纤维增强复合材料的改进或与纤维增强复合材料有关的改进

申请号 CN201280063411.4 申请日 2012-12-21 公开(公告)号 CN104105747A 公开(公告)日 2014-10-15
申请人 赫克赛尔控股有限责任公司; 发明人 W.波因特; T.甘格尔伯格;
摘要 基于 反应性 环 氧 树脂 的 预浸料 和预浸 料堆 叠体,该反应性 环氧树脂 可以在较低的外部施加 温度 如70℃至110℃采用可接受的短的循环时间来 固化 ,该预浸料和预浸料堆叠体包含环氧当量为200至500的环氧树脂,该环氧树脂含有固化剂,但不含硬化剂。
权利要求

1.一种包含纤维增强材料与环树脂的混合物的预浸料,所述预浸料含有以重量计
20%至85%的EEW为150至1500的环氧树脂,所述树脂可以通过70℃至110℃的外部施加温度固化
2.一种预浸料堆叠体,其含有EEW为150至1500的环氧树脂,所述树脂可以通过70℃至110℃的外部施加温度固化,所述预浸料堆叠体含有至少2个或更多个预浸料层,通常40个、60个或者更多个预浸料层。
3.根据权利要求1或2所述的预浸料或者预浸料堆叠体,其中所述环氧树脂含有0.5至10wt%的固化剂。
4.根据前述权利要求中任一项所述的预浸料或者预浸料堆叠体,其中所述环氧树脂在常规硬化剂如双氰胺不存在的情况下固化。
5.根据权利要求1或2所述的预浸料或者堆叠体,其中所述树脂含有0.5至5wt%的脲固化剂,并且所述树脂在双氰胺硬化剂不存在的情况下固化。
6.根据前述权利要求中任一项所述的预浸料或者预浸料堆叠体,其可以在少于10小时,特别是少于8小时固化。
7.根据权利要求2至6中任一项所述的预浸料堆叠体,其厚度为2mm至100mm。
8.根据权利要求3至7中任一项所述的预浸料或者预浸料堆叠体,其中所述固化剂是基于脲的。
9.根据前述权利要求中任一项所述的预浸料或者预浸料堆叠体,其包含20至85wt%的环氧树脂和80至15wt%的纤维。
10.一种可固化的预浸料堆叠体,所述预浸料包含浸渍有环氧树脂的结构纤维层,所述环氧树脂具有150至1500的EEW并且可以在70℃至110℃的温度固化。
11.根据权利要求10的堆叠体,其厚度为2mm至100mm。
12.一种层压件,其包含根据前述权利要求中任一项所述的预浸料或者预浸料堆叠体。
13.根据权利要求1至11中任一项所述的预浸料或者预浸料堆叠体在制备涡轮机结构件中的用途。
14.一种固化在根据前述权利要求中任一项所述的预浸料或者预浸料堆叠体内的环氧树脂的方法,所述方法包括在低于3.0巴绝压的压力,将所述预浸料或者预浸料堆叠体暴露至70℃至110℃的外部施加温度最高达8小时,所述树脂含有0.5至10wt%的固化剂并且不含潜在性硬化剂。
15.根据权利要求14所述的方法,其中所述树脂不含双氰胺。
16.根据权利要求14或者15所述的方法,其中所述环氧树脂的EEW为200至500。
17.一种用于制备风力涡轮机结构件的方法,其包括:于真空袋内提供预浸料或预浸料堆叠体,所述预浸料或预浸料堆叠体包含纤维增强材料与20%至85wt%的环氧树脂的混合物,该环氧树脂具有150至1500的EEW,含有0.5至10wt%的基于脲的固化剂并且不含双氰胺;将所述真空袋放置于模具内;并在放置于所述模具中之前或之后在所述袋内产生真空;以及通过应用70℃至110℃的外部施加温度4至8小时的时间段,使所述环氧树脂固化。
18.一种包含环氧树脂的树脂基体,其含有EEW为150至1500的以重量计20%至85%的环氧树脂,所述树脂可以通过70℃至110℃,优选地70℃至90℃的外部施加温度固化,所述树脂含有0.5至5wt%的脲固化剂优选双脲固化剂,所述树脂可以在双氰胺硬化剂不存在的情况下固化。
19.一种风力涡轮机叶片或者组件,其由如权利要求18中限定的树脂基体与纤维增强材料相结合而制备。

说明书全文

纤维增强复合材料的改进或与纤维增强复合材料有关的改

[0001] 本发明涉及通过在模具中叠铺可固化结构件的层的堆叠体并且使所述结构件堆叠体固化来制备层状结构件。本发明特别地涉及由浸渍有可固化树脂如环树脂的纤维来制备基于树脂的纤维增强结构件。这样的可固化结构件的层(其中树脂是未固化的)有时称为预浸料。在一个实施方式中,本发明涉及涡轮机结构件的制备,例如涡轮机叶片的壳体以及支撑叶片的横梁(spars)的制备。
