轮机叶片翼梁帽盖和整流罩间形成结构连接的方法

申请号 CN201380050161.5 申请日 2013-09-26 公开(公告)号 CN104812557A 公开(公告)日 2015-07-29
申请人 叶片动力学有限公司; 发明人 P·T·海登; H·贝默;
摘要 一种在翼梁帽盖(14)与空 气动 力 整流罩(12)之间形成结构连接的方法。将包括未熟化的基体和可压缩的固体的复合物施加到翼梁帽盖与所述整流罩之间,然后压缩和熟化,以将整流罩粘合到翼梁帽盖上。熟化基体复合物具有至少20%的空穴体积。高空穴体积意味着,随着整流罩被压缩就位,并且压缩复合物,它具有能够在其中 变形 的空隙,从而不将过度的 应力 置于整流罩上,并且产生重量轻的连接。
权利要求

1. 一种在用于轮机叶片的翼梁帽盖和空气动整流罩之间形成结构连接的方法,该 方法包括如下步骤: 将复合物施加到所述翼梁帽盖与所述整流罩之间,所述复合物包括未熟化的基体和可 压缩的固体; 压缩所述可压缩的固体,从而所述复合物基本占据在所述翼梁帽盖与所述整流罩之间 的空隙; 使所述基体熟化,以将所述可压缩的固体保持在其压缩状态下,所述复合物具有至少 20 %的空穴体积;以及 随着所述基体被熟化,将所述整流罩粘合到所述翼梁帽盖上。
2. 如权利要求1所述的方法,其中,所述空穴体积是至少30%,优选地是至少40%,优 选地是至少50 %,优选地是至少60 %,优选地是至少70 %。
3. 如权利要求1或权利要求2所述的方法,其中,所述整流罩对于所述翼梁帽盖的粘合 由所述基体实现。
4. 如上述权利要求中的任一项所述的方法,其中,所述基体包括环树脂
5. 如权利要求1至4中的任一项所述的方法,其中,所述基体包括结构粘合剂
6. 如上述权利要求中的任一项所述的方法,还包括提供另外的粘合剂,其中,所述整流 罩对于所述翼梁帽盖的粘合至少部分地由所述另外的粘合剂实现。
7. 如上述权利要求中的任一项所述的方法,其中,所述基体是不起泡沫的。
8. 如上述权利要求中的任一项所述的方法,其中,所述可压缩的固体通过压缩而变形
9. 如权利要求8所述的方法,其中,当所述可压缩的固体在非压缩状态下时,所述可压 缩的固体比在所述翼梁帽盖与所述整流罩之间的空隙厚出近似20%。
10. 如权利要求8或9所述的方法,其中,所述可压缩的固体包括第一多孔层和第二多 孔层,该第一多孔层面对所述整流罩,该第二多孔层面对所述翼梁帽盖,所述第一多孔层和 第二多孔层由第三层分离,该第三层具有比第一和第二层更大的厚度和更低的密度
11. 如权利要求10所述的方法,其中,所述第一和第二层是编织纤维层。
12. 如权利要求10或权利要求11所述的方法,其中,所述第三层由一些纤维形成,这些 纤维编织或缝合在第一和第二层之间。
13. 如权利要求10所述的方法,其中,在将复合物施加到所述翼梁帽盖与所述整流罩 之间的步骤之前,用基体浸渍所述固体。
14. 如上述权利要求中的任一项所述的方法,其中,经浸渍的复合物在一对滚轮之间通 过,以除去基体的一部分。
15. 如上述权利要求中的任一项所述的方法,其中,所述叶片的长度是至少45米。
16. -种风轮机叶片,其包括: 翼梁,其具有至少一个翼梁帽盖; 整流罩,其定位在所述翼梁帽盖上方;以及 复合物,其基本填充在所述翼梁帽盖与所述整流罩之间的空隙, 其中,所述复合物包括经熟化的基体、受压缩的固体以及至少20%的空穴体积。
17. 如权利要求16所述的风轮机叶片,其中,所述空穴体积是至少30 %,更优选地是至 少 40%。
18. 如权利要求16或权利要求17所述的风轮机叶片,其中,所述可压缩的固体包括第 一多孔层和第二多孔层,该第一多孔层面对所述整流罩,该第二多孔层面对所述翼梁帽盖, 所述第一多孔层和第二多孔层由第三层分离,该第三层具有比第一和第二层更大的厚度和 更低的密度。
19. 如权利要求18所述的风轮机叶片,其中,第一和第二层是编织纤维层。
20. 如权利要求18或权利要求19所述的风轮机叶片,其中,所述第三层由一些纤维形 成,这些纤维编织或缝合在第一和第二层之间。
21. 如权利要求16至20中的任一项所述的风轮机叶片,其中,所述复合物布置成将所 述翼梁帽盖粘合到所述整流罩上。
22. 如权利要求16至21中的任一项所述的风轮机叶片,还包括另外的粘合剂,该另外 的粘合剂布置成至少部分地将所述翼梁帽盖粘合到所述整流罩上。
23. -种风轮机,其包括根据权利要求16至22中的任一项所述的风轮机叶片。

