包含低强度和轻质无纺衬面的弹性复合材料

申请号 CN200980125530.6 申请日 2009-05-14 公开(公告)号 CN102076303A 公开(公告)日 2011-05-25
申请人 金伯利-克拉克环球有限公司; 发明人 H·M·韦尔奇; J·奥斯丁; L·萨纳波利尔; J·A·斯奎拉; W-C·恩治; B·D·海内斯; O·P·托马斯; I·V·楚玛彻; C·拉斯里; S·C·梅尔;
摘要 提供了一种由轻质无纺衬面形成的弹性 复合材料 ,所述无纺衬面在机器横向(“CD”)上具有低强度。通过选择性控制复合材料中采用的材料和成型方法中的特定参数,本 发明 人 已发现,这样的低强度和轻质的衬面可轻易地 层压 至弹性膜,而不会显著地破坏它们的完整性。例如,在一个实施方案中,弹性膜可以具有多层的结造,包括与强度增强的热塑性层相邻的弹性体的弹性层。热塑性层的 聚合物 成分和厚度通常可选择以赋予膜额外的强度和完整性。同样地,弹性层的聚合物成分也可被选择,以使膜具有足够的粘性以粘附至衬面。在特定情况下,可以希望的是,将层 定位 在两个弹性层之间,使得强度增强层基本不会 接触 无纺衬面。这样,强度增强的层在层压工艺期间可避免实质性的损坏。
权利要求

1.一种弹性复合材料,所述复合材料包括:
弹性膜,所述弹性膜包含弹性体组合物;和
与弹性膜位置邻近且被层压至弹性膜的无纺衬面,其中所述无纺衬面的基重为大约45克/平方米或更小,优选为大约2至大约20克/平方米;在机器横向上的峰值荷载是大约
350克/英寸或更小,优选为大约50至大约300克力/英寸;
其中所述复合材料在机器方向上、机器横向上或这两个方向上显现出的峰值伸长率为大约75%或更大。
2.权利要求1所述的弹性复合材料,其中所述无纺衬面在机器方向上的峰值荷载为大约3000克力/英寸或更小。
3.权利要求1或2所述的弹性复合材料,其中所述复合材料在机器方向上、机器横向上或这两个方向上显现出的峰值伸长率为大约150%至大约500%。
4.上述任一项权利要求所述的弹性复合材料,其中所述无纺衬面由含有聚烯的组合物形成。
5.上述任一项权利要求所述的弹性复合材料,其中大约55重量%或更多的所述弹性组合物的聚合物成分由至少一种基本无定形的弹性体构成。
6.权利要求5所述的弹性复合材料,其中所述弹性体包括苯乙烯-丁二烯、苯乙烯-异戊二烯、苯乙烯-丁二烯-苯乙烯、苯乙烯-异戊二烯-苯乙烯、苯乙烯-(乙烯-丁烯)、苯乙烯-(乙烯-丙烯)、苯乙烯-(乙烯-丁烯)-苯乙烯、苯乙烯-(乙烯-丙烯)-苯乙烯、苯乙烯-(乙烯-丁烯)-苯乙烯-(乙烯-丁烯)、苯乙烯-(乙烯-丙烯)-苯乙烯-(乙烯-丙烯)和苯乙烯-乙烯-(乙烯-丙烯)-苯乙烯,或它们的组合。
7.上述任一项权利要求所述的弹性复合材料,其中所述膜包括与弹性层位置邻近的热塑性层,由弹性体组合物形成的弹性层和由热塑性组合物形成热塑性层,其中所述无纺衬面与弹性层位置邻近并被层压至所述弹性层。
8.权利要求7所述的弹性复合材料,其中所述聚烯烃占热塑性组合物的聚合物成分的大约55重量%或更多。
9.权利要求7所述的弹性复合材料,其中所述膜还包括其它的弹性层。
10.权利要求9的所述弹性复合材料,其中所述热塑性层位于弹性层之间。
11.权利要求7所述的弹性复合材料,其中所述弹性层具有大约20微米至大约200微米的厚度,而所述热塑性层具有大约0.5微米至大约20微米的厚度。
12.上述任一项权利要求所述的弹性复合材料,其中所述无纺衬面为熔喷衬面。
13.上述任一项权利要求所述的弹性复合材料,其中所述膜位于无纺衬面与其它的无纺衬面之间。
14.一种吸收制品,所述吸收制品包括上述任一项权利要求所述的弹性复合材料。
15.一种形成复合材料的方法,所述方法包括:
将弹性体组合物直接挤出至无纺衬面的表面上以形成弹性膜,其中所述无纺衬面的基重为大约45克/平方米或更小,优选是大约2至大约20克/平方米,且在机器横向上的峰值荷载是大约350克力/英寸或更小,优选为大约50至大约300克力/英寸;
使所述膜结合至无纺衬面以形成复合材料,其中所述复合材料在机器方向上、机器横向上或这两个方向上显现出的峰值伸长率为大约75%或更大。
16.权利要求15所述的方法,其中所述无纺衬面由含有聚烯烃的组合物形成。
17.权利要求15或16所述的方法,其中所述弹性体组合物与热塑性组合物一起共挤出,使得所述弹性体组合物形成与无纺衬面的表面位置邻近的弹性层,并且使得所述热塑性组合物形成与弹性层位置邻近的热塑性层。
18.权利要求15至17中任一项所述的方法,所述方法还包括施加抽吸力以使膜偏向无纺衬面的表面。
19.权利要求18所述的方法,其中使用气体真空压力来施加抽吸力,例如大约0.3至大约5千帕。
20.权利要求15至19中任一项所述的方法,所述方法还包括在机器方向上、机器横向上或这两个方向上延伸复合材料,例如延伸之前宽度的大约100%至大约750%。
21.权利要求15至20中任一项所述的方法,其中所述复合材料通过在机器横向上递增延伸复合材料的槽辊。
22.权利要求15至21中任一项所述的方法,其中所述无纺衬面为熔喷衬面。
23.权利要求15至22中任一项所述的方法,所述方法还包括将其它的无纺衬面层压至膜,使得所述膜位于无纺衬面与其它无纺衬面之间。

说明书全文

包含低强度和轻质无纺衬面的弹性复合材料

[0001] 发明背景
[0002] 弹性复合材料常合加入到制品(例如尿布、训练裤、衣物等)中以改进其更好地贴合身体轮廓的能。例如,弹性复合材料可由弹性膜和无纺纤网衬面形成。无纺纤网衬面可以借助热和压力(例如压延辊)粘合至处于拉伸状态的弹性膜,以便当膜回缩时,无纺纤网衬面可在其粘合至膜的部位之间聚集并形成“褶”。得到的弹性复合材料可伸展至褶允许弹性膜延长的程度。为了降低成本,希望用较低基重和强度的无纺纤网衬面来形成这样的复合材料。然而,不幸的是,低强度的衬面由于其缺乏耐久性和完整性而难以制造。例如,传统压延辊所施加的热和压力会明显地破坏衬面的完整性。此外,基重较大的衬面由于材料在层压期间的聚集而通常需要耐久性。
[0003] 因此,当前需要由轻质和低强度的无纺纤网衬布形成的弹性复合材料,并也在各种应用的有效使用中具有足够的耐久性。
[0004] 发明简述
[0005] 根据本发明的实施方案,公开了弹性复合材料,该复合材料包括弹性膜和与弹性膜的位置相邻并与弹性膜层压在一起的无纺纤网衬面。该无纺纤网衬面的基重为大约45克/平方米或更小,且机器横向上的峰值荷载为大约350克力/英寸或更小。此外,该复合材料在机器方向上、机器横向上或这两个方向上的峰值伸长率为大约75%或更大。
[0006] 根据本发明的另一个实施方案,公开了形成弹性复合材料的方法。该方法包括将弹性组合物直接挤出在无纺纤网衬面的表面上以形成弹性膜,以及使膜与无纺纤网衬面相结合以形成复合材料。该无纺纤网衬面的基重为大约45克/平方米或更小,在机器横向上的峰值荷载为大约350克力/英寸或更小。此外,该复合材料在机器方向上、机器横向或这两个方向上的峰值伸长率为大约75%或更大。
[0007] 接下来将详细描述本发明的其它特征和方面。
[0008] 附图的简要说明
[0009] 本说明书的余下部分将参考附图更具体地阐明对于本领域技术人员而言完整且可能实现的本发明的公开内容(包括最佳方式),其中:
[0010] 图1示意性示出了根据本发明一个实施方案形成复合材料的方法;
[0011] 图2示意性示出了根据本发明另一个实施方案形成复合材料的方法;
[0012] 图3是可以根据本发明的一个实施方案制成的个人护理产品的透视图;
[0013] 图4是用于本发明一个实施方案中的槽辊的透视图;
[0014] 图5是示出图4中两个槽辊的之间的接合处的横截面图。
[0015] 图6是实施例1形成的复合材料的SEM显微照片(350X);以及
[0016] 图7是实施例1形成的复合材料的另一个SEM显微照片(1100X)。
[0017] 本说明书和附图中重复使用的附图标记意在表示本发明中相同或者类似的特征或者元件。
[0018] 代表性实施方案的详述
[0019] 定义
[0020] 如本文所使用的,术语“无纺纤网”是指具有单纤维或丝结构的纤网,所述单纤维或丝是不以编织织物那样以可确认的方式相互插入。适合无纺织物或纤网的实例包括,但不限于,熔喷纤网、纺粘纤网、粘合梳理纤网、气流纤网、同成形纤网、刺缠绕纤网等。
[0021] 如本文所使用的,术语“熔喷”纤网或衬面通常是指通过以下方法形成的无纺纤网:将熔融的热塑性材料作为熔融纤维挤出穿过多个精细的、通常为环形的模头毛细管,进入会聚的高速气(例如,空气)流中,所述会聚的高速气流会使熔融的热塑性材料的纤维变细以减小它们的直径,可减小到微纤维直径;随后,熔喷纤维由高速气流携带并且沉积在收集表面上,以形成随机分散的熔喷纤维的纤网。这样的方法在例如Butin等人的第3,849,241号美国专利,在此将其全部内容出于所有目的引入本文作为参考。