[0002] 因此,本发明涉及纤维增强材料,特别是涉及包含纤维和热固性树脂的预浸料,该预浸料可以堆叠成预制件(preform)并随后固化成增强的复合材料。这样的复合材料是已知的,它们重量轻,具有高强度并且用于许多结构应用中,如用于汽车和航空航天工业以及用于工业应用,如风力涡轮机组件,像用于制造叶片的横梁和壳体。
[0003] 预浸料是用来描述浸渍有处于未固化状态的树脂或者与处于未固化状态的树脂相结合,并准备好固化的纤维和织物的术语。所述纤维可以以丝束或织物的形式,丝束通常包含多根细纤维。预浸料中采用的纤维材料和树脂将取决于经固化的纤维增强材料的所需性能,并还取决于经固化的层压件要放置到的应用。本文中纤维材料被描述为结构纤维。树脂可以以各种方式与纤维或织物结合。树脂可被粘至纤维材料的表面。树脂可以部分或完全地浸渍纤维材料。树脂可以浸渍纤维材料,以便提供用于在预浸料材料的加工期间促进空气或气体的去除的路径。
[0004] 各种方法已被提议用于制备预浸料,优选的方法之一是用液态、熔融或半固态的未固化热固性树脂来浸渍移动的纤维幅面。由该方法制备的预浸料可以然后切割成所期望长度的节段,将一叠节段通过加热来固化,以制备最终的纤维增强层压件。固化可以在真空袋中进行,真空袋可以放置在用于固化的模具中,如在风能结构件如叶片的壳体和横梁的制备中优选的那样。供选择地,堆叠体可以直接在模具中形成并固化。
[0005] 在这样的应用中使用的树脂中一个优选的族是可固化的环氧树脂,并且固化剂和固化剂的促进剂通常包含在树脂中,以缩短固化循环时间。然而,虽然环氧树脂是非常适合的树脂,但是它们在固化后可能是脆的,导致最终层压件一经冲击就破裂或断裂,因此,惯常的做法是在环氧树脂中包含增韧材料,如热塑性材料或橡胶
[0006] 为使预浸料和预浸料堆叠体固化所采用的固化循环时间是顾及树脂的反应性以及所采用的树脂和纤维的量的温度与时间的平衡。从经济观点出发,有利的是,循环时间尽可能短并因此通常将固化剂和促进剂包含于环氧树脂中。不仅需要热量来引发树脂的固化,而且固化反应本身可以是高度放热的,这在时间/温度循环时间中,特别是用于使大且厚的预浸料堆叠体固化的时间/温度固化循环时间中是需要考虑到的,因为采用大量环氧树脂并且由于树脂固化反应的放热量而在堆叠体内产生高温的工业应用的层压件制备更加是这种情况。因此过高温度可能损伤模具增强件或者导致树脂的一些分解,所以要避免过高温度。过高温度还可以导致失去对树脂固化的控制,造成失控固化。
[0007] 当要固化的是包含许多层预浸料的厚的节段时,正如在用于重工业应用的纤维增强层压件的制备中,如在风力涡轮机结构件,特别是风力涡轮机的横梁和壳体(叶片由其组装而成)的制备中变得更加普遍的那样,过高温度的产生可以是更严重的问题。为了补偿固化期间所产生的热量,在固化循环期间采用停留时间已是必要的,其中将模制在恒定温度保持一段时间以控制模制温度,并将其冷却以防止过热,这使循环时间增加至不利地长的几小时的循环时间,在某些情况下大于8小时的循环时间。
[0008] 例如基于环氧树脂的预浸料的厚堆叠体,如60个或更多个层,可需要几小时的高于100℃的固化温度。然而,该固化可具有150焦每克环氧树脂或更多的反应,该反应焓使得需要在低于100℃的固化循环期间的停留时间,以避免树脂的过热和分解。此外,在停留时间之后,有必要进一步加热该堆叠体至高于100℃(例如高于125℃),以完成树脂的固化。这导致不利地长的且不经济的固化循环。另外,所产生的高温可以对模具或袋的材料造成损伤,或者需要使用特殊且昂贵的材料用于模具或袋。
[0009] 除了这些问题外,还期望由这样的预浸料制备层状结构件,该预浸料中经固化的树脂具有高的玻璃转化温度(Tg),例如高于80℃,从而通过增强它们对在高温和/或高湿度暴露延长时间段(这可造成Tg不利的降低)的抵抗力来延长该结构件的有用性。对于风能结构件,高于90℃的Tg是优选的。Tg的升高可以通过使用反应性更高的树脂来实现。然而,树脂反应性越高,在硬化剂和促进剂存在下的树脂固化期间所释放的热量就越多,这加剧了如上所述的随之而来的问题。
[0010] PCT出版物WO2011/073111涉及提供一种尤其是可快速固化而没有损伤性的放热经历的预浸料。WO2011/073111提供的解决方案是采用含有能够自由基聚合的不饱和单体并且还含有可固化官能度如环氧基的树脂。该化学过程是复杂且昂贵的,并且另外还需要树脂体系中存在过氧化物引发剂,以在树脂固化期间聚合不饱和单体。