说明书全文

轮机叶片翼梁帽盖和整流罩间形成结构连接的方法

技术领域

[0001] 本发明涉及的是一种在翼梁与空气动整流罩之间形成结构连接的方法,具体地 说,本发明涉及的是一种在用于风轮机叶片的翼梁和空气动力整流罩之间形成结构连接的 方法。

背景技术

[0002] 现代的风轮机叶片典型地通过分离地制造结构梁或翼梁(该结构梁或翼梁沿叶 片的长度延伸)和两个半部壳体或空气动力整流罩(这两个半部壳体或空气动力整流罩连 结到翼梁上,以限定叶片的空气动力轮廓)而制成。
[0003] 在图1A-1C中示出了一种将整流罩连结到翼梁上的典型方法。在这种方法中,将 粘合剂2涂敷到翼梁4的上表面和下表面上,并且将整流罩6放置在粘合剂2上,以包围翼 梁4,如图IB所示。典型地,将在翼梁4的上表面和下表面与整流罩6之间存在的是具有在 5mm与50mm之间的厚度的空腔,并且粘合剂2填充这个空腔。整流罩6然后抵靠着翼梁4 被夹持,以挤压粘合剂2和将整流罩6粘合到翼梁4上。由于挤压粘合剂2所需的力很大, 所以整流罩6典型地保持在一些工具中,这些工具为了将每个整流罩6粘结到翼梁4上的 步骤而形成。
[0004] 然而,由于整流罩6靠着翼梁4而受压,所以粘合剂将压力施加到整流罩6的内表 面上。这会导致整流罩6以及用于在其中保持整流罩6的工具(未示出)的扭曲,导致扭 曲的空气动力表面8,如图IC所示。因而,工具必须具有足够的结构刚度,以防止这样的扭 曲。
[0005] 尽管以上工艺对于较小叶片是可接受的,但以上工艺当用来粘结较大叶片(如长 度为45米或更长的那些叶片)时,将会是极为昂贵的。这归因于建造工具的成本,该工具 需要大得足以容纳整流罩,需要刚硬得足以不扭曲,并且该工具需要能够被准确地提升和 封闭。
[0006] US 2009/0226702涉及一种粘合剂接合,这种粘合剂接合用来接合各种风轮机元 件。这个文件认识到关于在这些接合中使用的过多粘合剂的问题。具体地说,不可能的是, 在封闭结构中除去这种过多粘合剂。这样的过多粘合剂在使用中可能脱落,并且引起问题, 如堵塞排孔并且引起损坏冲击力。为了克服这个问题,这个文件提出提供一种多孔层,这 种多孔层超越粘合剂接合处延伸。一旦在多孔部件周围的接合区中的空隙充分地填充有粘 合剂,过多粘合剂就将挤压到在接合处外面的多孔层的部分中。它然后在使用期间保持在 这个多孔层内,并且解决松散粘合剂堆的问题。该文件没有解决整流罩和工具的有保证的 扭曲,这种有保证的扭曲由本发明解决。