[0022] 如本文所使用的,术语“纺粘”纤网或衬面通常是指含有小直径、基本连续的纤维的无纺纤网。所述纤维通过将熔融的热塑性材料从多个细的、通常为环形的喷丝头毛细管挤出,然后将挤出丝的直径通过例如离析拉伸(eductive drawing)和/或其它熟知的纺粘机理迅速减小而形成。粘纺纤网的生产例如在Appel等人的第4,340,563号美国专利、Dorschner等人的第3,692,618号美国专利、Matsuki等人的第3,802,817号美国专利、Kinney的第3,338,992号和第3,341,394号美国专利、Hartman的第3,502,763号美国专利、Levy的第3,502,538号美国专利、Dobo等人的第3,542,615号美国专利以及Pike等人的第5,382,400号美国专利中有描述和说明,在此将其全部内容出于所有目的引入本文作为参考。当沉积到收集表面上时,纺粘丝通常不是粘的。通常,纺粘纤维的直径可以为大约10至大约20微米。
[0023] 如本文所使用的,术语“机器方向”或“MD”通常指的是生产材料的方向。术语“机器横向”或“CD”指的是与机器方向相垂直的方向。
[0024] 如本文所使用的,术语“滞后值”的测定是通过先拉伸样品(“荷载”)后使样品回缩(“卸荷载”)测得的。滞后值是该循环荷载期间能量的损失。
[0025] 详述
[0026] 现在将详细参考本发明的各种实施方案,对本发明的一个或多个实施例阐述如下。各实施例均以解释本发明的方式提供,并非限制本发明。实际上,对于本领域技术人员而言,显而易见的是,在不背离本发明的范围或精神的情况下,可以对本发明作各种修改和变化。例如,作为一个实施方案的部分来说明或描述的特征,可以用在另一个实施方案上产生又一个实施方案。因此,本发明旨在涵盖所附权利要求及其等同范围之内这样的修改和变化。
[0027] 一般来讲,本发明涉及由轻质无纺衬面形成的弹性复合材料,该轻质无纺衬面在机器横向(″CD″)上具有低强度。通过选择性控制复合材料中使用的材料的某些参数和形成过程,本发明人已发现,这样低强度和轻质的衬面可以容易地被层压至弹性膜而不明显破坏它们的完整性。例如,在一个实施方案中,弹性膜可以具有多层结构,该多层结构包括位置邻近强度强化的热塑性层的弹性体弹性层。热塑性层的聚合物含量和厚度是经常规选择的,从而赋予膜额外的强度和完整性。同样地,也可以选择弹性膜的聚合物含量使得膜具有足够的粘性用于附着到衬面。在某些情况下,希望在两个弹性层之间设置层,使得强度加强层基本上不接触无纺衬面。通过这种方式,强度加强层可以避免层压过程中的实质性破坏
[0028] 在这方面,现在将更加详细地描述本发明的多种实施方案。
[0029] I.无纺衬面
[0030] 如上所述,第一层压物的无纺衬面通常为轻质的,且在机器横向(″CD″)上具有低强度,这将提高复合材料的挠性并还显著降低了其制造成本。更具体地,基重可以大约45克/平方米或更小,在一些实施方案中为大约1至大约30克/平方米,在一些实施方案中是大约2至大约20克/平方米。同样地,无纺纤网衬面在机器横向上的峰值荷载为大约350克力/英寸(宽度)或更小,在一些实施方案中,为大约300克力/英寸或更小,在一些实施方案中,为大约50至大约300克力/英寸,在一些实施方案中,为大约60至大约250克力/英寸,并且在一些实施方案中,为大约75至大约200克力/英寸。如果希望的话,无纺衬面在机器方向(″MD″)上具有低强度,例如,在机器方向上的峰值荷载为大约3000克力/英寸(宽度)或更小,在一些实施方案中,为大约2500克力/英寸或更小,在一些实施方案中,为大约50至大约2000克力/英寸,并且在一些实施方案中,为大约100至大约1500克力/英寸。
[0031] 无纺衬面可按多种已知的方法形成,诸如熔喷法、纺粘法、梳理法、湿法成网法、气流成网法、同成型法等。在一个具体的实施方案中,例如,无纺衬面是包含“微纤维”的熔喷衬面,其中所述微纤维的平均尺寸为大约15微米或更小,在一些实施方案中,为大约0.01至大约10微米,并且在一些实施方案中,为大约0.1至大约5微米。
[0032] 无论其形成的方式如何,无纺衬面通常由具有相对高维卡软化温度(ASTM D-1525)的聚合物形成,例如大约100℃至大约300℃,在一些实施方案中,为大约120℃至大约250℃,并且在一些实施方案中,为大约130℃至大约200℃。用于形成无纺衬面的示例性的高软化点聚合物可以包括,但不限于,例如,聚烯,如聚乙烯、聚丙烯、聚丁烯等;聚四氟乙烯;聚酯,如聚对苯二甲酸乙酯等;聚乙烯基乙酸酯;聚氯乙烯-乙酸乙烯酯;聚乙烯醇缩丁丙烯酸树脂,如聚丙烯酸酯、聚丙烯酸甲酯、聚甲基丙烯酸甲酯等;聚酰胺,如尼龙;聚氯乙烯;聚偏1,1-二氯乙烯;聚苯乙烯;聚乙烯醇;聚酯;聚乳酸;它们的聚合物;它们的共混物等。应当注意的是,聚合物还可以包含其它添加剂,如操作助剂或赋予纤维希望的性质的处理性组合物、余量的溶剂、颜料或色料等。
[0033] 单组分和/或多组分纤维可用来形成无纺衬面。单组分纤维通常由一种聚合物或聚合物的共混物经单挤出机挤出形成。多组分纤维通常由两种或更多种聚合物(例如,双组分纤维)经分离的挤出机挤出形成。所述聚合物被布置在纤维横截面上基本上恒定定位的不同区域中。所述组分可以以任何希望的构型来布置,如皮芯型、并列型、馅饼型(pie)、海中岛型、三岛型、眼、或其它本领域已知的构型等等。形成多组分纤维的不同方法在Taniguchi等人的第4,789,592号美国专利、Strack等人的第5,336,552号美国专利、Kaneko等人的第5,108,820号美国专利、Kruege等人的第4,795,668号美国专利、Pike等人的第5,382,400号美国专利、Strack等人的第5,336,552号美国专利、Marmon等人的第6,200,669号美国专利中有描述,在此将其全部内容出于所有目的引入本文作为参考。具有各种不规则形状的多组分纤维也可以诸如以下美国专利所描述的来形成:Hogle等人的第
5,277,976号美国专利、Hills的第5,162,074号美国专利、Hills的第5,466,410号美国专利、Largman等人的第5,069,970号美国专利、Largman等人的第5,057,368号美国专利中,在此将其全部内容出于所有目的引入本文作为参考。
[0034] 用于形成无纺衬面的纤维的希望的丹尼尔可根据所需用途而不同。通常,形成的纤维的单丝丹尼尔(即,线密度的单位等于每9000米纤维的质量(以克计))小于大约6,在一些实施方案中,为小于大约3,并且在一些实施方案中,为大约0.5至大约3。
[0035] 虽然没有要求,但是无纺衬面可以利用任何传统的技术进行任选地结合,如利用粘结剂或自发性的(如熔融和/或在无需施加外部粘结剂的情况下纤维的自身粘结)。适合的自发性结合技术可以包括声波结合、热结合、热结合、压延结合等。需要的温度和压力会依据多种因素而变化,包括但不限于,图案结合区、聚合物的性质、纤维的性质和无纺纤网的性质。例如,衬面通过两个辊之间形成的辊隙,这两个辊通常不具有图案,即是平的。这样,仅需在材料上施加少量的压力来将它们轻轻地结合在一起。不受到理论的限制,本发明人认为这样轻轻结合的材料可以保持较高的延伸性并因而增加了得到的复合材料的弹性和延伸性。例如,辊隙的压力是大约0.1至大约20磅/线性英寸,在一些实施方案中,为大约1至大约15磅/线性英寸,并且在一些实施方案中,为大约2至大约10磅/线性英寸。同样地,一个或多个辊的表面温度为大约15℃至大约60℃,在一些实施方案中,为大约20℃至大约50℃,并且在一些实施方案中,为大约25℃至大约40℃。
[0036] 在与本发明的膜进行层压之前,还可在机器方向和/或在机器横向上延伸无纺衬面。适合的延伸技术包括颈缩、拉幅、槽辊延伸等。例如,可如Morman的第5,336,545号、第5,226,992号、第4,981,747号和第4,965,122号美国专利以及Morman等人的美国专利申请第2004/0121687号中所述的方法颈缩衬面。供选择地,在与膜层压之前,无纺衬面在至少一个方向上保持相对不可延伸。在这样的实施方案中,无纺衬面可在一个或多个方向上任选地进行延伸,随后与膜层压。衬面还可经过其它已知的加工步骤,诸如穿孔、热处理等。
[0037] II.弹性膜
[0038] 本发明的弹性膜由一种或多种可熔融加工的(即,热塑性)的弹性体聚合物形成。各种热塑性弹性体聚合物的任何一种均可用于本发明中,如弹性体聚酯、弹性体聚氨酯、弹性体聚酰胺、弹性体共聚物、弹性体聚烯烃等。在一个实施方案中,例如,可以使用基本为无定形的嵌段共聚物,该嵌段聚合物包含单链烯基芳烃与饱和的共轭二烯的嵌段。由于这样的嵌段共聚物具有高度的弹性和粘性,因而特别适用于本发明,用以增强膜结合至无纺衬面的能力。