[0011] 本发明旨在克服前述问题和/或一般地提供改进。
[0012] 根据本发明,提供了如所附权利要求中的任一项中所限定的预浸料、堆叠体、层压件、应用、方法、树脂基体和风力涡轮机叶片或组分。
[0013] 环氧树脂的反应性是由其环氧当量(EEW)表示的,EEW越低,反应性就越高。环氧当量可以如下计算:(环氧树脂分子量)/(每分子环氧基团的数量)。另一种方式是用可如下定义的环氧值计算:环氧值=100/环氧当量。计算每分子环氧基团的数量:(环氧值x分子量)/100。计算分子量:(100x每分子环氧基团的数量)/环氧值。计算分子量:环氧当量x每分子环氧基团的数量。本发明特别地涉及提供一种可基于反应性环氧树脂的预浸料,该反应性环氧树脂可以用可接受的模制循环时间在低温固化。
[0014] 本发明因此提供一种包含纤维增强材料与环氧树脂的混合物的预浸料,该预浸料含有以重量计20%至85%的EEW为150至1500的环氧树脂,所述树脂可用70℃至110℃的外部施加温度来固化。
[0015] 因此,本发明的一个实施方式中提供一种包含纤维增强材料与环氧树脂的混合物的预浸料,该预浸料含有以重量计20%至85%的EEW为150至1500的环氧树脂,所述树脂可用70℃至110℃的外部施加温度来固化,其中该树脂含有0.5至5wt%的脲固化剂,并且该树脂是在基于双氰胺的硬化剂不存在的情况下固化的。
[0016] 我们已发现预浸料及其环氧树脂基体具有减少的固化时间,而提供了好的机械性能、所期望的Tg(玻璃化转变温度)和与预浸料的纤维增强材料相结合的好的机械性能。
[0017] 本发明进一步提供含有EEW为150至1500,优选为200至500的环氧树脂的预浸料堆叠体,该树脂可以用70℃至110℃的外部施加温度来固化,所述预浸料堆叠体含有40个或更多个的预浸料层,通常60层或更多层,该堆叠体的厚度为至少35mm。
[0018] 本发明进一步提供这样的预浸料和预浸料堆叠体,其可以用少于10小时,特别地小于8小时固化。在一个优选的实施方式,固化树脂的动态焓为150焦耳每克环氧树脂或者更低。
[0019] 我们已发现这样的预浸料和预浸料堆叠体可以采用常规可获得的环氧树脂来获得,条件是该环氧树脂是在惯用的硬化剂如双氰胺不存在的情况下固化的,并且特别地,我们已发现这些所期望的预浸料可以在硬化剂如双氰胺不存在的情况下,通过使用基于脲的固化剂来获得。应当使用的固化剂与环氧树脂的相对含量将取决于树脂的反应性和预浸料中的纤维增强材料的性质和数量。一般地使用以环氧树脂重量计0.5至10wt%的基于脲的固化剂。
[0020] 本发明的预浸料通常在与它们被制备的位置不同的位置处使用,并且它们因此需要可操作性(handleability)。因此优选的是它们是干的或者尽可能地干的并且具有低的表面粘性。因此优选地使用高粘度的树脂。这也具有的益处是,纤维层的浸渍慢,允许空气逃出并使空隙的形成减至最低限度。
[0021] 为了制备具有基本上均匀的机械性能的最终层压件,重要的是,将结构纤维和环氧树脂混合来提供基本上均质的预浸料。这需要结构纤维在预浸料内的均匀分布,以提供基本上连续的围绕纤维的树脂基体。因此重要的是,在施用至纤维期间,使树脂内的气泡包封减至最低限度。因此优选地使用高粘度的树脂。预浸料应当含有低平的空隙,和因此优选的是每个预浸料和所述预浸料堆叠体的吸水率值小于25%,更优选地小于15%,更优选地小于9%,最优选地小于3%。吸水率测试确定了防水程度或预浸料的浸渍程度。为了该目的,预浸料材料的样品最初地称重并以这样的方式在两个板之间夹紧,以便5mm宽的样品条突出来。将这样的组合体在纤维方向上在室温(21℃)于水浴中悬浮5分钟。去除所述板之后,再次称重样品。将该重量差异用作浸渍程度的测量值。吸入的水量越少,防水或浸渍的程度就越高。
[0022] 预期是将本发明的预浸料与其它复合材料(如根据本发明的其它预浸料或者其他预浸料)叠铺,以制备预浸料堆叠体,其可以固化以制备纤维增强层压件。
[0023] 预浸料通常是制备成一卷预浸料,并且鉴于这样材料的粘性性质,通常提供背衬片,以使该卷能够在使用点处展开。因此,优选地,根据本发明的预浸料在外面上包含背衬片。
