组件

申请号 CN201480040674.2 申请日 2014-05-21 公开(公告)号 CN105377595B 公开(公告)日 2017-12-26
申请人 坦尼科汽车操作有限公司; 发明人 科恩·瑞布鲁克;
摘要 本 发明 提供一种 角 组件,包括:顶部安装组件; 车轮 组件;减震器,该减震器被布置在顶部安装组件与车轮组件之间,减震器包括限定第一 流体 腔室的压 力 管;上部 弹簧 安装件,该上部弹簧安装件被附接到顶部安装组件上;下部弹簧安装件,该下部弹簧安装件被附接到车轮组件上;弹簧,该弹簧被布置在上部弹簧安装件与下部弹簧安装件之间;其中:上部弹簧安装件和下部弹簧安装件之一是可调整的,上部弹簧安装件和下部弹簧安装件的之一包括第二流体腔室,该第二流体腔室与由减震器的压力管限定的第一流体腔室处于流体连通。通过上述角组件,对调平系统提供了用于控制主动 悬架系统 的流体压力,从而改变车辆的高度。
权利要求

1.一种组件,包括:
顶部安装组件;
车轮组件;
减震器,该减震器被布置在所述顶部安装组件与所述车轮组件之间,所述减震器包括限定第一流体腔室的压管和可滑动地布置在所述压力管内的活塞,所述活塞将所述第一流体腔室划分为上工作腔和下工作腔;
上部弹簧安装件,该上部弹簧安装件被附接到所述顶部安装组件上;
下部弹簧安装件,该下部弹簧安装件被附接到所述车轮组件上;
弹簧,该弹簧被布置在所述上部弹簧安装件与所述下部弹簧安装件之间;其中:
所述上部弹簧安装件和所述下部弹簧安装件之一是可调整的,所述上部弹簧安装件和所述下部弹簧安装件的所述之一包括:内部壳体组件,该内部壳体组件被附接到所述车轮组件和所述顶部安装组件之一上;外部壳体组件,该外部壳体组件被附接到所述弹簧上;以及第二流体腔室,该第二流体腔室被布置在所述内部壳体组件与所述外部壳体组件之间,所述第二流体腔室与由所述减震器的所述压力管限定的所述第一流体腔室处于流体连通。
2.根据权利要求1所述的角组件,其中,所述内部壳体组件被直接附接到所述减震器上。
3.根据权利要求1所述的角组件,其中,所述第二流体腔室与由所述减震器限定的所述下工作腔处于流体连通。
4.根据权利要求1所述的角组件,其中,所述第二流体腔室是密封的流体腔室。
5.根据权利要求1所述的角组件,其中,所述下部弹簧安装件是可调整的;
所述内部壳体组件被附接到所述车轮组件上;
所述外部壳体组件可滑动地接合所述内部壳体组件。
6.根据权利要求5所述的角组件,其中,所述内部壳体组件被直接附接到所述减震器上。
7.根据权利要求5所述的角组件,其中,所述第二流体腔室与由所述减震器限定的所述下工作腔处于流体连通。
8.根据权利要求5所述的角组件,其中,所述第二流体腔室是密封的流体腔室。
9.根据权利要求1所述的角组件,其中,所述上部弹簧安装件是可调整的;
所述内部壳体组件被附接到所述顶部安装组件上;
所述外部壳体组件可滑动地接合所述内部壳体组件。
10.根据权利要求9所述的角组件,其中,所述内部壳体组件被直接附接到所述减震器上。
11.根据权利要求9所述的角组件,其中,所述第二流体腔室与由所述减震器限定的所述下工作腔处于流体连通。
12.根据权利要求9所述的角组件,其中,所述第二流体腔室是密封的流体腔室。