发明内容

[0007] 根据本发明的第一方面,提供一种在用于风轮机叶片的翼梁帽盖和空气动力整流 罩之间形成结构连接的方法,这种方法包括如下步骤:将复合物施加到翼梁帽盖与整流罩 之间,复合物包括未熟化的基体和可压缩的固体;压缩可变形固体,从而使复合物基本占据 在翼梁帽盖与整流罩之间的空隙;使基体熟化,以将可压缩的固体保持在其压缩状态下,使 复合物具有至少30%的空穴体积;以及随着基体被熟化,将整流罩粘合到翼梁帽盖上。
[0008] 借助于这种布置,复合物将压力施加到整流罩的内表面以及翼梁帽盖上,该压力 足以保证粘结表面被良好地连接,但该压力足够低以防止整流罩在组装期间的扭曲。由复 合物施加的比较低的压力基本上是显著空穴体积的因素。这不仅意味着基体必须具有比较 低密度,而且容易地允许基体被压缩,因为有足够空隙,可变形材料可被压入到该足够空隙 中,而不对整流罩产生不适当的阻力。空穴体积也帮助减小接合的重量。
[0009] 至少20 %的空穴体积允许以上提出的低压力优点。然而,实际上,空穴体积可以显 著地更高,只要能够保持接合的结构完整性即可。较低空穴体积提供另外的重量优点。因 而,空穴体积可以优选地大于30 %,优选地大于40 %,优选地大于50 %,优选地大于60 %, 优选地大于70%。
[0010] 并且,在整流罩、翼梁或复合物中的不均匀性可以由可压缩的固体消除,因为它在 翼梁帽盖与整流罩之间的空隙中变形。例如,在介于整流罩与翼梁帽盖之间的空隙被局部 地减小的场合中,可压缩的固体将被压缩得更多,而不可压缩的传统粘合剂可能会使整流 罩扭曲。因而,可以形成完好的结构连接,而不会在整流罩上诱导出巨大的或不均匀的压 力。
[0011]另外,通过使基体熟化以将可压缩的固体保持在其可变形状态下,复合物可以提 供在整流罩与翼梁帽盖之间的结构连接,该结构连接阻止整流罩的纵向弯曲(buckling)。
[0012] 整流罩对于翼梁帽盖的粘合可以由基体实现。基体可以包括环树脂和/或结构 粘合剂。
[0013] 可选择地,可以提供另外的粘合剂,其中,整流罩对于翼梁帽盖的粘合至少部分地 由另外的粘合剂实现。这将增强在整流罩、复合物及翼梁帽盖之间的粘合。
[0014] 在一个优选实施例中,基体是不起泡沫的。这防止复合物的过大膨胀,这种过大膨 胀可能导致整流罩扭曲。
[0015] 可变形固体当在非压缩状态下时,优选地比空腔的最宽部分厚出近似20%。
[0016] 可以使用任何适当可压缩的固体,尽管优选地可压缩的固体包括第一多孔层和第 二多孔层,该第一多孔层面对整流罩,该第二多孔层面对翼梁帽盖,第一多孔层和第二多孔 层由第三层分离,该第三层具有比第一和第二层更大的厚度和更低的密度。
[0017] 因而,这个低密度层形成可压缩的固体的显著比例,并且其较低密度允许空穴体 积。第一和第二层(它们是多孔的)的比较高的密度,意味着,来自第三层的树脂或粘合剂 可通过第一和第二层,进入分别与整流罩和翼梁帽盖的接触中,提供分别与整流罩和翼梁 帽盖粘结的巨大表面面积。
[0018] 第一和第二层可以是任何材料的,如模制塑料丝网,该材料提供比较大的表面面 积,并且允许粘合剂通过。然而,它们优选地是纤维结构,该纤维结构可以是非织物类型的 毡状结构,但优选地是织物类型的。
[0019] 第三层可以是任何可压缩材料,该可压缩材料能够在上层和下层的非压缩状态 下支承所述上层和下层,并且该可压缩材料本身具有足够大的空穴空隙,从而在基体被涂 敷,并且复合物被压缩和熟化时,它能够提供所需的空穴体积。第三层在其非压缩状态下 并且在基体的涂敷之前优选地具有的空穴体积是至少30 %,更优选地是40%,最优选地是 50%。第三层可以例如是开孔泡沫,但优选地由纤维形成,这些纤维可被编织或缝合在第一 和第二层之间。对于这样一种结构,第三层的纤维大致垂直于第一和第二层,从而在使用 中,它们将桥接在翼梁与整流帽盖之间的间隙,由此一旦基体已经熟化,就提供对于翼梁的 良好支承。
[0020] 在三维织物已经放置在整流罩与翼梁帽盖之间之后,可以通过添加基体而形成复 合物。在一个优选实施例中,在将复合物施加到翼梁帽盖与整流罩之间的步骤之前,用基体 浸渍三维织物。这简化组装过程。施加基体的一种方式是使可压缩的固体通过浴槽(该浴 槽包含基体)。经浸渍的复合物然后通过一对滚轮,在这对滚轮之间的空隙可被调整,以将 复合物挤压到较大或较小程度,由此根据需要而不同程度地除去基体,以在完成产品中实 现所需的空穴体积。
[0021] 该方法适于生产任何长度的风轮机叶片。在一个优选实施例中,叶片的长度是至 少45米。
[0022] 根据本发明的第二方面,提供一种风轮机叶片,这种风轮机叶片包括翼梁、整流罩 以及复合物,该翼梁具有至少一个翼梁帽盖,该整流罩定位在翼梁帽盖上方,该复合物基本 填充在翼梁帽盖与整流罩之间的空隙,其中,复合物包括经熟化的基体、受压缩的固体以及 至少20 %的空穴体积。
[0023] 复合物可以布置成用以将翼梁帽盖粘合到整流罩上。这减少所需的组装步骤。可 选择地,叶片还包括另外的粘合剂,该另外的粘合剂布置成,至少部分地将翼梁帽盖粘合到 整流罩上。这补充由复合物提供的任何粘合,或者在那些复合物基本上不提供粘合的情况 下,提供粘合。附图说明
[0024] 现在参照附图,以仅为示例的方式描述本发明的优选实施例,在这些附图中:
[0025] 图IA至IC是使用常规方法连接的风轮机叶片的整流罩和翼梁的示意图;
[0026] 图2是根据本发明的风轮机叶片的立体图;
[0027] 图3是通过图2的线3-3的示意部分截面图,示出了在整流罩与翼梁之间的结构 连接;
[0028] 图4是供图2的叶片使用的可变形固体的示意立体图;而
[0029] 图5是在整流罩与翼梁之间的第一可选择结构连接的示意部分截面图,示出了在 变形状态下的可变形固体。