[0024] 环氧树脂具有用150至1500的EEW表示的高反应性,优选地具有例如200至500的EEW的高反应性,并且该树脂组合物包含树脂和促进剂或固化剂。适合的环氧树脂可包含选自单官能、双官能、三官能和/或四官能环氧树脂的两种或多种环氧树脂的共混物。
[0025] 适合的双官能环氧树脂,举例来说,包括基于以下的那些:双酚F的二缩水甘油基醚、双酚A(任选溴化的)的二缩水甘油基醚;苯酚和甲酚环氧线性酚清漆;酚醛加合物的缩水甘油基醚;脂族二醇的缩水甘油基醚;二缩水甘油基醚;二甘醇二缩水甘油基醚;芳族环氧树脂;脂族多缩水甘油基醚;环氧化烯;溴化树脂;芳族缩水甘油基胺;杂环的缩水甘油基亚胺(imidines)和酰胺;缩水甘油基醚;氟化环氧树脂;缩水甘油基酯或其任意组合。双官能环氧树脂可以选自双酚F的二缩水甘油基醚、双酚A的二缩水甘油基醚、二缩水甘油基二羟基、或其任意组合。
[0026] 举例来说,适合的三官能环氧树脂可包括基于以下的这些:苯酚和甲酚环氧线性酚醛清漆、酚醛加合物的缩水甘油基醚、芳族环氧树脂、脂族三缩水甘油基醚、二脂族三缩水甘油基醚、脂族多缩水甘油基胺、杂环的缩水甘油基亚胺和酰胺、缩水甘油基醚、氟化环氧树脂、或其任意组合。适合的三官能环氧树脂可得自Huntsman Advanced Materials(Monthey,瑞士),其商品名为MY0500和MY0510(三缩水甘油基对-基酚)以及MY0600和MY0610(三缩水甘油基间-氨基酚)。三缩水甘油基间-氨基酚也可得自Sumitomo Chemical Co.(Osaka,Japan),其商品名为ELM-120。
[0027] 适合的四官能环氧树脂包括N,N,N',N'-四缩水甘油基-间-二甲苯二胺(可商购自Mitsubishi Gas Chemical Company,名称为Tetrad-X,并且作为Erisys GA-240可得自CVC Chemicals)、和Ν,Ν,Ν',Ν'-四缩水甘油基亚甲基二苯胺(例如得自Huntsman Advanced Materials的MY0720和MY721)。其它适合的多官能环氧树脂包括DEN438(得自Dow Chemicals,Midland,Ml)、DEN439(得自Dow Chemicals)、Araldite ECN1273(得自Huntsman Advanced Materials)、和Araldite ECN1299( 得 自 Huntsman Advanced Materials)。
[0028] 环氧树脂组合物还包含一种或多种基于脲的固化剂,并且优选的是,使用的固化剂以环氧树脂重量计为0.5至10wt%,更优选为1至8wt%,更优选为2至8wt%,更优选为0.5至5wt%,更优选为0.5至4wt%(包含端点),或者最优选为1.3至4wt%(包含端点)。
[0029] 脲固化剂可以包括双脲固化剂,如2,4甲苯双(二甲基脲)或者2,6甲苯双(二甲基脲)和/或前述固化剂的组合。基于脲的固化剂也可以被称为“urones”。
[0030] 其它适合的基于脲的固化剂可包括:
[0031]
[0032] 4,4-亚甲基二亚苯基双(N,N-二甲基脲)
[0033]
[0034] 1,1-二甲基,3-(4-氯苯基)脲
[0035]
[0036] 1,1-二甲基,3-(3,4-二氯苯基)脲
[0037]
[0038] 异佛尔双(二甲基脲)
[0039]
[0040] 1,1-二甲基,3-苯基脲
[0041]
[0042] 1,1-二甲基,3-(4-乙氧基苯基)脲
[0043]
[0044] 1,1-(4-亚苯基)-双(3,3-二甲基)脲
[0045]
[0046] 1,1-二甲基,3-(2-羟基苯基)脲
[0047]
[0048] 1,1-二甲基,3-(3-氯-4-甲基苯基)脲
[0049]
[0050] N-苯基脲
[0051]
[0052] N,N-二甲基脲
[0053]
[0054] 伏草隆(Fluomethuron)
[0055] 优选的基于脲的材料为在商业名称 Alzchem的商标下可获得的材料系列,脲衍生物,其包括双脲如UR500和UR505。