[0039] 单链烯基芳烃嵌段可以包括苯乙烯及其类似物和同系物,如邻甲基苯乙烯、对甲基苯乙烯、对叔丁基苯乙烯、1,3二甲基苯乙烯对甲基苯乙烯等;以及其它单链烯基多环芳香族化合物,如乙烯基、乙烯基蒽等。优选的单链烯基芳烃是苯乙烯和对甲基苯乙烯。共轭二烯嵌段可以包括共轭二烯单体的均聚物、两种或更多种共轭二烯的共聚物、以及一种或多种二烯与另一种单体的共聚物,其中嵌段主要为共轭二烯单元。优选地,共轭二烯包含4至8个原子,如1,3-丁二烯(丁二烯)、2-甲基-1,3丁二烯、异戊二烯、2,3-二甲基-1,3-丁二烯、1,3-戊二烯(间戊二烯)、1,3-己二烯等。单链烯基芳烃(如聚苯乙烯)嵌段的量可以变化,但通常占共聚物的大约8重量%至大约55重量%,在一些实施方案中,占大约10重量%至大约35重量%,并且在一些实施方案中,占大约25重量%至大约35重量%。适合的嵌段共聚物可以包含数均分子量为大约5,000至大约35,000的单链烯基芳烃末端嵌段和数均分子量为大约20,000至大约170,000的饱和共轭二烯中间嵌段。嵌段聚合物的总数均分子量为大约30,000至大约250,000。
[0040] 特别适合的热塑性弹性体共聚物可从Houston,Texas的Kraton Polymers LLC获得,商标名为KRATON KRATON 聚合物包括苯乙烯-二烯嵌段共聚物,如苯乙烯-丁二烯、苯乙烯-异戊二烯、苯乙烯-丁二烯-苯乙烯、和苯乙烯-异戊二烯-苯乙烯。KRATON 聚合物还包括,通过苯乙烯-二烯嵌段共聚物经选择性氢化作用形成的苯乙烯-烯烃嵌段共聚物。这样的苯乙烯-烯烃嵌段共聚物的实例包括,苯乙烯-(乙烯-丁烯)、苯乙烯-(乙烯-丙烯)、苯乙烯-(乙烯-丁烯)-苯乙烯、苯乙烯-(乙烯-丙烯)-苯乙烯、苯乙烯-(乙烯-丁烯)-苯乙烯-(乙烯-丁烯)、苯乙烯-(乙烯-丙烯)-苯乙烯-(乙烯-丙烯)、和苯乙烯-乙烯-(乙烯-丙烯)-苯乙烯。这些嵌段共聚物均具有线性的、放射状的或星形的分子结构。具体的KRATON 嵌段共聚物包括,那些按商标名G1652、G1657、G1730、MD6673和MD6973在售的产品。在第4,663,220号、第4,323,534号、第4,834,738号、第5,093,422号和第5,304,599号美国专利中描述了各种适合的苯乙烯嵌段共聚物,在此出于所有目的将这些文献引入本文作为参考。其它的可商购的嵌段共聚物包括,可从日本冈山的Kuraray Company,Ltd.获得的,商标设计为SEPTON 的S-EP-S弹性体共聚物。其它适合的共聚物包括可从Houston,Texas的Dexco Polymers获得的,商标设计为VECTOR 的S-I-S和S-B-S弹性体共聚物。适合的聚合物还有如Taylor等人的第5,332,613号美国专利中描述的A-B-A-B四嵌段共聚物,在此出于所有目的将其引入作为参考。这样的四嵌段共聚物的实例是苯乙烯-聚(乙烯-丙烯)-苯乙烯-聚(乙烯-丙烯)(″S-EP-S-EP″)嵌段共聚物。
[0041] 当然,也可使用其它热塑性弹性体聚合物来形成膜,可以单独或与嵌段共聚物结合使用。还可使用例如具有或能显示基本规则结构的半结晶聚烯烃。示例性半结晶聚烯烃包括聚乙烯、聚丙烯、其共混物和共聚物。在一个特定的实施方案中,使用的聚乙烯是乙烯和α-烯烃的共聚物,α-烯烃如C3-C20的α-烯烃或C3-C12的α-烯烃。适合的α-烯烃可以是直链的或支链的(例如,一个或多个C1-C3烷基支链或芳基基团)。具体的实例包括1-丁烯;3-甲基-1-丁烯;3,3-二甲基-1-丁烯;1-戊烯;具有一个或多个甲基、乙基或丙基取代基的1-戊烯;具有一个或多个甲基、乙基或丙基取代基的1-己烯;具有一个或多个甲基、乙基或丙基取代基的1-庚烯;具有一个或多个甲基、乙基或丙基取代基的1-辛烯;具有一个或多个甲基、乙基或丙基取代基的1-壬烯;乙基、甲基或二甲基取代的1-癸烯;1-十二碳烯;和苯乙烯。特别希望的α-烯烃共聚单体是1-丁烯、1-己烯和1-辛烯。在这样的共聚物中,乙烯的含量为大约60摩尔%至大约99摩尔%,在一些实施方案中,为大约80摩尔%至大约98.5摩尔%,并且在一些实施方案中,为大约87摩尔%至大约97.5摩尔%。同样地,α-烯烃的含量是大约1摩尔%至大约40摩尔%,在一些实施方案中,为大约1.5摩尔%至大约15摩尔%,并且在一些实施方案中,为大约2.5摩尔%至大约13摩尔%。
[0042] 特别适合的聚乙烯共聚物是那些“线性”或“基本为线性”的。述语“基本为线性”指的是除了加入共聚单体的短链支链外,乙烯聚合物还包含作为聚合物骨架的长链支链。“分支长链”指的是长度至少为6个碳的链。每个长链支链可具有与聚合物骨架相同的共聚单体分布,并与其结合的聚合物骨架的长度相同。优选的基本为线性的聚合物用0.01长链支链/1000碳至1长链支链/1000碳取代,并且在一些实施方案中,用0.05长链支链/1000碳至1长链支链/1000碳取代。与术语“基本为线性”形成对比,术语“线性”是指聚合物缺乏可测的或可证明的长链支链。即,聚合物用平均少于0.01长链支链/1000碳取代。
[0043] 线性乙烯/α-烯烃共聚物的密度是α-烯烃的长度和含量的函数。也就是说,α-烯烃的长度越大且α-烯烃的含量越大,共聚物的密度越小。虽然不是必需的,但是线性聚乙烯“塑性体”是特别希望的,因为α-烯烃短链分支成分的含量使乙烯共聚物同时显现出塑性和弹性体的特性,即“塑性体”。因为用α-烯烃共聚单体的聚合将降低结晶度和密度,因而得到的塑性体通常具有比聚乙烯热塑性聚合物(即LLDPE)小的密度,但接近和3
/或超过弹性体的密度。例如,聚乙烯塑性体的密度是0.91克/立方厘米(g/cm)或更小,
3 3 3
在一些实施方案中,为0.85-0.88g/cm,并且在一些实施方案中,为0.85g/cm-0.87g/cm。
尽管塑性体的密度接近弹性体的密度,但塑性体通常显现出更高的结晶度、相对不粘的,以及可形成不粘结且相对易于流动的小球。
[0044] 用于本发明的优选的聚乙烯是可从Houston,Texas的埃克森美孚化学公司获TM得的、商品名为EXACT 的基于乙烯基的共聚物塑性体。其它适合的聚乙烯塑性体是可从TM TM
Midland,Michigan的陶氏化学公司获得的,商品名为ENGAGE 和AFFINITY 的成分。还TM
有其它的适合的乙烯聚合物是可从陶氏化学公司获得的,商品名为DOWLEX (LLDPE)和TM
ATTANE (ULDPE)。在Ewen等人的第4,937,299号美国专利、Tsutsui等人的第5,218,071号美国专利、Lai等人的第5,272,236号美国专利和Lai等人的第5,278,272号美国专利中描述了其它适合的乙烯聚合物,在此出于所有目的将这些文献引入作为参考。
[0045] 当然,本发明并不限于使用乙烯聚合物。例如,丙烯塑性体也适用于膜中。适合的塑性丙烯聚合物可以包括,例如丙烯的共聚物或三元共聚物,包括丙烯与α-烯烃(如C3-C20)的共聚物,所述α-烯烃如乙烯、1-丁烯、2-丁烯、各种戊烯异构体、1-己烯、1-辛烯、1-壬烯、1-癸烯、1-十一碳烯、1-十二碳烯、4-甲基-1-戊烯、4-甲基-1-己烯、5-甲基-1-己烯、乙烯基环己烯、苯乙烯等。丙烯聚合物的共聚单体的含量为大约35重量%或更少。在一些实施方案中,为大约1重量%至大约20重量%,并且在一些实施方案中,为大约2重量%至大约10重量%。优选地,聚丙烯(如丙烯/α-烯烃共聚物)的密度可以为3 3
0.91克/立方厘米(g/cm)或更小,在一些实施方案中,为0.85-0.88g/cm,并且在一些实
3 3
施方案中,为0.85g/cm-0.87g/cm。适合的丙烯聚合物可以是商购自Houston,Texas的埃TM
克森美孚化学公司的,商品名为VISTAMAXX 、购自Feluy,Belgium的Atofina Chemicals的TM TM
FINA (如8573)、购自日本三井石油化工工业的TAFMER 和购自Midland,Michigan的陶氏TM
化学公司的VERSIFY 。在Datta等人的第6,500,563号美国专利、Yang等人的第5,539,056号美国专利和Resconi等人的第5,596,052号美国专利中描述了适合的丙烯聚合物的其它实例,在此出于所有目的将这些文献全文引入作为参考。
[0046] 许多已知方法中的任何一种均可用于形成半结晶的聚烯烃。例如,烯烃聚合物可利用自由基或配位催化剂(如Ziegler-Natta)制得。优选地,烯烃聚合物由单位点配位催化剂,诸如金属茂催化剂形成。这样的催化剂体系制备乙烯共聚物,其中共聚单体将随机分布在分子链中,并均匀地分布在不同的分子量部分之间。例如,在McAlpin等人的第5,571,619号美国专利、Davis等人的第5,322,728号美国专利、Obiieski等人的第5,472,775号美国专利、Lai等人的第5,272,236号美国专利和Wheat等人的第6,090,325号美国专利中描述了金属茂催化的聚烯烃,在此出于所有目的将这些文献全文引入作为参考。金属茂催化剂的实例包括,二(正丁基茂基)二氯化、二(正丁基茂基)二氯化锆、二(茂基)氯化钪、二(茚基)二氯化锆、二(甲基茂基)二氯化钛、二(甲基茂基)二氯化锆、二茂钴、茂基三氯化钛、二茂、二氯二茂铪、异丙基(茂基-1-芴基)二氯化锆、二氯二茂钼、二茂镍、二氯二茂铌、二茂钌、二氯二茂钛、氢氯二茂锆、二氯二茂锆等。用金属茂催化剂制备的聚合物通常具有较窄的分子量分布。例如,金属茂催化的聚合物的多分散性数值(Mw/Mn)在4以下,决定短链分支分布以及决定全同立构规整度。