具体实施方式

[0030] 参照图2,风轮机叶片10具有空气动力整流罩12,该空气动力整流罩12包围结构 翼梁14并且连结到其上,该结构翼梁14沿叶片10的长度延伸。空气动力整流罩12是半 刚性结构,如GFRP,该GFRP包括:玻璃纤维,例如PPG Hybon® 2002 ;和环氧树脂的支承 基体,例如 Dow Airstone® 780。
[0031] 如图3所示,整流罩12定位在翼梁14上方,从而空腔16限定在整流罩12与翼梁 帽盖18之间、在翼梁14的上表面处。复合物20布置在整流罩12与翼梁帽盖18之间,并且 基本填充空腔16。复合物20包括:三维编织玻璃纤维织物,如Parabeam® PG18 ;和环 氧树脂的已熟化支承基体,如Dow Airstone® 780,该环氧树脂的已熟化支承基体既粘结 到整流罩12上又粘结到翼梁帽盖18上,以在整流罩12与翼梁14之间形成结构连接。"结 构连接"意味着,复合物20所形成的连接具有足够的抗剪强度、抗压强度、粘合和压缩刚度, 从而整流罩12在使用期间保持连结到翼梁14上,并且在使用期间不会由在叶片10上形成 的力而引起纵向弯曲。
[0032] 参照图4,三维织物22包括大致相平行的两个纤维表面薄片24, 一些弹性连接纤 维26在这两个纤维表面薄片24之间延伸,这些弹性连接纤维26编织到各表面薄片24中。 纤维26布置成,在第一和第二薄片之间提供非常高的空穴空隙(在这种情况下,94-97% )。 所述空穴空隙的值,是由在各薄片24之间的空气所占据的在各薄片24之间的总体积,以百 分比表示的量值。空隙被纤维完全地填充时,表示空穴体积为0%,而没有任何纤维时,表示 空穴体积为100%。后者是在施加树脂之前,在未压缩的织物中的空穴空隙的量值。
[0033] 为了形成结构连接,用未熟化的环氧树脂23对三维织物22的层(该层比空腔16 厚)进行预浸渍。这通过使得织物通过未熟化树脂的浴槽和然后使经涂敷的织物通过一对 滚轮而完成。这允许调整在各滚轮之间的间隙,以实现为给出在完工物品中的所需空穴空 隙所期望的所需树脂量。树脂将粘着到纤维上(如图4所示,图4仅示出了三根这样的已 涂敷纤维-剩余的那些纤维将在实际中被涂敷),但没有填充在各薄片24之间的空隙。各 薄片24的密度被设计成使得:在各薄片24中在各纤维之间的空隙的大部分(如果不是全 部的话)由树脂填充,以便保证对于翼梁14和整流罩12两者的良好接触表面。
[0034] 将复合物放置在翼梁14的翼梁帽盖18上。在这个例子中,织物22的层比空腔16 的最宽点厚出近似20%。然后将整流罩12放置在复合物20上方,以形成空腔16,并且由 组装夹具(未示出)保持就位,直到树脂已经熟化而形成结构连接。
[0035] 由于织物22的连接纤维26是可变形的,所以未熟化复合物20的作用像床垫一 样,并且可以比作弹性基础。因而,复合物20在整流罩12与翼梁帽盖18之间被压缩,从而 它具有空腔16的形状。当被压缩时,复合物20的织物22将均匀的压力施加到整流罩12的 内侧,该均匀的压力足以保证粘结表面被良好地连接,但不会过于大而使得整流罩12的空 气动力表面被扭曲。以这种方式,形成结构连接,而不需要施加巨大外部力而挤压粘合剂, 也不需要冒损坏工具和整流罩12的危险。