[0056] 本发明的预浸料或者预浸料堆叠体中采用的结构纤维可以是丝束或者织物,并且可以以无规的、编织的、非织造的、多轴的形式或者任意其它适合图案形式。对于结构应用,通常优选的是,纤维在取向上是单向的。当使用单向纤维层时,纤维的取向可以在整个预浸料堆叠体中变化。然而,这仅仅是单向纤维层堆叠体的许多可能取向的一种。例如,在所谓的0/90排列(表示相邻纤维层之间的度)中,相邻的层中的单向纤维可为彼此正交排列。在许多其它排列之中,其它排列例如0/+45/-45/90当然是可能的。
[0057] 结构纤维可以包括断裂的(即拉断的),选择性不连续或连续纤维。结构纤维可由各种各样的材料制成,如石墨、玻璃、金属化聚合物、芳族聚酰胺及其混合物。玻璃和碳纤维是优选的,碳纤维是优选地用于长度大于40米如50至60米的风力涡轮机的壳体。结构纤维,可以是由多根单纤维组成的单个丝束并且它们可以是织造或非织造织物。根据最终层压件中所需要的性能,纤维可以使单向、双向或多个方向的。通常纤维将具有直径为
3至20μm,优选为5至12μm的圆形或者几乎圆形的横截面。不同的纤维可以用于不同的用来制备经固化层压件的预浸料。
[0058] 示例性的单向结构纤维的层是由 碳纤维制成的,其可获得自Hexcel Corporation。适合用于制备单向纤维层的 碳纤维包括:IM7碳纤维,其可以作为含有6,000根或者12,000根单丝并且分别重量为0.223g/m和0.446g/m的纤维来获得;IM8-IM10碳纤维,其可以作为含有12,000根单丝并且重量为0.446g/m至0.324g/m的纤维来获得;以及AS7碳纤维,其可以以含有12,000根单丝并且重量为0.800g/m的纤维来获得。
[0059] 预浸料的结构纤维将基本上用环氧树脂浸渍,树脂含量为总预浸料重量的20至85wt%的预浸料是优选的。本发明的预浸料主要由树脂和结构纤维组成。
[0060] 本发明的预浸料堆叠体可以含有多于40层,通常多于60层,并且有时多于80层。一般地,堆叠体将具有35至100mm的厚度。
[0061] 环氧树脂一旦固化就可变脆,增韧材料可以包括在树脂中以给予耐用度,虽然它们可能造成树脂粘度的不利的增加。增韧材料可以作为单独层如薄纱来供应。
[0062] 附加的增韧材料是聚合物,其在室温和在使树脂固化的升高温度应当不溶于基体环氧树脂。取决于热塑性聚合物的熔点,其可以在使树脂于升高温度固化期间熔融或软化至不同程度并且当经固化的层压件冷却时重新凝固。适合的热塑性材料应当不溶解于树脂,并包括热塑性材料如聚酰胺(PAS)、聚醚砜(PES)和聚醚酰亚胺(PEI)。优选的是聚酰胺,如尼龙6(PA6)、尼龙11(PA11)或者尼龙12(PA12),和/或其混合物。
[0063] 在本发明的一个实施方式中,提供了一种包含树脂体系的预浸料,该树脂体系包含以重量计含有EEW为150至1500的环氧树脂和0.5至10wt%的固化剂,该树脂体系包括115至125℃的起始温度,和/或140至150℃的峰值温度,和/或80至120J/g的焓(在-40至270℃的温度以10℃/min按照ISO11357由DSC(=差示扫描量热法)测量TonSet、Tpeak、焓)。TonSet被定义为在DSC扫描期间树脂的固化发生的起始温度,而Tpeak被定义为在DSC扫描期间树脂的固化发生的峰值温度。
[0064] 树脂体系特别地适用于其中所期望的固化温度低于100℃的预浸料应用。树脂体系可以被加工成在75℃至最高达120℃的宽的加工温度范围中固化。由于其低的放热性能,M79可以用于大的工业组件,适合于薄的区段和厚的区段的固化。其在<100℃的固化温度之后展示出好的静态和动态机械性能。
[0065] 如所讨论的,树脂体系可以是预浸渍入碳纤维、玻璃纤维或芳族聚酰胺纤维增强材料并在室温展示出相当长的外置寿命(在23℃长于6星期)。树脂体系的其它益处包括:优异的粘性寿命;低的放热性能;非常适于低压加工;适用于一系列加工压力(0.3至5巴),这使得真空袋和高压釜固化应用均成为可能;预浸料的好的柔性和可操作性,适用于薄的和厚的层压件;好品质的表面光洁度(surface finish);优异的疲劳性能和在固化后半透明的树脂。
[0066] 本发明的预浸料是通过用环氧树脂浸渍纤维材料来制备的。为了提高浸渍速率,该方法优选地在升高温度进行,以便降低树脂的粘度。然而,不可如此热地时间太长,以使树脂的过早固化发生。因此,浸渍过程优选地在40℃至80℃的温度进行。