说明书全文

组件

技术领域

[0001] 本披露针对一种主动悬架系统。更具体地,本披露针对一种主动悬架系统,该主动悬架系统合并有与该主动悬架系统相结合的一个调平系统。

背景技术

[0002] 此部分提供与本披露相关的背景信息,其并不一定是现有技术
[0003] 悬架系统被提供用于当车辆在不规则的垂直路面上行进时将车辆的车身(簧载部分)与车辆的轮轴(非簧载部分)滤除或隔离,并且用于控制车身和车轮的运动。此外,悬架系统还用于维持正常的车辆姿态,从而在机动过程中促进车辆稳定性的改善。典型的被动悬架系统包含位于该车辆的簧载部分与该非簧载部分之间的弹簧以及与该弹簧平行的阻尼装置。
[0004] 液压致动器(例如减震器和/或支柱)与常规的被动悬架系统结合使用以便吸收在行驶过程中产生的所不希望的振动。为了吸收这种不希望的振动,液压致动器包含位于该液压致动器的压缸内的一个活塞。该活塞通过一个活塞杆被连接到车辆的非簧载部分或悬架和簧载部分或车身之一上。压力管被连接到车辆的非簧载部分和簧载部分中的另一个上。因为当活塞在压力缸内位移时,弹簧能够限制阻尼流体在液压致动器的工作腔内的流动,液压致动器能够产生抵消悬架振动的阻尼力。活塞对阻尼流体在工作腔内流动的限制程度越大,则由液压致动器产生的阻尼力就越大。
[0005] 近年来,实质的兴趣在于可以提供优于常规被动悬架系统的改善的舒适度和道路操控的机动车辆悬架系统。一般来说,这种改进是通过利用能够以电子方式控制由液压致动器所产生的悬浮力的“智能”悬架系统来实现的。
[0006] 对理想的“智能”悬架系统的不同平的实现(所谓的半主动或完全主动悬架系统)是可能的。一些系统基于反对活塞运动作用的动态力来控制和产生阻尼力。其他系统基于独立于压力管中的活塞的速度的、作用在活塞上的静态力或缓慢变化的动态力来控制和产生阻尼力。其他更精心制作的系统可以无视压力管中的活塞的位置和运动,在液压致动器的回弹运动和压缩运动过程中产生可变的阻尼力。发明内容
[0007] 此部分提供本披露的总体概述、并且不是其全部范围或其全部特征的综合性披露。
[0008] 本披露提供了利用与主动悬架系统连通的调平系统的技术。对调平系统提供了用于控制主动悬架系统的流体压力从而改变车辆的高度。
[0009] 从本文所提供的描述中将清楚其他适用范围。本概述中的说明和具体实例仅旨在用于展示的目的而并非旨在限制本披露的范围。附图说明
[0010] 在此描述的附图仅用于所选择实施例的而不是对所有可能实施方式的说明性目的,并且不旨在限制本披露的范围。
[0011] 图1是对结合有根据本披露的主动悬架系统和调平系统的车辆的图解展示;
[0012] 图2是图1中所展示的包含液压致动器的角组件之一的示意图,展示了液压致动器的部件;
[0013] 图3是在用于主动悬架系统的液压致动器与调平系统之间的流体连接的示意图;并且
[0014] 图4是根据本披露另一实施例的包含液压致动器的角组件的示意图。
[0015] 在附图的各视图中,对应的参考号表示对应的部分。

