车辆支承系统144包括弹簧146,弹簧储存能量,使得支承件148施加相对杆18的反作用力32,在装卸操作时帮助稳定拖车底座16。弹簧146代表任何可储存和释放机械能的恢复机构。弹簧146的示例,包括但不限于,一个或多个片簧,螺旋弹簧,空气弹簧,气筒弹簧,聚酯弹性体,系列的Belleville垫圈等。在某些实施例中,支承件148的弹簧146包括金属顶板150,可与支承件148的两个限位边152,154接合,保持可弹性变形的可压缩的聚氨酯156处于预加载的部分压缩状态,如图19所示。
[0088] 设置了促动器158,可沿导轨160垂直移动支承件148。示意性显示的促动器158可代表任何适合移动支承件148的机构。促动器158的示例包括但不限于气体填充的活塞/圆筒,液体填充的活塞/圆筒,无杆汽缸,弹簧复位活塞/圆筒,汽车操作的促动器,线性马达,链条和链轮,齿条和齿轮,绞盘,电马达,液压马达,气动马达,压力流体填充的弹性容器,弹簧等。
[0089] 在操作时,促动器158提升支承件148,直到件148的顶板150向上靠到杆18。如果杆18施加一定允许范围内的向下力34,促动器158保持静止,弹簧146受压缩,抵抗拖车底座16的向下移动。如果向下力34过大超过允许范围,则促动器158可下降,直到力34再次处于允许范围。
[0090] 对于图21中的实施例,车辆支承系统240包括可垂直移动的支承件242,移动支承件242的促动器244,和控制系统246,可控制支承件响应传感器248进行的移动。示意性显示的促动器244代表了任何可移动支承件242的机构。促动器244的示例包括但不限于,气体填充的活塞/圆筒,液体填充的活塞/圆筒,无杆汽缸,弹簧复位活塞/圆筒,线性马达,链条和链轮,齿条和齿轮,绞盘,电马达,液压马达,气动马达,压力流体填充的弹性容器等。示意性显示的传感器248代表任何的机构,其应探测施加到支承件242的载荷或力34并提供对应于载荷的反馈250。传感器248的示例包括但不限于,应变片,测压元件,称重计,压力传感器等。示意性显示的控制系统246代表任何可响应来自传感器248的反馈
250控制促动器244的机构。控制系统246的示例包括但不限于,计算机,微处理器,可编程的逻辑控制器(PLC),集成电路,包括继电器的电路,模拟元件,和/或数字元件及其各种组合。
[0091] 当杆18向下相对支承件242施加力34时,传感器248探测力34的数量,并将该信息作为反馈250发送到控制系统246。对反馈250作出反应,控制系统246发指令给促动器244控制支承件242,使支承件242施加适当的相对力34的向上反作用力32。车辆支承系统240所提供的是理想的反应(即反作用力32总是等于和相对于力34),车辆支承系统240还可仿效已经介绍的各种车辆支承系统,当施加的载荷满足或超过最大许可力时屈服。
[0092] 尽管参考优选实施例对本发明进行了介绍,所属领域的技术人员应当理解,各种改进也属于本发明的范围。例如,各种车辆支承系统显示出包括钩件,有助于防止车辆偶然地从装卸平台离开,但这种钩件是可选择设置的。因此,本发明的范围应参考所附权利要求来确定。
QQ群二维码
意见反馈