[0047] 虽然半结晶聚烯烃的熔体流动指数(MI)一般可以变化,但通常是在190℃下测得的大约0.1克/10分钟至大约100克/10分钟,在一些实施方案中,为大约0.5克/10分钟至大约30克/10分钟,并且在一些实施方案中,为大约1克/10分钟至大约10克/10分钟。熔体流动指数是在190℃下,当受到10分钟的5000克力的压力,通过挤出流变仪孔口(0.0825英寸直径)时根据ASTM检测法D1238-E测得的聚合物的重量(克)。
[0048] 当然,除了弹性体聚合物之外,只要非弹性热塑性聚合物不会不利地影响复合材料的弹性,一般就也可以使用它。例如,热塑性组合物可包含其它聚烯烃(如聚丙烯、聚乙烯等)。在一个实施方案中,热塑性组合物可包含额外的丙烯聚合物,如均聚丙烯或丙烯的共聚物。额外的丙烯聚合物可以是,例如由基本为全同立构的聚丙烯均聚物或含有等于或小于大约10重量%的其它单体(即至少大约90重量%的丙烯)的共聚物形成。这样的聚丙烯的存在形式可以是接枝、无规或嵌段共聚物,并可以主要是结晶体,其最高熔点是大约110℃以上,在一些实施方案中,为大约115℃以上,并且在一些实施方案中,为大约130℃以上。在Datta等人的第6,992,159号美国专利中描述了这样的额外的聚丙烯的实例,在此出于所有目的将该文献全文引入作为参考。
[0049] 弹性膜还包含其它现有技术已知的组分。在一个实施方案中,例如,弹性膜包含填料。填料是颗粒状或其它形式的材料,可将其加入膜聚合物挤出的共混物中,且不会化学地影响挤出的膜,但会均匀地分散在膜中。填料可以出于各种目的来使用,包括增强膜的不透明性和/或透气性(即,可渗透气体的且基本上不可渗透液体)。例如,填料膜可以通过延伸来制成可透气的,这将造成聚合物脱离填料并产生微孔的通道。在例如McCormack等人的第5,997,981号、第6,015,764号和第6,111,163号美国专利;Morman等人的第5,932,497号和Taylor等人的第6,461,457号中描述了可透气的微孔弹性膜,在此出于所有目的将这些文献全文引入作为参考。适合的填料的实例包括,但不限于,碳酸、各种粘土、、氧化、碳酸钡、碳酸钠、碳酸镁、滑石、硫酸钡、硫酸镁、硫酸铝、二氧化钛、沸石、纤维素型粉末、高岭土母、碳、氧化钙、氧化镁、氢氧化铝、浆料粉、木粉、纤维素的衍生物、甲壳质和甲壳质衍生物。在某些情况下,膜中填料的含量为膜的大约25重量%至大约75重量%,在一些实施方案中,为大约30重量%至大约70重量%,并且在一些实施方案中,为大约40重量%至大约60重量%。
[0050] 膜中还可加入其它添加剂,如熔融稳定剂、交联催化剂、pro-rad添加剂、加工稳定剂、热稳定剂、光稳定剂、抗氧化剂、热老化稳定剂、增白剂、抗结剂、粘合剂、胶粘剂、粘度调节剂等。适合的胶粘剂树脂的实例包括,例如氢化烃树脂。这样的氢化烃树脂的实例是TMREGALREZ 烃树脂,可自Eastman Chemical获得。其它的胶粘剂是可自埃克森美孚获得的,TM
商品名为ESCOREZ 的。也可使用粘度调节剂,如聚乙烯蜡(例如,得自Eastman Chemical的TM
EPOLENE C-10)。磷酸盐稳定剂(例如,可得自Terrytown,New York的Ciba Specialty Chemicals的IRGAFOS和得自Dover,Ohio的Dover Chemical Corp.的DOVERPHOS)是示例性的熔融稳定剂。此外,受阻胺稳定剂(如可得自Ciba Specialty Chemicals的CHIMASSORB)是示例性的热和光稳定剂。此外,受阻酚在膜的制备过程中常用作抗氧化剂。
一些适合的受阻酚包括购自Ciba Specialty Chemicals的,商标名″Irganox ″的那些,如Irganox 1076、1010或E201。此外,还可以将膜结合剂加入至膜以促进膜与额外材料(如无纺纤网)结合。通常,这样的添加剂(如胶粘剂、抗氧化剂、稳定剂等)在膜中的含量分别为大约0.001重量%至大约25重量%,在一些实施方案中,为大约0.005重量%至大约20重量%,并且在一些实施方案中,为0.01重量%至大约15重量%。
[0051] 本发明的弹性膜是单层或多层的。多层膜可通过共挤出或任何其它传统的分层技术制得。当使用时,多层膜通常包含至少一个热塑性层和至少一个弹性层。热塑性层用来赋予得到的复合材料的强度和完整性,而弹性层将赋予其弹性和足够的胶粘性以粘附至无纺衬面。在本发明的一个具体的实施方案中,膜包括至少一个位于至少两个弹性层之间的热塑性层。这样,热塑性层基本不接触无纺衬面,并因此能避免在层压期间的实质性损坏。在这样的实施方案中,一个或多个弹性层通常由弹性组合物形成,如上所述的,以赋予膜希望的弹性度。为了赋予膜希望的弹性性质,弹性体通常占用于形成弹性层的弹性组合物中聚合物含量的大约55重量%或更多,在一些实施方案中,为大约60重量%或更多,并且在一些实施方案中,为大约65重量%至100重量%。事实上,在某些实施方案中,弹性层通常不含有非弹性的聚合物。例如,这样的非弹性聚合物可以占弹性组合物的聚合物含量的大约15重量%或更少,在一些实施方案中,为大约10重量%或更少,并且在一些实施方案中,为大约5重量%或更少。
[0052] 虽然热塑性层具有一定的弹性度,但这样的层通常由弹性弱于弹性层的热塑性组合物形成,以确保膜的强度足以大。例如,一个或多个弹性层可以主要由基本为无定形的弹性体(如苯乙烯-烯烃共聚物)形成,而一个或多个热塑性层可由聚烯烃塑性体(如单位点催化乙烯或丙烯共聚物)形成,这在上文中均有详细描述。虽然这样的聚烯烃具有一些弹性,但它的弹性通常弱于基本为无定形弹性体的弹性。当然,热塑性层可包含基本无弹性的聚合物,如传统的聚烯烃,如聚乙烯(低密度聚乙烯(″LDPE″),Ziegler-Natta催化的线性低密度聚乙烯(″LLDPE″)等)、聚丙烯、聚丁烯等;聚四氟乙烯;聚酯,如聚对苯二甲酸乙酯等;聚乙烯基乙酸酯;聚氯乙烯-乙酸乙烯酯;聚乙烯醇缩丁醛;丙烯酸树脂,如聚丙烯酸酯、聚丙烯酸甲酯、聚甲基丙烯酸甲酯等;聚酰胺,如尼龙;聚氯乙烯;聚偏1,1-二氯乙烯;聚苯乙烯;聚乙烯醇;聚氨酯;聚丙醇酸;它们的共聚物及混合物等。在某些实施方案中,使用了聚烯烃(如传统的和/或塑性体)并占用于形成热塑性层的热塑性组合物的聚合物含量的大约55重量%或更多,在一些实施方案中,为大约60重量%或更多,并且在一些实施方案中,为大约65重量%至100重量%。
[0053] 热塑性层和弹性层的厚度通常是被选择的以实现在膜弹性和强度之间适当的平衡。例如,弹性层的厚度通常为大约20至大约200微米,在一些实施方案中,为大约25至大约175微米,并且在一些实施方案中,为大约30至大约150微米。弹性层也可占膜的总厚度的大约70%至大约99.5%,在一些实施方案中,占膜的总厚度的大约80%至大约99%。另一方面,热塑性层的厚度通常为大约0.5至大约20微米,在一些实施方案中,为大约1至大约15微米,并且在一些实施方案中,为大约2至大约12微米。热塑性层也可占膜的总厚度的大约0.5%至大约30%,并且在一些实施方案中,占膜的总厚度的大约1%至大约20%。膜的总厚度为大约20至大约250微米,在一些实施方案中,为大约25至大约225微米,并且在一些实施方案中,为大约30至大约200微米。
[0054] 不管特定的膜成分,膜和/或用于形成膜的材料还可以经过一个或多个额外的加工步骤。在一个实施方案中,例如,用于膜中的弹性体聚合物在与无纺衬面层压之前、之后和/或期间发生交联,以赋予膜更强的弹性特性。可通过将聚合物进行电磁辐射以诱导交联,如紫外光、电子束辐射、自然和人工放射性同位素(如α、β和γ射线)、X射线中子束、正电子束、激光束等。电磁辐射波长(“λ”)是大约1000纳米或更小,在一些实施方案中,为大约100纳米或更小,并且在一些实施方案中,为大约1纳米或更小。电子束辐射,例如通常具有大约1纳米或更小的波长。同样地,使用的总量(在一个或多个步骤中)可以为大约1兆拉德(Mrad)至大约30兆拉德,在一些实施方案中,为大约3兆拉德至大约25兆拉德,并且在一些实施方案中,为大约5至大约15兆拉德。此外,能级可以为大约0.05兆电子伏特(MeV)至大约600MeV。通过交联,可以形成三维交联网络,以赋予材料机器方向、机器横向或两个方向上的额外的弹性。
[0055] III.其它衬面