具体实施方式

[0016] 现在将参考附图更全面地描述示例性实施例。
[0017] 下面的描述在本质上仅仅是示例性的并且不旨在限制本披露、应用或用途。在图1中示出了合并有悬架系统的车辆,该车辆具有根据本披露的悬架系统并且总体上用参考数字10指代。车辆10包括后悬架12、前悬架14和车身16。后悬架12具有被适配为操作性地支撑车辆的后轮18的横向延伸的后桥组件(未示出)。该后桥组件有效地借助一对角组件20连接至车身16,这对角组件包含一对减震器22和一对螺旋线圈弹簧24。相似地,前悬架14包含有效地支撑该车辆的前轮26的横向延伸的前桥组件(未示出)。该前桥组件有效地借助第二对角组件28连接至车身16,该第二对角组件包括一对减震器30和一对成型的螺旋线圈弹簧32。减震器22和30用来衰减车辆10的非簧载部分(即,分别为前悬架12和后悬架14)以及簧载部分(即,车身16)的相对运动。虽然车辆10已经被描绘成具有前后车桥组件的乘用车,但减震器22和30可以用于其他类型的车辆和/或在其他类型的应用(例如合并独立的前悬架系统和/或独立的后悬架系统的车辆)中使用。进一步的,这里使用的术语“减震器”通常意味着阻尼器,并且因此将包含多个支柱。同样,虽然前悬架14被展示为具有一对支柱或减震器30,如果需要,具有合并一对支柱或减震器30的后悬架12是在本发明的范围之内。如图1中所展示的,减震器22与弹簧24是分开的。在这种构型中,该可调弹簧座被布置在车辆的簧载部分与非簧载部分之间。同样,可以将减震器22和弹簧24替换成多个角组件28。
[0018] 现参照图2,更详细地展示了用于车辆10的前部角组件28。车身16限定了包括车辆10的金属板的一个震动塔34,在其内安装了包括可伸缩设备的一个支柱组件36,该可伸缩设备的形式是减震器30、线圈弹簧32、顶部安装组件38以及作为车轮组件的一部分的转向节40。使用震动塔34将包含减震器30、线圈弹簧32和顶部安装组件38的支柱组件36附接到车辆10上。顶部安装组件38(车辆的簧载部分的一部分)包括顶部安装件42、轴承组件44和上部弹簧座46。顶部安装件42包括一个整体模制体和一个刚性体构件,典型地由冲压制成。顶部安装组件38通过螺栓48安装到震动塔34上。安置在顶部安装件42中的轴承组件44摩擦配合在顶部安装件42的模制体内,使得轴承组件44的一侧相对于顶部安装件42以及震动塔34固定。轴承组件44的第二侧关于轴承组件44的第一侧、顶部安装件42和震动塔34自由地转动。
[0019] 轴承组件44的该自由转动侧承载间隙配合到轴承组件44的外径上的上部弹簧座46。一个弹性体弹簧缓冲器50被布置在上部弹簧座46与减震器30之间。弹性体弹簧缓冲器
50包括由塑性防尘罩52保护的弹性材料。
[0020] 作为车辆的非簧载部分的一部分的可液压调节的下部弹簧座组件56被附接至减震器30和线圈弹簧32。线圈弹簧32被布置在上部弹簧座46与下部弹簧座组件56之间以便将车身16与前悬架14隔离。虽然在图2中展示了减震器30,但应理解的是减震器22也可以包含在此对于减震器30描述的特征。
[0021] 在将支柱组件36组装到车辆10内之前,进行了对支柱组件36的预先组装。弹性体弹簧缓冲器50和塑性防尘罩52被组装到减震器30上。线圈弹簧32被组装在减震器30之上并且被定位在下部弹簧座组件56之内。上部弹簧座46被组装到减震器30上并且关于螺旋弹簧32准确地定位。轴承组件44被定位在上部弹簧座46的顶部上并且顶部安装件42被定位在轴承组件44的顶部上。这整个组件被定位在一个装配机器之内,该装配机器压缩线圈弹簧32,这样使得减震器30的端部穿过位于顶部安装组件38内的一个孔来延伸。一个固定螺母58以螺纹方式被容纳在减震器30的端部上,从而固定支柱组件36的组件。
[0022] 顶部安装件42被设计为对于车辆的右手侧与左手侧完全相同的部件,但是当它被放置在车辆的右侧或左侧上时,它关于减震器30以及它的关联支座具有不同的取向。
