首页 / 国际专利分类库 / 作业;运输 / 一般车辆 / 发动机自动起动动力源选择

发动机自动起动动源选择

申请号 CN201510031638.6 申请日 2015-01-22 公开(公告)号 CN104816720B 公开(公告)日 2017-12-26
申请人 通用汽车环球科技运作有限责任公司; 发明人 A.克里斯特曼; K.A.西梅;
摘要 一种车辆,包括 发动机 、 变速器 和电气系统。电气系统具有连接到发动机的 曲柄 轴的辅助起动器 马 达、连接到曲柄轴的高 电压 马达发 电机 单元(MGU)、和 控制器 。由处理器对指令的执行使得控制器响应于 请求 的发动机自动起动而确定一组动 力 传动系条件,例如高电压 能量 存储系统(HV‑ESS)的电量状态和/或功率限制、MGU的 扭矩 限制、和/或发动机的曲柄 角 度。控制器使用所述组动力传动系条件来确定请求的自动起动相对于时间或噪音标准而言是否可能不成功,并当请求的自动起动可能成功时将自动起动命令传递到MGU。当请求的自动起动将不成功时,控制器将自动起动命令传递到辅助起动器马达。
权利要求

1.一种车辆,包括:
发动机,具有曲柄轴;
变速器,具有可选择性地连接到所述曲柄轴的输入构件;和
电气系统,具有:
辅助起动器达,连接到曲柄轴;
电压电机,即HV电机,连接到曲柄轴;和
控制器,具有处理器和有形非瞬时性存储器,所述存储器上记录有用于选择辅助起动器马达和HV电机中的一个作为在请求的发动机自动起动过程中用于使用马达发电机单元来起动发动机的动源的指令,其中通过控制器执行所述指令使得控制器:
响应于请求的发动机自动起动,确定一组动力传动系条件,包括发动机的曲柄度;
使用所述组动力传动系条件,确定相对于时间或噪音标准而言,请求的自动起动是否将不成功;
当相对于时间或噪音标准而言请求的自动起动将成功时,将自动起动命令传递到HV电机;和
当相对于时间或噪音标准而言请求的自动起动将不成功时,将自动起动命令传递到辅助起动器马达。
2.如权利要求1所述的车辆,进一步包括带和一对带轮,其中HV电机是经由所述带和所述对带轮连接到曲柄轴的马达发电机单元。
3.如权利要求1所述的车辆,进一步包括电连接到HV电机的高电压能量存储系统,即HV-ESS,其中所述组动力传动系条件包括HV-ESS的电量状态。
4.如权利要求3所述的车辆,进一步包括功率逆变器模,即PIM,其中HV-ESS经由PIM电连接到HV电机。
5.如权利要求1所述的车辆,进一步包括电连接到HV电机的高电压能量存储系统,即HV-ESS,其中所述组动力传动系条件包括HV-ESS的功率限制。
6.如权利要求1所述的车辆,其中所述组动力传动系条件包括HV电机的扭矩限制。
7.如权利要求1所述的车辆,其中该车辆包括与变速器流体连通的液力蓄能器

说明书全文

发动机自动起动动源选择

技术领域

[0001] 本发明涉及发动机自动起动动力源选择。

背景技术

[0002] 在具有带式交流发电机起动机(BAS)系统的混合动力电动车辆中,高电压达发电机单元(MGU)经由带和带轮操作地连接到内燃发动机的曲柄轴。MGU从高电压电池获取功率。来自MGU的输出扭矩被用来曲柄转动并起动发动机。这样的功能(其通常在轻度(mild)混合动力传动系设计和完全混合动力传动系设计中提供)被称为发动机“自动起动”。由此,在怠速条件期间选择性地关闭发动机的能力称为发动机“自动停止”。在怠速时关闭并重新起动发动机的能力仅是混合动力电动动力传动系实现它们相对于传统动力传动系更优的燃料经济性的一个方式。