[0067] 树脂组合物可以铺展到辊子的外表面上并涂敷至纸或其它背衬材料上,以制备一层可固化的树脂。或许用通过辊子的移动(perhaps by the passage through rollers),然后可以使树脂组合物与纤维层相接触以浸渍。树脂可以在一片或两片背衬材料上存在,使其与结构纤维层相接触并通过使它们穿过加热的压固辊子而导致浸渍。供选择地,树脂可以以液态形式维持在树脂浴中,该树脂浴或者是在环境温度为液态的树脂,或者如果它是在环境温度为固态或半固态的树脂,则使其熔融。然后可以采用刮片(doctor blade)将液态树脂施用至背衬,以制备在剥离层如纸或聚乙烯膜上的树脂膜。然后可以将结构纤维层放入树脂中并且任选地,可以在纤维层的顶部上提供第二树脂层。
[0068] 背衬片可以在树脂浸渍之前或者之后来施用。然而,因为背衬片可以提供其上施用为了使树脂浸渍纤维层所需要的压力的不粘表面,所以背衬片通常是在浸渍之前或期间施用的。
[0069] 一经制备,就可将预浸料卷起,以便可以将其储存一段时间。然后可将其展开并按需切割,和任选地与其它预浸料叠铺,以在模具或者在随后放置于模具中的真空袋中形成预浸料堆叠体。
[0070] 一旦在模具中产生,预浸料或预浸料堆叠体可以通过暴露至70℃至110℃的外部施加的升高温度,和任选地升高的压力来固化,从而制备经固化的层压件。
[0071] 由于预浸料堆叠体固化的放热量可以使堆叠体内的温度到高于110℃,然而我们已发现,如果外部施加温度为70℃至110℃,则基于EEW为150至1500,特别是EEW为200至500的环氧树脂并且不存在固化硬化剂的情况下,预浸料或预浸料堆叠体的固化可以采用80℃的外部施加温度在不多于4至8小时内实现,而树脂没有显著分解。我们也发现了这使得其中树脂的Tg为80℃以上,通常为80℃至110℃,更通常为80℃至100℃的结构件能够在可接受的固化时间内获得。
[0072] 因此,在另一个方面中,本发明涉及在如本文所述的预浸料或者预浸料堆叠体内的环氧树脂固化的方法,该方法包括使预浸料或者预浸料堆叠体暴露至70℃至110℃的外部施加温度的时间足以引起环氧树脂组合物的固化。该方法可以在可放置于模具中的真空袋中进行,或者直接地在模具中进行,并且优选地在低于3.0巴(绝对)的压力进行。
[0073] 固化过程可以在低于2.0巴(绝对)的压力进行。在特别优选的实施方式中,压力可以低于大气压。固化过程可以采用一个或者多个70℃至110℃的外部施加温度,进行的时间足以使环氧树脂组合物固化至所期望的程度。特别优选的是,固化循环的持续时间少于3小时。
[0074] 在接近大气压的压力的固化可以通过所谓的真空袋技术来实现。这包括将预浸料或者预浸料堆叠体放置于气密的袋中,并在袋的内部产生真空,在产生真空之前或者之后,可以将袋放置于模具中,并然后用外部施加热量使树脂固化,以制备模制的层压件。真空袋的使用的效果在于,根据所施用的真空度,预浸料堆叠体经历最高达大气压的压固压力。
[0075] 一经固化,预浸料或者预浸料堆叠体就变成复合层压件,适用于结构应用,如汽车、海洋运载工具或者航空航天结构件或者风力涡轮机结构件,如叶片的壳体或横梁。这样的复合层压件可以包含以体积计80%至15%,优选地以体积计58%至65%的结构纤维。
[0076] 本发明在各种各样的材料的制备中具有适用性。一个特别的应用是在风力涡轮机叶片的制备中。典型的风力涡轮机叶片包括合在一起形成叶片的外表面的两个长的壳体,以及叶片内的至少部分地沿着叶片长度延伸的支撑横梁。壳体和横梁可以通过固化本发明的预浸料或者预浸料堆叠体来制备。
[0077] 壳体的长度和形状是变化的,但趋势是使用较长的叶片(需要较长的壳体),这继而可需要较厚的壳体和在待固化的堆叠体内的预浸料的特殊顺序。这对制备它们的材料强加了特殊的要求。对于长30米或者更特别地长40米或更长如45至65米的叶片,基于碳纤维的预浸料是优选的。壳体的长度和形状也可导致在制备壳体的堆叠体内使用不同的预浸料,并且还可以导致沿着壳体长度使用不同的预浸料。鉴于它们的尺寸和复杂性,用于制造风能组件如壳体和横梁的优选方法是在真空袋内提供适当的预浸料,将其放置于模具中并加热至固化温度。所述袋可以在将其放置于模具内之前或者之后排空。应当注意的是,这些需要大量预浸料的风力涡轮机结构件的尺寸、形状和复杂性可以由于固化所产生的放热量而产生大量的热。因此,本发明提供的用于减少该放热量的机会在制备这样的风力涡轮机结构件中是特别有价值的。