[0036] 一旦树脂已经熟化,硬化的复合物20就将会在翼梁14与整流罩12之间形成足够 的结构连接。换句话说,织物22和树脂的结构性质应该选择成,对于给定安装而言,经熟化 的复合物20具有足够的抗剪强度、抗压强度以及压缩刚度特性。以这种方式,整流罩12将 保持连结到翼梁帽盖18上,并且可以抵抗纵向弯曲,该纵向弯曲否则可能在叶片10的使用 期间生成。
[0037] 为了在完工物品中提供所需的可变形性和抗压强度,复合物在其压缩和熟化状态 下应该具有至少30%的空穴体积。在这个例子中,空穴空隙是80%。经熟化、压缩的材料 优选地具有160-300km/m 3的密度。这使得有充分的空隙用于使织物在受压缩时变形,如上 文述及的那样。应该注意,空穴体积是复合材料的空穴体积。只包含纤维而不包含基体材 料的材料的任何区是单相材料,而不是复合物。因而,当确定空穴体积时,排除任何这样的 区。因而,例如,US 2009/0226702具有:某些区,这些区具有0%的空穴体积,在该处存在粘 合剂;以及其它区,在这些其它区只存在有多孔层,这些其它区不代表复合物的部分。
[0038] 为了允许整流罩12连接到结构翼梁14上而没有任何显著变形,在整流罩12的刚 度与复合物20在其未熟化状态下的刚度之间的关系应该在如下区中:
[0040]其中:
[0041] &是复合物20在其未熟化状态下的基础刚度,在这种情况下与织物22的刚度相 对应,作为每单位厚度的弹性模量(Pa/M)而测量,并且定义为基础材料的弹性模量与基础 材料的总厚度的商;并且
[0042] 心是整流罩12的弯曲刚度,按压力单位(Pa)而测量,并且定义为整流罩12的构 成元素的弹性模量与面积惯性矩的乘积。弯曲刚度也可被视为是在施加负载下结构对于弯 曲的抵抗力。
[0043] 参照图5,可以将传统结构粘合剂28 (如常规地填充的环氧树脂粘合剂)施加到三 维织物22上,以帮助整流罩12对于翼梁14的粘结。
[0044] 尽管翼梁已经描述成包括翼梁帽盖,但它可以是简单的梁,例如箱形截面梁。
[0045] 作为由上部和下部壳体形成这种方式的取代,空气动力整流罩可以由任何数量的 壳体形成。
[0046] 尽管可变形固体在第一实施例中已经描述成三维织物,但可以使用任何适当的弹 性的并且可压缩的材料。
[0047] 另外,尽管复合物已经描述成具有树脂基体的三维织物,但基体可以是结构粘合 剂。
[0048] 三维织物的未压缩厚度,依据织物的可压缩特性,可以比在整流罩与翼梁之间的 空腔的厚度厚大于或小于20%。
[0049] 尽管三维织物已经描述成预浸渍有树脂,但可以在现场将树脂添加到织物中,例 如在整流罩和翼梁由组装夹具保持就位的同时,通过注入到在整流罩与翼梁之间的空腔 中。
[0050] 可在将整流罩放置在翼梁帽盖上之前,将复合物放置在翼梁上,而不是放置在翼 梁帽盖上。
QQ群二维码
意见反馈