发明内容

[0003] 这里公开了一种混合动力车辆。所述车辆具有内燃发动机、变速器和电气系统。电气系统包括控制器、诸如马达发电机单元(MGU)的高电压电机、高电压能量存储系统(HV-ESS)、辅助起动器马达、和低电压辅助能量存储系统(LV-ESS)。如这里使用的,术语“高电压”表示大约30VDC或更高的电压平,而“低电压”表示车载辅助电压,典型地为12-15VDC。如本领域熟知的,在车辆上高电压电气部件的使用要求电压隔离设计特征,以确保在故障条件事件中车辆底盘不带电。由此,对于本公开的目的,任何要求这种电压隔离的电压源、总线、或电气部件可以被认为是高电压装置。类似地,任何不要求这种电压隔离的电压源、总线或电气部件可以被认为是辅助或低电压装置。
[0004] 在发动机自动起动事件之前,本发明的控制器确定是否使用辅助起动器马达或高电压电机作为用于曲柄转动或起动发动机的扭矩源。随着发展中的高电压电池和电机减小尺寸以便降低成本、质量和封装空间,一些发动机自动起动事件可能不令人满意,例如在持续时间和/或噪音/声振粗糙度方面。这样的结果可能是由于转动发动机所需要的高电压电池功率或可用马达扭矩不足够,或其可能是由于发动机以小于最优的曲柄度停止。例如,在自动停止事件之后,发动机可能停止在不希望的位置中,使得可用的马达扭矩或电池功率可能不足以克服自动起动事件的第一或第二压缩脉冲。
[0005] 不是等到高电压自动起动事件相对于时间和声振粗糙度标准而言不成功再以传统方式经由辅助起动器马达命令备用起动,这里描述的控制器编程为,如果各动力传动系值的评估指示高电压自动起动相对于特定标准可能超时或其他方面不成功(持续时间方面或噪音/声振粗糙度方面),则从一开始经由辅助起动器马达命令自动起动。因此,通常在加(throttle tip-in)时由驾驶员等待发动机重新起动而经历的输出扭矩延迟可以被最小化,因为控制器不首先试图经由高电压电机从事自动起动事件,等到该高电压自动起动事件超时,再默认成经由辅助起动器马达的自动起动。
[0006] 另外,对于在发动机自动起动时使用液力蓄能器来为变速器提供压力的混合动力传动系来说,至高电压自动起动完成失败时,来自蓄能器的液压力可被大大地耗用。在备用辅助自动起动期间,低电压备用辅助起动器马达可产生驱动系扰动。通过接合辅助起动器马达同时液压力保持在蓄能器中,该不希望的情况可大大地避免。
[0007] 在示例性实施例中,车辆包括发动机、变速器和电气系统,如上所述。变速器包括可选择性地连接到发动机的曲柄轴的输入构件。电气系统包括连接到曲柄轴的辅助起动器马达、连接到曲柄轴的高电压电机、和控制器。控制器包括处理器和有形非瞬时性存储器,所述存储器上记录有用于选择辅助起动器马达和高电压电机中的一个作为在请求的发动机自动起动过程中用于起动发动机的动力源的指令。