[0078] 另外,为了承受风力涡轮机结构件在使用期间遭受的情形,所期望的是,制成壳体和横梁的经固化预浸料具有高的Tg和优选地高于90℃的Tg。另外本发明允许这一点能够采用反应性环氧树脂如具有200至500的环氧当量的那些来实现,而无需不适当地长的固化时间。
[0079] 参照以下实施例附图来说明本发明,但绝不是限制本发明,其中[0080] 图1示出对于根据本发明的一个实施方式的树脂基体的复数粘度的图形;和[0081] 图2示出在预浸料的60个板片的预浸料堆叠体内部的温度的图形,该预浸料含有根据实施例的不同树脂基体A至F和M。
[0082] 第一系列实验采用了液态和半固态的不含双氰胺(DDM)的环氧树脂与不同量的1
基于脲的潜在性固化剂UR500(3,3-(4-甲基-1,3,亚苯基)双(1,1-二甲基脲))共混的共混物,并与额外地含有潜在性硬化剂(latent hardener)双氰胺的类似体系相比较。该配制物的动态焓是如树脂的Tg,在用80℃的外部施加温度固化360分钟后测量的。拉伸性能按照ISO427测量。同样测量了到达峰值温度的时间。结果如下:
[0083] 多种树脂体系共混物A,B,C,E,F是通过将半固态双酚-A环氧树脂(对于全部的共混物A,B,C,D,E和F均为相同的树脂)与UR500促进剂在室温(21℃)以下表中所列的比例共混而制备的。树脂共混物具有180至340的环氧当量(EEW)。树脂体系共混物D包含以重量计(wt%)95.6%的半固态双酚-A环氧树脂,以重量计(wt%)1.3%的UR500促进剂和以重量计(wt%)3.1%的双氰胺硬化剂(Dyhard100)。
[0084] 实施例1
[0085] 表1.
[0086]** ***
[0087] 未完全固化,N.D.=未检出, 未观察到固化。
[0088] 可见,与惯用的含双氰胺的体系D相比,本发明体系A、B和C的产品具有的动态焓较低,和到达峰值温度的时间较短,表明与用还含双氰胺的体系可达到的相比,在80℃的外部施加温度较快和较可控的固化能力。动态焓是采用动态量热计DSC-60/A测量的并且该测量是按照标准EN6041的。体系E(其含有以重量计0.4%的UR500)在80℃的温度不-1可固化。体系F(其含有以重量计6%的UR500)以230Jg 的动态焓而固化,这可以与体系D(含双氰胺的体系)的动态焓相比较。
[0089] 实施例2
[0090] 将实施例1中采用的配制物浸渍至三轴玻璃纤维上,以制备对于体系A、B、C、E和F而言含有40wt%的树脂的预浸料,以及对于体系D而言含有43%的树脂的预浸料。A、B、C、E、F和D的浸渍水平被认为是可比的,并且样品之间的树脂浸渍的差异不认为是显著的。2
预浸料由总重量为1200gsm(g/m)的三轴交叉缝合织物所组成,其含有织物层。该织物层
2
包含在0°方向上的标称重量为567g/m 的玻璃单向纤维,其夹在+45°和-45°方向上的
2
面积重量为301g/m 的玻璃单向纤维之间。
[0091] 制备预浸料的60个板片的叠铺件。经校准的热电偶位于叠铺件的中心处,以测量温度。将所述叠铺件各自在外部施加至堆叠体的等温80℃固化超过500分钟。
[0092] 图2示出叠铺件中的每一个在叠铺的堆叠体内部的温度曲线,并与标记为“烘箱温度”的烘箱温度结合,其显示初始1℃/minute的升温速率,然后是在80℃的固化。叠铺件标记为A至F,以与实施例1中定义的树脂基体A至F一致。
[0093] 同样测量了到达峰值温度的时间。结果如下:
[0094] 表2
[0095]
[0096] N.D.=未检出,*配制物未固化
[0097] 表2中的这些结果表明,与需要较长时间并产生较多热量的常规预浸料(体系D)相比,本发明的体系A、B和C可以在低于100℃的外部施加温度较快速和较完全地固化。体系E在具有80℃的外部施加温度的温度没有固化。体系F,达到了140℃的最高温度,这与快速固化结合导致了堆叠体内的基体的部分分解。
[0098] 基于以上制备的层状结构的板的机械测试(按照EN2561)示出了表3中所列的以下结果:
[0099] 表3
[0100]树脂体系 拉伸强度MPa 拉伸模量(Gpa)
A 79 3.35
B 76 3.44
C 80 3.46
D 76 3.14
E N.A. N.A.