[0056] 如果希望的话,本发明的复合材料还可以包括其它现有技术已知的衬面,如无纺纤网材料、膜、泡沫等。例如,该复合材料可以包括额外的无纺衬面,如熔喷纤网、纺粘纤网、粘合梳理纤网、湿法纤网(wetlaid web)、气流法纤网、同成形纤网等,以及上述的组合。在一个具体的实施方案中,额外的衬面是粘合梳理衬面。在粘合梳理衬面中,可使用任何希望长度的纤维,如短纤维、连续纤维等。例如,可使用的短纤维的纤维长度是大约1至大约150毫米,在一些实施方案中,为大约5至大约50毫米,在一些实施方案中,为大约10至大约40毫米,并且在一些实施方案中,为大约10至大约25毫米。这样的纤维可以通过将打包的纤维通过拣选机分离成纤维制成梳理纤网。然后,将纤维通过精梳或梳理装置传送,进一步分离纤维并将其排列在机器方向上以形成机器方向定位的纤维的无纺纤网。随后,可以将梳理纤网如上所述的方式进行轻易地粘合。
[0057] 虽然没有要求,但是额外的衬面也可是轻质且低强度的。例如,衬面的基重是大约1至大约45克/平方米,在一些实施方案中,为大约2至大约30克/平方米,并且在一些实施方案中,为大约3至大约20克/平方米。衬面在机器横向(″CD″)上的峰值荷载为大约350克力/英寸(宽度)或更小,在一些实施方案中,为大约300克力/英寸或更小,在一些实施方案中,为大约50至大约300克力/英寸,在一些实施方案中,为大约60至大约250克力/英寸,并且在一些实施方案中,为大约75至大约200克力/英寸。如果希望的话,无纺纤网衬面在机器方向(″MD″)上也具有低强度,如机器方向上的峰值荷载为大约3000克力/英寸(宽度)或更小,在一些实施方案中,为大约2500克力/英寸或更小,在一些实施方案中,为大约50至大约2000克力/英寸,并且在一些实施方案中,为大约100至大约1500克力/英寸。
[0058] 如上所述,在与本发明的膜层压之前,也将额外的无纺衬面在机器方向和/或机器横向上拉伸,并且经历其它已知的加工步骤,如穿孔、热处理等。
[0059] IV.层压技术
[0060] 为了增强得到的复合材料的持久性和稳定性,通常通过直接将弹性体组合物挤出在无纺衬面的表面上,将膜与衬面层压在一起。这使得弹性体组合物与无纺衬面的纤维之间有较大程度的接触,也进一步提高熔喷纤维粘合至弹性体组合物的能力。这样,可以在无需传统压延辊粘合工艺中使用的将损坏低强度的无纺纤网衬面的大量热和压力的情况下具有足够的粘合度。如果需要,可通过各种方法来促进层压,如粘结剂、吸力等。在一个实施方案中,例如,在层压期间借助于吸力将膜向衬面偏压
[0061] 无论使用何种层压方法,选择适当的粘合温度将有助于膜的弹性体聚合物的熔融和/软化,使得它可以流动并熔融成无纺衬面,从而形成整体的无纺复合材料。此外,因为弹性体聚合物可以物理地在粘合位上陷入并粘附至纤维,无需基本软化用来形成衬面的聚合物即可实现足够的粘合成形。当然,应当理解的是,在某些实施方案中,无纺衬面的温度可高于其软化点。为了实现膜与无纺衬面之间的希望的粘合成形,挤出的弹性体组合物的温度通常为大约50℃至大约300℃,在一些实施方案中,为大约60℃至大约275℃,并且在一些实施方案中,为大约70℃至大约260℃。
[0062] 现在将详细描述本发明层压技术的各种实施方案。参照图1,例如,示出了由弹性膜和熔喷衬面形成复合材料的方法的一个实施方案。在该实施方案中,在线上的熔喷衬面30由以下方式形成:将原料(如聚丙烯)从料斗6进料至挤出机8中,并随后将挤出的组合物提供至熔喷模头9中。当聚合物通过孔口(未示出)离开模头9时,高压流体(如,加热的空气)将使聚合物流变细并分散成微纤维11,所述微纤维11随机沉积在辊70的表面上以形成熔喷衬面30。应当理解的是,还可以将熔喷衬面30形成在分离的小孔表面(如线、带、织物等)上,随后横向穿过辊70。此外,应当理解的是,熔喷衬面30也可简单地由供应辊分散,而无需在线上形成。
[0063] 在图1示出的实施方案中,还形成了包含单热塑性层23和单弹性层21的弹性膜。更具体地,可以将弹性层21的原料加入至挤出机14的料斗12,并且可以将热塑性层23的原料加入至挤出机24的料斗22。材料在挤出机14和24中在高温下分散地混合和复合。
例如,在挤出机14中,弹性体组合物的熔融共混可以发生在大约50℃至300℃,在一些实施方案中,为大约60℃至大约275℃,并且在一些实施方案中,为大约70℃至大约260℃。热塑性组合物的熔融共混可以发生在挤出机24内,其温度与使用的弹性体组合物的温度相同、更低或更高。例如,热塑性组合物的熔融共混可以发生在大约50℃至大约250℃的温度,在一些实施方案中,为大约60℃至大约225℃,并且在一些实施方案中,为大约70℃至大约-1 -1
200℃。在熔融共混期间,表观剪切速率可以为大约100秒 至大约10,000秒 ,在一些实-1 -1 -1
施方案中,为大约500秒 至大约5000秒 ,并且在一些实施方案中,为大约800秒 至-1 3 3
大约1200秒 。该表观剪切速率等于4Q/πR,其中是Q为聚合物熔体的体积流速(″m/s″),R为熔融聚合物流过的毛细管(如挤出机模头)的直径(″m″)。
[0064] 可用任何已知的技术来将复合的材料形成膜,所述技术包括流延、平模头挤出法等。在图1的具体的实施方案中,例如,弹性和热塑性层被“流延”在熔喷衬面30上,正如现有技术中已知的,该衬面30位于辊70之上。因此,在衬面30上形成了流延的弹性膜40,使得弹性层21直接与衬面30相邻。为了增强膜40与衬面30之间的结合,施加抽吸力以使膜40偏压向熔喷衬面30的上表面。这可以以各种方法(如真空槽、导向板(shoes)、辊等)以及在复合材料成形工艺中的各个位置来完成。在图1示出的实施方案中,例如,在其上流延膜40的辊70是能施加希望的抽吸力的真空辊。可在不显著破坏低强度衬面的完整性的情况下选择性控制抽吸力的量以增强结合。例如,可以使用气体真空压力来施加抽吸力,所述抽吸力为大约0.25千帕或更大,在一些实施方案中,为大约0.3至大约5千帕,并且在一些实施方案中,为大约0.5至大约2千帕。这样的真空辅助层压法能在无需使用压延层压法中通常使用的可能损坏无纺衬面整体性的大量热和压力的情况下形成高强度的复合材料。事实上,如果确实希望的话,在其上形成膜40的辊70甚至可以保持在环境温度下。
[0065] 虽然不需要示出,但是还可以将第二衬面31层压至弹性膜40。可以在线上形成或由供应辊(例如,辊62)产生的第二层31。第二衬面31可以为无纺衬面,以及其它类型的无纺纤网材料、膜、泡沫等。在层压时,将弹性膜40在大量分离结合位置上熔融地融合至衬面30和31以形成复合材料80。也就是说,软化和/或熔化膜40的弹性聚合物使得它们可以物理地陷入材料30和31的纤维中。弹性膜40可以具有一定的粘性使得其也在层压时粘附至纤维。如果希望的话,粘合可以发生在不足以大体上软化衬面30和31的聚合物的温度下进行,使得它们基本上不彼此熔融地融合。通过这样的方式,得到的复合材料80可以较好地保持无纺衬面物理性能(例如,液体可渗透性、柔软度、体积和手感)。
[0066] 在不脱离本发明的精神和范围的情况下,还可采用各种现有技术已知的额外的加工和/或修饰步骤,如切割、拉伸等。例如,可任选地在机器横向和/或机器方向上机械拉伸复合材料,以提高延展性。在图1示出的实施方案中,例如,借助于在CD和/或MD方向上具有凹槽的两个或更多个的辊90在CD和/或MD方向上递增拉伸复合材料来加工复合材料。在Rhim等人的第2004/0110442号美国专利申请和Gerndt等人的第2006/0151914号美国专利申请中描述了带槽的附属辊(Grooved satellite roll)/支承辊的结构,在此出于所有目的将这些文献全文引入作为参考。槽辊90可以由或其它的硬材料(如硬橡胶)制成。
[0067] 图4-5还示出了槽辊可以递增拉伸复合材料的方式。如图所示,例如,附属辊(satellite roll)382可与支承辊384接合,它们中的任一个均包括多个脊(ridge)383,所述脊限定了与机器横向上的槽辊的相交叉的多个凹槽385。凹槽385通常定向地与材料拉伸的方向相垂直。换句话说,凹槽385定向为机器方向以在机器横向上拉伸复合材料。同样地,凹槽385也可定向在机器横向上,以在机器方向上拉伸复合材料。附属辊382的脊383与支承辊384的凹槽385互相啮合,且附属辊382的凹槽385和支承辊384的脊383互相啮合。
[0068] 凹槽385和脊383的尺寸和参数均对由辊382和384带来的延伸度具有极大影响。例如,辊上装有的凹槽385的数量通常为大约3至15个凹槽/英寸,在一些实施方案中,为大约5至12个凹槽/英寸,并且在一些实施方案中,为大约5至10个凹槽/英寸。凹槽385还可以具有特定的深度“D”,通常为大约0.25至大约1.0厘米,并且在一些实施方案中,为大约0.4至大约0.6厘米。此外,凹槽385之间的峰与峰的距离“P”通常为大约0.1至大约0.9厘米,并且在一些实施方案中,为大约0.2至大约0.5厘米。而且,凹槽385和脊383之间的槽辊啮合距离“E”可以为大约0.05至大约0.8厘米,在一些实施方案中,为大约0.1至大约0.7厘米,并且在一些实施方案中,为大约0.15至大约0.6厘米。无论如何,可以在一个或多个方向上将复合材料80(图1)拉伸为其拉伸前初始尺寸的大约100%至大约750%的尺寸(如长度或宽度),在一些实施方案中,为大约125%至大约500%,并且在一些实施方案中,为大约150%至大约400%。如果希望的话,在实施递增延伸之前或期间,还加热复合材料,使其稍微松弛和易于延伸。可利用现有技术中已知的任何适当的方法进行加热,例如热空气、红外线加热器、加热的夹辊、或用一个或多个加热辊或蒸汽罐部分地包围层压物等。还可以加热槽辊本身。应当理解的是,其它槽辊的布置也是同样适合的,如两个槽辊彼此紧紧相邻。