[0008] 通过控制器执行所述指令使得控制器响应于请求的发动机自动起动而确定一组动力传动系条件,并使用所述组动力传动系条件,确定请求的自动起动是否将不成功,例如相对于时间或噪音标准而言。当控制器已经确定相对于时间或噪音标准而言请求的自动起动将成功时,则控制器将自动起动命令传递到高电压电机。替换地,当相对于时间或噪音标准而言请求的自动起动将不成功时,替代地,控制器将自动起动命令传递到辅助起动器马达。
[0009] 还公开了用于车辆的控制器,该实施例中的车辆类似地具有发动机、辅助起动器马达和高电压电机,所述辅助起动器马达和高电压电机每个可操作为起动发动机。控制器包括处理器和有形非瞬时性存储器,所述存储器上记录有用于选择辅助起动器马达和高电压电机中的一个作为在请求的发动机自动起动过程中用于起动发动机的动力源的指令。通过控制器执行所述指令使得控制器响应于请求的发动机自动起动,确定一组动力传动系条件,并使用所述组动力传动系条件,确定相对于时间或噪音标准而言,请求的自动起动是否将不成功。所述指令的执行还使得控制器:当请求的自动起动相对于时间或噪音标准而言将成功时,将自动起动命令传递到高电压电机,以及当请求的自动起动相对于时间或噪音标准而言将不成功时,将自动起动命令传递到辅助起动器马达。
[0010] 在另一实施例中,车辆包括发动机、带、一对带轮、变速器、和电气系统。发动机包括曲柄轴,变速器包括可选择性地连接到所述曲柄轴的输入构件。该实施例中的电气系统包括连接到曲柄轴的辅助起动器马达、多相高电压能量存储系统(HV-ESS)、辅助功率模(APM)、和电连接到APM的一侧的辅助能量存储系统(LV-ESS)。同一电气系统还包括功率逆变器模块(PIM),其电连接到APM的另一侧;和高电压电机,其为经由带和所述对带轮连接到曲柄轴的马达发电机单元(MGU)的形式,并经由PIM电连接到HV-ESS。上述的控制器作为本示例性实施例的一部分被包括。
[0011] 控制器具有处理器和有形非瞬时性存储器,所述存储器上记录有用于选择辅助起动器马达和MGU中的一个作为在请求的发动机自动起动过程中用于起动发动机的动力源的指令,其中通过控制器执行所述指令使得控制器:响应于发动机的请求的自动起动,确定一组动力传动系条件,包括HV-ESS的电量状态、HV-ESS的功率限制、MGU的扭矩限制、和发动机的曲柄角度中的至少一个;使用所述组动力传动系条件,确定相对于时间或噪音标准而言,请求的自动起动是否将不成功;当相对于时间或噪音标准而言请求的自动起动将成功时,将自动起动命令传递到MGU;和当相对于时间或噪音标准而言请求的自动起动将不成功时,将自动起动命令传递到辅助起动器马达。
[0012] 所述组动力传动系条件包括HV-ESS的电量状态、HV-ESS的功率限制、MGU的扭矩限制、和发动机的曲柄角度。
[0013] 所述车辆进一步包括与变速器流体连通的液力蓄能器。
[0014] 本发明的上述特征和优势及其他特征和优势将从用于实施本发明的最佳模式的以下详细描述连同附图时显而易见。