[0023] 可液压调节的弹簧座组件56包含被附接到减震器30上的内部壳体组件60以及被附接到减震器30和线圈弹簧32两者上的外部壳体组件62。内部壳体组件60和外部壳体组件62限定了一个流体腔室64。当流体被添加至流体腔室64时,外部壳体组件62将沿减震器30向上移动,如图2中所展示的。这种运动将使车辆车身16相对于前悬架14升高。当从流体腔室64移除流体时,外部壳体组件62将沿减震器30向下移动,如图2中所展示的。这种运动将使车辆车身16相对于前悬架14降低。流体腔室64与减震器30处于流体连通,如下所述。
[0024] 减震器30是一个单管设计的减震器,包括压力管70、活塞组件72和活塞杆74。
[0025] 压力管70限定流体腔室76。活塞组件72被可滑动地布置在压力管70内,并且将流体腔室76划分为上工作腔78和下工作腔80。在活塞组件72与压力管70之间布置了一个密封件以允许活塞组件72相对于压力管70滑动移动,而不产生不适当的摩擦力并将上工作腔78与下工作腔80密封。活塞杆74被附接至活塞组件72,并且延伸穿过上工作腔78并穿过关闭压力管70的上端的上端盖82。一个密封系统密封上端盖82、压力管70和活塞杆74之间的界面。活塞杆74的与活塞组件72相反的末端被适配成紧固到车辆10的簧载质量与非簧载质量之一上。在活塞组件72在压力管70内运动的过程中,活塞组件72内的配置对上工作腔78与下工作腔80之间的流体运动进行控制。由于活塞杆74仅穿过上工作腔78而不穿过下工作腔80延伸,活塞组件72关于压力管70的运动造成上工作腔78中排出的流体量与下工作腔
80中排出的流体量的差异。流体排出量的差值已知为“杆体积”并且其是如本领域所熟知的通过使用浮动活塞84来容纳的。端盖86密封压力管70的端部。
[0026] 参照图3,液压致动器组件90包括减震器30、低压蓄积器子系统92、一个或多个压力分配器子系统94、和分流器子系统100。
[0027] 低压蓄积器子系统92包括低压蓄积器110、第一止回阀112和第二止回阀114。第一止回阀112允许流体从低压蓄积器110流动至上工作腔78,但禁止流体从上工作腔78流动至低压蓄积器110。第二止回阀114允许流体从低压蓄积器110流动至下工作腔80,但禁止流体从下工作腔80流动至低压蓄积器110。低压蓄积器110被连接至一对急泄阀116、该一个或多个压力分配器子系统94和分流子系统100。
[0028] 在图3中展示的这两个压力分配子系统94包含回弹压力分配器子系统94(上压力分配器子系统)和压缩压力分配器子系统94(下压力分配器子系统)。每个压力分配器子系统94都包括一个受控限流件120。在回弹压力分配器子系统94中,受控限流件120位于上工作腔78与分流器子系统100之间并且在上工作腔78与低压蓄积器110之间。在压缩压力分配器子系统94中,受控限流件120位于下工作腔80与分流器子系统100之间并且在下工作腔80与低压蓄积器110之间。
[0029] 压力分配器子系统94在上工作腔78和/或下工作腔80中产生了所要求的压力。
[0030] 分流器子系统100包括130、液压转换阀132和一对止回阀134。分流器子系统100控制来自泵130的液压能量。泵130从低压蓄积器110接收流体。来自泵130的流体被指引至液压转换阀132。液压转换阀132可以根据需要来引导流体流动至上工作腔78和/或下工作腔80。液压转换阀132还可以用连续控制的方式在上工作腔78与下工作腔80之间划分流动。虽然液压转换阀132被展示为使用转换阀的符号,这并不旨在限制本披露。止回阀134禁止流体从上工作腔78和下工作腔80流动至分流器子系统100。