[0069] 除了上述的槽辊之外,还可使用其它技术来在一个或多个方向上机械地拉伸复合材料。例如,复合材料可以穿过用来拉伸复合材料的拉幅框。这样的拉幅框是现有技术已知的,例如,在Morman等人的第2004/0121687号美国专利申请中已有描述。还可以颈缩复合材料。在Morman的第5,336,545号、第5,226,992号、第4,981,747号和第4,965,122号美国专利以及Morman等人的第2004/0121687号美国专利申请公开中描述了适合的颈缩技术,在此出于所有目的将上述文献全文引入作为参考。
[0070] 再次参照图1,当成形时,可以将复合材料80切割、缠绕并储存在卷取辊95上。复合材料80在缠绕到卷取辊95上之前和/或期间可在机器方向上出现回缩。这可通过利用较小的线速度的辊95来实现。供选择地,复合材料80可以在拉紧的情况下缠绕到辊95上。
[0071] 在图1示出的实施方案中,并且如上所述,将膜的弹性层置于无纺衬面与膜的热塑性层之间。然而,在这样的实施方案中,热塑性层保持暴露状态,并在随后的工艺中遭到损坏,如当用槽辊在CD和/或MD方向上拉伸复合材料时。在某些情况中,损坏可以到达热塑性层无法赋予复合材料想要的强度的程度。因此,为了将这样的损坏最小化,可以采用一个或多个额外的弹性层,使得热塑性层被置于在至少两个弹性层之间,并因而在处理期间得到保护。
[0072] 再次参看图2,例如,示出了由弹性膜形成复合材料的方法的一个实施方案,该膜包含两个位于两个弹性层之间的热塑性层。在该实施方案中,无纺衬面130通过以下步骤在线上形成,将原料从料斗106进料至挤出机108中,随后将挤出的组合物提供至熔喷模头109中。微纤维111随机沉积在辊170的表面上以形成熔喷衬面130。将第一弹性层121的原料加入至挤出机114的料斗112中,并且将第一热塑性层123的原料加入挤出机124的料斗122中。材料被共挤出到位于辊170上的无纺衬面130以形成第一膜前体241。同样地,将第二弹性层221的原料加入至挤出机214的料斗212中,并将第二热塑性层223的原料加入至挤出机224的料斗222中。随后将材料共挤出至无缠绕在槽辊162上而是定位在第二辊270上的无纺衬面131上以形成第二膜前体242。
[0073] 如上所述,可施加抽吸力以将第一膜前体241偏压向无纺衬面130的上表面以形成第一复合材料前体310。同样地,还可以将抽吸力施加在第二膜前体242上,以将其偏压向无纺衬面131的上表面来形成第二复合材料前体320。在图2示出的实施方案中,复合材料前体310和320随后穿过用来在CD和/或MD方向上拉伸的槽辊190之间以形成单一的复合材料180,其包含由分离的膜前体241和242形成的膜。当然,除了如图2示出的形成膜以及由随后集合在一起的分离的膜前体形成复合材料,还应理解还可以使用其它方法。例如,如本领域所熟知的,膜可简单地通过将分别的组合物共挤出到辊的表面上来形成。
[0074] 无论形成的具体方法如何,本发明人已发现,得到的复合材料均具有高度的延展性和弹性回复。即,复合材料在机器横向上、机器方向上或这两个方向上具有峰值荷载的伸长率(“峰值伸长率”)是大约75%或更大,在一些实施方案中,为大约100%或更大,并且在一些实施方案中,为大约150%至大约500%。该复合材料也是弹性的,因为在至少一个方向上施加拉伸力时将其延伸,并且当释放拉伸力时,将其收缩/回到接近其原来的尺寸。例如,经拉伸的材料具有比其放松时未经拉伸的长度大至少50%的拉伸长度,并且当释放拉伸力时,它将回复其拉伸长度的至少50%。一个假设的实例是:一(1)英寸长的材料样品被拉伸至至少1.50英寸,以及当释放拉伸力时,将回复到不长于1.25英寸的长度。理想地,复合材料收缩或回复拉伸长度的至少50%,甚至更理想的,至少80%。
[0075] 复合材料还具有在机器方向和/或机器横向上的高强度。例如,复合材料的CD峰值荷载是至少大约1000克力/英寸(″gf/in″),在一些实施方案中,为大约1100至大约3000gf/in,并且在一些实施方案中,为大约1200至大约2500gf/in。同样地,MD峰值荷载是至少大约1500克力/英寸(″gf/in″),在一些实施方案中,为大约1500至大约6000gf/in,并且在一些实施方案中,为大约2000至大约5000gf/in。
[0076] V.制品
[0077] 本发明的复合材料可广泛地用于各种应用。如上所述,例如,该复合材料可用于吸收性制品。“吸收性制品”通常指的是能够吸收水或其它流体的任何制品。一些吸收性制品的实例包括,但不限于,个人护理用品,如尿布、训练裤、吸收衬裤、失禁用品、妇女卫生用品(如卫生巾)、泳衣、婴儿拭巾等;医用吸收性制品如服装、开窗术材料、底垫、床垫、绷带、吸收帘、和医用拭巾;以及餐巾,衣着用品等等。适用于形成这样的吸收性制品的材料和方法是本领域技术人员已知的。通常,吸收性制品包括基本不可渗透液体的层(如外层)、可渗透液体的层(如体侧衬里、涌出层等)以及吸收芯。在一个具体的实施方案中,本发明的复合材料可用于提供弹性腰带、腿套/填料、可拉伸的状物(stretchable ear)、侧面板或可拉伸外罩的用途。
[0078] 现在将详细描述依据本发明可形成的吸收性制品的各种实施方案。参照图3,例如,示出了一次性尿布450的一个实施方案,它通常限定了前腰部分455、后腰部分460、和相互连接前和后腰部分的中间部分465。前腰部分455和后腰部分460包括构造来在使用期间分别大体上延伸至穿戴者的前和后腹部区域的尿布的常规部分。尿布的中间部分465包括构造来拉伸穿过穿戴者腿之间的胯部区域的尿布的常规部分。因而,中间部分465是尿布中通常重复出现液体涌出的区域。
[0079] 非限定性地,尿布450包括外罩或底层470、与底层470面对布置的可渗透液体的体侧衬里或顶层475、和吸收芯主体或液体滞留结构480,如吸收垫,位于底层470与顶层475之间。底层470限定了长度或纵向方向486和宽度或横向方向485,在示出的实施方案中,它们与尿布450的长度和宽度一致。液体滞留结构480通常分别具有比底层470的长度和宽度短的长度和宽度。因此,尿布450的边缘部分,如底层470的边缘,可延伸穿过液体滞留结构480的端边。在示出的实施方案中,例如底层470延伸出液体滞留结构480的末端边缘区域以形成尿布450的侧边和端边。顶层475通常与底层470一同延伸,但如所希望的,可任选地覆盖比底层470的面积更大或更小的区域。
[0080] 为了改进贴合状态和有助于减少体液从尿布450漏出的情况,如以下进一步解释的,尿布侧边和端边可用适当的弹性部分使之具有弹性。例如,代表性地如图3所示,尿布450可包括腿部松紧带490,构造以可拉紧尿布450的侧边以得到弹性腿部带,该弹性腿部带可紧密地贴合穿戴者腿部周围,减少泄漏并获得更好的舒适感和外观。腰部松紧带495用来使尿布450的端边具有弹性,提供弹性的腰带。腰部松紧带495构造来提供穿戴者腰部周围有弹力的、舒适的紧密贴合度。本发明的弹性复合材料适用作腿部松紧带490和腰部松紧带495。示例性的这样的材料是层压片材,包括或粘附至底层,使得可向底层470施加弹性紧缩力。
[0081] 众所周知,紧固部件,如钩或环扣,可用来将尿布450固定在穿戴者身上。供选择地,也可使用其它紧固部件,如纽扣、大头针、扣、胶带固件、粘合剂、织物和环的紧固件等。在示出的实施方案中,尿布450包括结合在紧固件402上的一对侧面板400(或耳状物),如钩和环扣的钩部分所示出的。通常,侧面板400结合在腰部分455、460中的一个的尿布的侧边上,并横向向外延伸。侧面板400由于使用了本发明的弹性复合材料而具有弹性或以其它方式具有弹性。在Roessler的第W095/16425号PCT专利申请、Roessler等人第5,399,219号美国专利、Fries-的第5,540,796号美国专利和第5,595,618号Fries的美国专利中描述了包括弹性侧面板和选择性构造的紧固件标志的吸收性制品的实例,在此出于所有目的将这些文献全文引入作为参考。
[0082] 尿布450还可以包括涌出控制层405,位于顶层475与液体滞留结构480之间,以迅速地接收液体分泌物并将液体分泌物分布到尿布450中的液体滞留结构480。尿布450还可以包括透气层(未示出),也称为间隔区或间隔层,位于液体滞留结构480与底层470之间以将底层470与液体滞留结构480隔开来减少可透气的外罩的外表面或底层470带给衣物的湿气。在Bishop的第5,486,166号美国专利和Ellis的第5,490,846号美国专利中描述了适合的涌出控制层305的实例。