附图说明

[0015] 图1是车辆的示意性图示,该车辆具有发动机、每个可操作用来重新起动发动机的辅助高电压马达发电机单元和起动器马达,以及控制器,该控制器具有本文中如前所述的发动机自动起动动力源选择功能;
[0016] 图2是描述了用于选择图1的车辆上的发动机自动起动动力源的示例性方法的流程图

具体实施方式

[0017] 参考附图,其中在各图中相似的附图标记代表相似的部件,图1中示意性显示了示例车辆10。车辆10包括混合动力传动系11,其进而包括内燃发动机(E)12和变速器(T)14。发动机12包括曲柄轴13,其操作地连接到变速器14的输入构件15。在一些实施例中,比如图1的示例性实施例中,输入离合器C1可以用来选择性地将发动机12从变速器14的输入构件15断开,例如以在起动发动机12时降低驱动系扰动。
[0018] 变速器14可包括传动布置和离合器(未示出),扭矩通过所述传动布置和离合器从变速器14的输入构件15流动到输出构件17,并最终到达车辆10的驱动轮18,图1中显示了其中两个驱动轮。驱动轮18可以是前驱动轮或后驱动轮。在四轮或全轮驱动模式中,第二对驱动轮(未示出)可以由混合动力传动系11提供动力,或附加的轮可以不被提供动力。
[0019] 如虚线中所示,车辆10可包括可选的液力蓄能器44,其根据需要提供流体压力(箭头F)到变速器14,比如当发动机12关闭时。当发动机12重新起动时,在瞬态时段上,液压蓄能器44可以递送流体压力到变速器14。发电机驱动的主(未示出)则可在发动机12运转时提供液压力到变速器14。其他实施例可预见支持辅助输送泵(未示出)的液力蓄能器44。
[0020] 在本发明的预期范围内,车辆10包括用于在自动起动事件期间起动发动机12的两个不同的动力源:高电压高电压(HV)电机16,例如马达发电机单元(MGU)或高电压马达,和辅助起动器马达(M)19。辅助起动器马达(M)19可操作地连接到曲柄轴13,例如通过齿轮系(未示出)。HV电机16同样连接到曲柄轴13,例如在示例性带式交流发电机起动机(BAS)系统中经由驱动带31和一组带轮33。HV电机16可以实施为多相AC永磁类型或感应类型的电机,其取决于设计而额定用于30-300VDC或更高,而辅助起动器马达19是传统12-15VDC的辅助马达装置。
[0021] 图1的车辆10还包括高电压能量存储系统(HV-ESS)26和辅助/低电压能量存储系统(LV-ESS)126。LV-ESS 126可经由辅助功率模块(APM)28,即本领域已知类型的DC-DC转换器或电压调节器,而连接到HV-ESSS26。APM 28可操作为将从HV-ESS 26经由高电压DC总线23递送的电压的幅值降低至辅助电压水平,典型地为12-15VDC,辅助电压经由低电压DC总线27而可用于LV-ESS 126。辅助起动器马达19经由相同低电压DC总线27连接到LV-ESS126。
[0022] 当配置为多相电马达或MGU时,HV电机16可经由高电压AC总线25连接到功率逆变器模块(PIM)30。PIM 30可包括半导体开关区块或芯片,比如MOSFET或IGBT,其可根据需要经由来自控制器(C)20或其他控制装置的命令而在PIM 30内被接通和切断,以将来自HV-ESS 26的DC电压转换为适用于为HV电机16供能的多相AC电压。
[0023] 仍参考图1,控制器20可以被配置为一个或多个数字计算机装置,其包括处理器22和有形非瞬时存储器24,例如非易失性的只读存储器(ROM),其形式为磁存储器,光学存储器,闪存等。控制器20还可包括足够量的随机访问存储器(RAM)、电可擦除可编程只读存储器(EEPROM)、缓冲器,以及高速时钟或振荡器、模拟-数字转换(A/D)和数字-模拟转换(D/A)电路、输入/输出电路和装置(I/O),以及适当的信号调制和缓冲电路。驻于控制器20或可通过控制器20访问的任何控制算法,包括实施如下所述的自动起动动力源选择方法100的指令,可以存储在存储器24中并经由处理器22执行,以提供希望的功能。
[0024] 控制器20与车辆10的各种部件通信。在一些实施例中,控制器20可以是发动机控制模块(ECM),其可操作为控制发动机12的所有功能。在其他实施例中,控制器20可以是限于执行方法100的分开的控制器。在所有实施例中,控制器20接收或获知自动起动请求(REQ),例如经由驾驶员压下具有传感器S40的加速踏板40,所述传感器测量加速器踏板40的行程或力。可能与传感器S42所测量的施加到制动踏板42的制动力(箭头BX)的不连续性相关的阈值力或行程,可指示自动起动请求(REQ)是激活的。