[0031] 如图3中所展示的,可液压调节的弹簧座组件56的流体腔室64与液压致动器组件90处于流体连通。这种连接允许了通过基于液压致动器组件90内的流体压力调整车身16关于前悬架14的高度来改变静态车辆高度并且补偿静态负载变化。
[0032] 当在减震器30中必须产生增加的静态(或准静态)推力时,液压致动器组件90将通过增加下工作腔80中的压力来传递这种力。这将通过具有将高压流体穿过液压转换阀132提供至下工作腔80的泵130来实现。当下工作腔80中的流体压力上升高于可液压调节的弹簧座组件56的流体腔室64中的静态压力时,可以打开控制阀140以允许流体流进入可液压调节的弹簧座组件56的流体腔室64。流体腔室64中的流体压力将向上推动外部壳体组件62以升高车辆车身16并且逐步地从液压致动器组件90接收对于车辆车身16的静态负载。限流件142限制离开液压致动器组件90的流体流量,从而保留液压致动器组件90中的压力水平。
[0033] 为了最终调整,在上工作腔78和下工作腔80中的流体压力都将升高,从而维持足够的压力以将可液压调节的弹簧座组件56移动至其新位置。当到达了可液压调节的弹簧座组件56的最终位置时,控制阀140将被关闭。
[0034] 当下工作腔80中的静态(或准静态)推力必须降低时,首先,将通过从泵130穿过液压转换阀132提供加压流体来增加上工作腔78中的流体压力。这将提供一个反作用力。下工作腔80中的压力将是低的,接近低压蓄积器110中的压力。可以打开控制阀140并且流体将从可液压调节的弹簧座组件56的流体腔室64流动到液压致动器组件90的低压侧中。限流件142将这种流动限制到不会扭曲液压致动器组件90的功能的水平。将逐步地减小由液压致动器组件90产生的反作用回弹力。控制阀140优选地是低流动的双向的通常关闭的液压阀
[0035] 本披露不限于可液压调节的下部弹簧座组件56。图4展示了支柱组件236。支柱组件236包括减震器30、线圈弹簧32、顶部安装组件38、车辆的簧载部分的一部分、以及作为车辆的非簧载部分的一部分的转向节40。以上关于支柱组件36涉及顶部安装组件38的讨论也应用于支柱组件236。支柱组件236与支柱组件36之间的区别在于,上部弹簧座46被替换成了上部弹簧座组件246并且下部弹簧座组件56被替换成了下部弹簧座256。
[0036] 上部弹簧座组件246是被附接到顶部安装组件38上的一个可液压调节的弹簧座组件。线圈弹簧32被布置在上部弹簧座组件246与下部弹簧座256之间。可液压调节的弹簧座组件246包含被附接到顶部安装组件38上的内部壳体组件260以及被附接到内部壳体组件260和线圈弹簧32两者上的外部壳体组件262。内部壳体组件260和外部壳体组件262限定了流体腔室64。当流体被添加至流体腔室64时,外部壳体组件262将沿内部壳体组件260向下移动,如图4中所展示的。这种运动将使车辆车身16相对于前悬架14升高。当从流体腔室64移除流体时,外部壳体组件262将沿内部壳体组件260向上移动,如图4中所展示的。这种运动将使车辆车身16相对于前悬架14降低。流体腔室64与减震器30处于流体连通,如上所述。
[0037] 与液压致动器组件90结合的可液压调整的弹簧座组件246的操作和功能与对于可调弹簧座组件56的上述讨论是相同的。图4表示了上部弹簧座而不是图2中所展示的下部弹簧座的调整。
[0038] 上述系统的优点包含:将静态负载调平和高度调节能力低成本地添加至主动悬架系统并且低成本地添加了低能耗的能力,并且提高了液压致动器组件90在长角中的滚转控制性能。
[0039] 以上对这些实施例的描述是出于展示和说明的目的提供的。并不旨在详尽或限制本披露。具体实施例的单独的要素或特征通常并不局限于该具体实施例,而是在适用时是可互换的、并且可以用在甚至并未明确示出或描述的选定实施例中。也可以用多种方式来对其加以变化。这样的变化不应视作是脱离本披露,并且所有这样的改动都旨在包含在本披露的范围之内。
QQ群二维码
意见反馈