[0083] 如图3代表性示出的,一次性尿布450还包括一对容纳折翼(containment flap)410,构造来给横向流动的身体分泌液提供障碍。容纳折翼410可以沿尿布的横向相对侧边,并与液体滞留结构480的侧边相邻。每个容纳折翼410通常限定了未粘附边,其被构造来维持尿布450的至少中间部分465中的直立垂直的构型,以形成与穿戴者身体的密闭性。容纳折翼410还可沿着液体滞留结构480的整个长度纵向延伸,或可以仅沿着液体滞留结构的长度部分延伸。当容纳折翼410比液体滞留结构480的长度短时,容纳折翼410可选择性地位于沿着中间部分465中的尿布450的侧边的任意位置。这样的容纳折翼410对本领域技术人员来说是熟知的。例如,在Enloe的第4,704,116号美国专利中描述了适合的容纳折翼410的结造和布置。
[0084] 尿布450可以是各种适合的形状。例如,尿布可以是整个的矩形、T形或接近滴漏的形状。在示出的实施方案中,尿布450通常为I形的。可加入至本发明的吸收性制品的其它适合的部件可以包括本领域技术人员公知的腰部折翼等。在Meyer等人的第4,798,603号、Bernardin的第5,176,668号、第5,176,672号Bruemmer等人、Proxmire等人的第5,192,606号和Hanson等人的第5,509,915号美国专利中描述了适合与本发明的弹性复合材料一同使用的尿布结构的实例,这些尿布还可以包括可用于尿布的其它部件,在此出于所有目的将这些文献全文引入作为参考。
[0085] 可采用任何已知的连接机制来将尿布450的各种区域和/或部件组装到一起,如粘结剂结合、超声结合、热粘结合等。适合的粘结剂包括例如热熔粘结剂、压敏粘结剂等。当使用粘结剂时,粘结剂可施用成均匀层、有图案的层、喷射的图案或任意的分离的线、漩涡或点。在示出的实施方案中,例如,顶层475和底层470可用线状的结合剂彼此结合,并且与液体滞留结构480结合在一起,粘结剂如热熔粘结剂、压敏粘结剂。同样地,其它尿布部件,如弹性组件490和495、紧固组件402和涌出层405均可利用上述的连接机制组装在制品上。
[0086] 虽然上面已经描述了尿布的各种构型,但应当理解的是,其它尿布和吸收性制品的构型也是落入本发明的范围的。此外,本发明并不限于尿布。事实上,在DiPalma等人的第5,649,916号美国专利、Kielpikowski的第6,110,158号和Blanev等人的第6,663,611号中描述了各种吸收性制品的实例,在此出于所有目的将这些文献全文引入作为参考。此外,可并入此类材料的个人护理用品的其它实例是训练裤(如侧面板材料)和妇女卫生用品。仅仅是示例性的方式,在Fletcher等人的第6,761,711号、Van Gompel等人的第4,940,464号、Brandon等人的第5,766,389号和Olson等人的第6,645,190号美国专利公开了适于与本发明一同使用的训练裤和构造训练裤的各种材料和方法,在此出于所有目的将这些文献全文引入作为参考。
[0087] 参看以下实施例,本发明将变得更易理解。
[0088] 检测方法
[0089] 拉伸性能:
[0090] 基本依据ASTM标准D-5034来测定条状物的拉伸强度值。具体地,将样品切割成或以其它方式提供成1英寸(25.4毫米)(宽度)×6英寸(152.4毫米)(长度)的尺寸大小。使用恒速拉伸型的拉伸检测仪。拉伸检测系统是Sintch拉伸检测仪,可自Eden Prairie,Minnesota的MTS Corp.获得。拉力检测器配备有购自MTS公司的TESTWORKS 4.08B软件,以进行检测。选择适当的荷载元件,使得检测值将落入满荷载规模的10-90%的范围内。将样品固定在前和背面为1英寸(25.4毫米)×3英寸(76毫米)的夹子之间。夹子表面经橡胶化处理,夹子较长的尺寸与拉力方向相垂直。夹子的压力在空气作用下保持为60至80磅/平方英寸的压力。拉力检测按20英寸/分钟的速率、4英寸的标距长度和40%的断裂敏感度来运行。沿着机器方向(“MD”)检测三个样品,沿着机器横向(“CD”)检测三个样品。此外,还记录极限拉伸强度(“峰值荷载”)和峰值伸长率。
[0091] 拉伸至停止
[0092] 利用TESTWORKS 4.08b软件(Eden Prairie,Minnesota的MTSCorp.)在具有Renew MTS mongoose box(控制器)的Sintech进行测试。如下所述,测定荷载2000克力的材料的伸长率百分比。利用基本依据ASTM D5035-95的说明书中的“条状物伸长率检测法”进行这样的测定。检测使用两个夹钳,每个夹钳具有两个钳口,每个钳口具有与样品接触的一个断面。夹钳将材料固定在同一平面上,并向外以特定的速率延伸。选择机器横向上3英寸和机器方向上7英寸的样品尺寸。夹子尺寸为宽度3英寸,使用相互啮合的夹子,使得材料在检测期间不会滑落。夹子隔开4英寸。装载入样品,使得样品的机器方向位于垂直方向。设置接近5-10克力的预加载。用20英寸/分钟的十字头速度检测样品。直到产生了2000克力的拉伸时移开样品,且随后停止检测。当产生2000克力的拉伸时的检测被记为伸长率%。得到的结果是三种样品的平均值,并且给出了样品在机器横向(CD)和/或机器方向(MD)上的检测结果。
[0093] 迟滞
[0094] 使用配备有TESTWORKS软件的Sintech 1/S设备来测定弹性体材料的迟滞性。将弹性材料切成条状物,每个条状物的宽度为3英寸、长度为6英寸。材料的两端夹在设备的相对的钳口中,使得材料两端各1英寸的长度保持在钳口内,4英寸的长度可用于拉伸。按20英寸/分钟的速率拉伸每个材料的条状物至数据表中的特定伸长值,测定曲线下的面积(表示力×位移),记载为“荷载能”。随后,使材料条状物回复至拉伸力为0时的长度。在回缩期间,再次测定曲线下的面积并记录。这是“卸载能”。依据下述等式计算迟滞性:
[0095]
[0096] 实施例1
[0097] 该实施例证明了形成弹性复合材料的能力。复合材料中使用的膜包含90重量%的弹性体组合物和10重量%的热塑性组合物。弹性体组合物包含86重量%的KRATONTMMD6716(德克萨斯州休斯顿的Kraton Polymers,LLC)、10重量%的STYRON 666D(Dow Chemical)和4重量%的Standridge Color Corporation(″SCC″)4837。KRATONMD6716包含接近75重量%的苯乙烯-乙烯-丁烯-苯乙烯(″SEBS″)嵌段共聚物、增TM
粘剂和聚乙烯蜡,并具有7g/10min的目标熔体流动速率(200℃、5kg)。STYRON 666D是熔体流动速率为8g/10min(200℃、5kg)的聚苯乙烯树脂。SCC 4837是包含与聚乙烯混合的二氧化钛的颜料。膜的热塑性组合物包含59.5%的PP3155(ExxonMobil)、31.5重量%的DOWLEXTM 2517(Dow Chemical)以及4重量%的SCC4837。PP3155是熔体流动速率为
3 TM
36g/10min(230℃、2.16kg)以及密度为0.9g/cm 的聚丙烯均聚物树脂。DOWLEX 2517是熔
3
融指数为25g/10min(190℃、2.16kg)、密度为0.917g/cm 和熔点为255℉的线性低密度聚乙烯树脂。
[0098] 复合材料还包括把膜夹在中间的两个衬面。一个衬面是购自佐治亚州Covington的FiberVisions的17gsm T-133聚丙烯粘合梳理纤网,其在机器方向和机器横向上的定向比例为5∶1。粘合梳理纤网在机器方向上的峰值荷载为大约1133克力/英寸,且在机器横向上的峰值荷载为大约150克力/英寸。另一衬面是由60重量%的TM TMMETOCENE MF650W(Lyondell Basell)和40重量的%VISTAMAXX 2330(ExxonMobil)形成TM
的17gsm的熔喷纤网。METOCENE MF650W是熔体流动速率为500g/10min和密度为0.88g/
3 3 TM
cm 至0.92g/cm 的茂金属催化的聚丙烯均聚物。VISTAMAXX 2330是熔体流动速率为
3
285g/10min和密度为0.868g/cm 的聚烯烃共聚物/弹性体。熔喷纤网在机器横向上的峰值荷载是大约273克力/英寸。