F N.A. N.A.
[0101] 将A、B、C、E和F用80℃的外部施加温度固化6小时,将D用120℃的外部施加温度固化1小时。结果表明,两个体系可以达到可比的机械性能,而本发明使得能够采用较低的外部施加温度。机械测试不能在树脂体系E上进行,因为该体系在外部施加的80℃固化循环6小时后没有固化。如上提及,含有树脂体系F的堆叠体展示出经目测明显的部分基体的分解。这样的分解可以不利地影响机械性能并可以使得堆叠体不适合于应用,因此对于含有树脂体系F的堆叠体,机械测试是没有必要的。
[0102] 实施例3
[0103] 制备三个产品,以代表典型的用于制造采用树脂体系的风力涡轮机的动叶片。预浸料是由实施例1的树脂基体A和C以及三种不同的纤维增强材料制备的。
[0104] 预浸料如下(ILSS=层间剪切强度(Interlaminar shear strength),拉伸性能按照EN 2563测量;挠曲性能按照EN 2744测量)。
[0105] 表4
[0106]
[0107]
[0108] 全部样品均在放置于用80℃的外部施加温度加热6小时的模具中的真空袋中固化。
[0109] 测试所述三种材料的机械性能并与在100-120℃的外部施加温度固化的体系D的同样性能数据比较。除ILSS以外,将所述结果校正至50%的纤维体积并为如下:
[0110] 表5
[0111]体系 1 4 D
拉伸(EN2563) 平均值+/-15%
拉伸强度(MPa) 113.00 141.50 120.00

标准化E模量(GPa) 11.03 12.64 11.00

在Fmax的伸长率(%) 10.60 9.20 11.30
挠曲(EN2744)
挠曲强度(MPa) 301.10 311.87 230.00

标准化E模量(GPa) 11.62 12.33 12.00

在Fmax的变形(%) 6.00 3.00 N/A
[0112] 表6
[0113]
[0114]
[0115] 表7
[0116]
[0117] 在表5、6和7中,Fmax表示在样品解体之前可以施加的最大力。
[0118] 如从所述表中可见,用80℃的外部施加温度固化的体系1至6的机械性能被发现是至少与用100-120℃的外部施加温度固化的体系D的性能一样好。
[0119] 实施例4
[0120] 实施例1的树脂体系A在不同温度固化。达到95%的树脂转变的时间是用DSC(ISO11357)测量的。结果如下:
[0121]温度 固化时间* Tg固化的
80℃ 240min 85-90℃
90℃ 130min 100-110℃
[0122]100℃ 75min 100-110℃
110℃ 60min 100-110℃
120℃ 55min 100-110℃
[0123] *达到95%转变的时间
[0124] 图1中,树脂体系A的动态粘度在40至130℃的温度范围示出。在94℃的温度,最小粘度为1.6Pa.s。
[0125] 因此提供如本文所述的预浸料、树脂体系、层压件和方法。该方法特别适合于制备风力涡轮机结构件,该方法包括:提供预浸料或预浸料堆叠体于真空袋内,该预浸料包含纤维增强材料和20%至85wt%的环氧树脂的混合物,该环氧树脂具有150至1500的EEW,含有0.5至10wt%的基于脲的固化剂并且不含双氰胺;将真空袋放置于模具内;并在放置于模具中之前或之后在袋内产生真空;以及通过应用70℃至110℃的外部施加温度4至8小时的时间段,使环氧树脂固化。树脂优选为粘度在室温(21℃)超过1800mPa.s的高粘度树脂。前述方法中的预浸料堆叠体将通常包含至少20层。预浸料堆叠体的厚度为2mm至100mm。纤维增强材料优选为碳纤维。风力涡轮机结构件可以是呈风力涡轮机叶片的壳体的形式并且具有大于40米或者45至65米的长度。
QQ群二维码
意见反馈