[0025] 作为方法100的一部分,图1的控制器20获知一组动力传动系条件50。在执行发动机12的自动起动之前,控制器20处理所述组动力传动系条件50并确定两个自动起动动力源(即,辅助起动器马达19或HV电机16)中的哪个用作曲柄转动并起动发动机12过程中的马达扭矩的动力源。因此,控制器20能够提前确定相对于持续时间或声振粗糙度(harshness)的标准来说高电压自动起动是否可能不成功,由此选择性地避免该类型的重新起动。控制器20经由自动起动控制信号(箭头AS12)到两个动力源中被选择的一个的传递而命令发动机12的自动起动,所述两个动力源即辅助起动器马达19或HV电机16。在做出该控制决定时控制器20可考虑的示例变量可包括,HV-ESS 26的电量状态(SOC)、HV-ESS 26的功率限制(PLIM)、HV电机16的扭矩限制(TLIM)、和/或发动机12的曲柄角度(A12)。
[0026] 如本领域已知的,曲柄角度(A12)表示曲柄轴13相对于发动机12的活塞孔腔的上死点(TDC)位置的角位置。曲柄角度(A12)可通过控制器20确定,例如通过读取附接到曲柄轴13的60-2齿轮,可能地结合有如本领域已知的读取凸轮触发器轮的凸轮角度传感器(未示出)。替换地,使用发动机12的预定设计参数和随时间跟踪变化的曲柄角度,曲柄角度可被计算和监测。给定公式I2=r2+x2-2rxcos(A12),曲柄角度A12可以容易地确定,其中I是发动机12中活塞销曲柄销之间的距离,r是曲柄半径,x是活塞销沿圆柱孔腔中心线从曲柄中心向上的位置。HV-ESS 26的SOC是HV-ESS26的可用容量,典型地表示为最大SOC的百分比。HV-ESS 26的功率限制(PLIM)表示从HV-ESS 26可获得的最大功率,其限定了HV-ESS 26的充电和放电限制。扭矩限制(TLIM)描述了,在给定了HV-ESS 26的各条件和HV-ESS 26与HV电机
16的已知额定范围的情况下,来自HV电机16的最大正和负扭矩输出。
[0027] 图2描述了用于选择图1的车辆10上的发动机自动起动动力源的示例性方法100。在初始化(*)之后,比如在自动停止事件之后,发动机12处于关闭状态时,在步骤102,图1的控制器20确定自动起动请求(图1的REQ)是否是激活的,比如通过将加速器踏板40的施加力或行程和/或致动踏板42的制动力或行程与校准阈值比较。当接收到自动起动请求时,方法
100进行至步骤104。
[0028] 步骤104需要经由控制器20确定图1的所述组动力传动系条件50。步骤104可包括,处理图1中所示的任何或全部示例条件,比如HV-ESS 26的SOC和功率限制、HV电机16的扭矩限制、和发动机12的曲柄角度A12。一旦所述组动力传动系条件50已经被确定,则控制器20进行至步骤106。
[0029] 在步骤106,图1的控制器20接下来作出决定:在请求的自动起动事件期间在起动发动机12时使用图1的辅助起动器马达19和HV电机16中的哪个。当所述组动力传动系条件50指示,经由HV电机16供能的自动起动可能不在校准的最大阈值时间内完成时,或在阈值内可完成,但在给定的一个或多个动力传动系条件50的水平下会低于噪声、振动和声振粗糙度的令人满意水平的情况完成,控制器20进行至步骤108。否则,方法100行进至步骤110。
[0030] 在步骤108,图1的控制器20将自动起动命令(图1的箭头AS12)传递到辅助起动器马达19。步骤108可还包括,响应于自动起动命令而激活辅助起动器马达19的控制螺线管(未示出),以经由图1的低电压DC总线27为辅助起动器马达19通电。发动机12由此经由辅助起动器马达19起动。一旦发动机12运转,则由方法100进行的车辆10的控制完成(**)。
[0031] 步骤110包括,将自动起动命令(图1的箭头AS12)传递到HV电机16。步骤110还可包括,响应于自动起动命令,激活图1中所示的PIM 30,以便经由图1的高电压AC总线25为HV电机16通电。发动机12由此经由HV电机16起动。方法100随后进行至步骤112。
[0032] 在步骤112,控制器20确定,在步骤110处命令的自动起动是否已经在校准的最大持续时间内完成。如果是,则方法100完成(**)。然而,如果经由HV电机16的自动起动在校准的最大持续时间内尚未完成,则方法100进行至步骤108并经由起动器马达19执行起动。
[0033] 尽管已经对执行本发明的较佳模式进行了详尽的描述,但是本领域技术人员可得知在所附的权利要求的范围内的用来实施本发明的许多替换设计和实施例。
QQ群二维码
意见反馈