[0099] 通过称取适当比例的各种聚合物的小球,将它们混合装入容器中,并通过搅拌将它们混合在一起,从而将膜和熔喷层的聚合物复合。复合后,利用20”宽的Randcastle共挤出膜的模头制成基重为32gsm的弹性体膜。膜的弹性体组分以7.96rpm的旋转速度进入挤出机,并且软管和模头温度为大约500℉。膜的热塑性组分以10.35rpm的速度并且在大约380℉的软管温度下进入挤出机。在这种情况下,热塑性层被挤出位于膜中心,且弹性体部分被挤出,位于热塑性层的任意一侧上,形成夹心结构(即A-B-A膜,其中层B是热塑体,而层A是弹性体)。利用20”宽的熔喷系统经一连串步骤制成基重为17gsm的熔喷纤网,该系统的每英寸模头宽度上具有30根毛细管,空气压力为4.5psi,旋转泵速度为17.3rpm,模头高度为10.5英寸,空气温度为大约630℉,并且模头温度为480℉。粘合梳理纤网由辊供应,且无缠绕地进入复合材料形成工艺中。
[0100] 为了形成复合材料,在移动速度为63英尺/分钟的形成线上形成熔喷纤网。随后将膜挤出至熔喷纤网上,并在熔融时期间对膜施加抽抽吸力和挤出。抽吸操作采用1″H2O-15″H2O的真空压力。随后当膜仍然处于熔融状态时,将热粘合梳理纤网挤出在膜/熔喷层上。接着,将复合材料输送至带有每英寸具有啮合为0.252英寸的5个凹槽的槽辊装置。然后缠绕材料。表1示出了得到的这种材料的材料性质。同样地,图6和7示出了显示位于中心的热塑性成分的膜层横截面的扫描电镜图像。
[0101] 表1材料性质
[0102]
[0103] 实施例2
[0104] 该实施例证明了形成弹性复合材料的能力。复合材料中使用的膜包含大约90-95重量%的弹性体组合物和5-10重量%的热塑性组合物。弹性体组合物包含86重量%的KRATON MD6716、10重量的%STYRONTM 666D和4重量%的SCC 4837。热塑性组合物包含48重量%的PP3155、48重量%的DOWLEXTM 2517以及4重量%的SCC4837。该复合材料还包括把膜夹在中间的两个衬面。复合材料的两个衬面均由包含60重量%的VALTECTM HH441(Lyondell Basell)和VISTAMAXXTM 2330的17gsm的熔喷纤网制成。VALTECTMHH441是熔体流动指数为440g/10min(230℃、2.16kg)和密度为0.902g/cm3的超高熔体流动的聚丙烯均聚物树脂。
[0105] 通过称取适当比例的各种聚合物的小球,将它们混合装入容器中,并通过搅拌将它们混合在一起,从而将膜和熔喷层的聚合物复合。复合后,利用20”宽的Randcastle共挤出膜模头制成基重为45gsm的弹性体膜。膜的弹性体组分以8.96rpm的旋转泵速度、500℉的软管温度和480℉的模头温度进入挤出机。膜的热塑性组分以以10.35rpm的速度和380℉的软管温度进入挤出机。在这种情况下,膜的弹性体组分被挤出,位于膜中心,且热塑性组分被挤出,位于弹性层的任意一侧以形成夹心结构(即A-B-A膜,其中层A是热塑体,层B是弹性体)。利用20”宽的熔喷系统经一连串步骤制备基重为17gsm的两个熔喷衬面,该系统的每英寸模头宽度上具有30根毛细管,旋转泵速度为17.3rpm,模头高度为10.5英寸,空气温度为630℉,以及模头温度为480℉。
[0106] 为了形成复合材料,以63英尺/分钟的速度将底部熔喷衬面无缠绕地置于成形线上。随后将膜挤出至熔喷纤网上,并在熔融时对膜施加抽吸力和挤出。抽吸操作采用1″H2O-15″H2O的真空压力。随后当膜仍然处于熔融状态时,将另一熔喷纤网挤出在膜/熔喷层上。接着,将复合材料输送至带有每英寸具有啮合为0.168英寸的5个凹槽的槽辊单元。然后缠绕材料。表2示出了该材料的获得的材料性质。
[0107] 表2材料性质
[0108]
[0109] 实施例3
[0110] 阐明了形成弹性复合材料的能力。复合材料使用的膜包含大约90-95重量%的弹性体组合物和5-10重量%的热塑性组合物。弹性体组合物包含59.5重量%KRATONMD6716、31.5重量%STYRONTM666D和4重量%SCC 4837。热塑性组合物包含59.5%TMPP3155、31.5重量%DOWLEX 2517和4重量%SCC4837。该复合材料还包括把膜夹在中间的两个衬面。该衬面与实施例1中使用的那些相同。
[0111] 通过称取各个聚合物适当部分的小球来将膜和熔喷层的聚合物复合,将它们组合装入一个容器中,并通过搅拌来将它们混合一起。在复合后,利用20”宽的Randcastle共挤出膜模头形成基重为44gsm的弹性膜。膜的弹性体组分进料至旋转泵速度为7.96rpm、软管温度为500℉和模头温度为480℉的挤出机。膜的热塑性组分进料至速度为10.35rpm和软管温度为380℉的挤出机。在这种情况下,弹性体层被挤出在膜中心,且热塑性组分被挤出至热塑性层的任意一侧以形成夹心结构(即A-B-A膜,其中层B是弹性体,层A是热塑体)。粘合的梳织布被供应至辊上,无缠绕地进入复合材料成型步骤。利用20”宽的熔喷系统经一连串步骤制造基重为17gsm的两个熔喷衬面,该系统的模头宽度的每英寸具有30毛细管,空气压力为2psi,旋转泵速度为17.3rpm,模头高度为10.5英寸,空气温度为630℉,以及模头温度为480℉。
[0112] 为了制造复合材料,在移动速度为63英尺/分钟的成型线上形成底部熔喷衬面。随后将膜挤出至熔喷无纺纤网上,并在仍然保持熔融的期间被施加抽吸力和挤出到膜上。
用1″H2O-15″H2O的真空压力来获得抽吸力。随后当膜仍然处于熔融状态时,将另一个熔喷无纺纤网挤出在膜/熔喷层上。接着,将复合材料引导至每英寸具有啮合为0.168英寸的5个凹槽的槽辊单元。然后缠绕材料。表3示出了该材料的得到材料性质。
[0113] 表3材料性质
[0114]
[0115] 实施例4
[0116] 阐明形成弹性复合材料的能力。复合材料使用的膜包含100重量%的弹性体组合物。弹性体组合物包含86重量%KRATON MD6716、10重量%STYRONTM 666D和4重量%SCC 4837。该复合材料还包括把膜夹在中间的两个衬面。一个衬面是实施例1的粘合梳理TM纤网。另一个衬面是由60重量%DNDA 1082 NT-7(陶氏化学)和40重量%VISTAMAXX
2330形成的17gsm的熔喷纤网。DNDA1082 NT-7是熔体流动指数为155g/10min(190℃、
3
2.16kg)、密度为0.933g/cm 和熔点为257℉的线性低密度聚乙烯树脂。
[0117] 通过称取各个聚合物适当部分的小球来将膜和熔喷层的聚合物复合,将它们组合装入一个容器中,并通过搅拌来将它们混合一起。在复合后,利用20”宽的Randcastle共挤出膜模头制成基重为46gsm的弹性膜。膜的弹性体组分进料至旋转泵速度为7.96rpm、软管温度为500℉和模头温度为480℉的挤出机。粘合的梳织布被从辊上供应,无缠绕地进入复合材料成形工艺中。利用20”宽的熔喷系统经一连串步骤形成基重为17gsm的熔喷无纺纤网,该系统的每英寸模头宽度具有30毛细管,空气压力为4.5psi,旋转泵速度为17.3rpm,模头高度为10.5英寸,空气温度为630℉,以及模头温度为480℉。
[0118] 为了制造复合材料,在移动速度为63英尺/分钟的成形线上形成熔喷纤网。随后将膜挤出至熔喷纤网上,并在仍然保持熔融的期间被施加抽吸力和挤出到膜上。用1″H2O-15″H2O的真空压力来获得抽吸力。随后当膜仍然处于熔融状态时,将热粘的梳织布挤出在膜/熔喷层上。接着,将复合材料引导至每英寸具有啮合为0.224英寸的5个凹槽的槽辊装置。然后缠绕材料。表4示出了该材料的得到材料性质。
[0119] 表4材料性质
[0120]
[0121] 实施例5
[0122] 阐明了形成弹性复合材料的能力。如实施例所述来形成膜。该复合材料还包括把膜夹在中间的两个衬面。两个衬面均是如实施例1所述的粘合梳理纤网。通过称取各个聚合物适当部分的小球来将膜和熔喷层的聚合物复合,将它们组合装入一个容器中,并通过搅拌来将它们混合一起。在复合后,利用20”宽的Randcastle共挤出膜模头形成基重为49gsm的弹性膜。膜的弹性成分供给至旋转泵速度为8.96rpm、软管温度为500℉和模头温度为480℉的挤出机。膜的热塑性组合物进料至旋转泵速度为10.35rpm和软管温度为
380℉的挤出机。在这种情况下,弹性体层被挤出在膜中心,而热塑性组分被挤出至热塑性层的任意一边以形成夹心结构(即A-B-A膜,其中层B是弹性体,而层A是热塑体)。粘合梳理纤网被从辊上供应,无缠绕地进入复合材料成形工艺。
[0123] 为了制造复合材料,在移动速度为63英尺/分钟的成性线上形成底部热粘合梳理纤网。随后,将膜挤出至熔喷无纺纤网上,并在仍然保持熔融的期间被施加抽吸力和挤出到膜上。用1″H2O-15″H2O的真空压力来获得抽吸力。随后当膜仍然处于熔融状态时,将另一个热粘合梳理纤网挤出在膜/熔喷层上。接着,将复合材料引导至每英寸具有啮合为0.168英寸的5个凹槽的槽辊装置。然后缠绕材料。表5示出了该材料得到的材料性质。
[0124] 表5材料性质
[0125]
[0126] 尽管已经详细描述了本发明的具体实施方案,但是应注意的是,本领域的技术人员通过对前述内容的理解,可以很容易地想到这些实施方案的修改、变化和等同方式。因此,本发明的范围应该被认为是所附的权利要求及其等同方式的范围。
QQ群二维码
意见反馈