首页 / 国际专利分类库 / 作业;运输 / 层状产品 / 层状产品,即由扁平的或非扁平的薄层,例如泡沫状的、蜂窝状的薄层构成的产品 / 电器设备 / .半导体晶圆 / 底部填充片、背面研削用胶带一体型底部填充片、切割胶带一体型底部填充片及半导体装置的制造方法

底部填充片、背面研削用胶带一体型底部填充片、切割胶带一体型底部填充片及半导体装置的制造方法

申请号 CN201480009322.0 申请日 2014-02-07 公开(公告)号 CN105027271A 公开(公告)日 2015-11-04
申请人 日东电工株式会社; 发明人 盛田浩介; 高本尚英; 花园博行; 福井章洋;
摘要 本 发明 提供一种底部填充片,其可良好地将 半导体 元件的 电路 面的凹凸埋入,可将半导体元件的 端子 与被粘接体的端子良好地连接,可减少脱气。本发明涉及一种底部填充片,其在150℃、0.05~0.20转/分钟时的 粘度 为1000~10000Pa·s,在100~200℃、0.3~0.7转/分钟时的最低粘度为100Pa·s以上。
权利要求

1.一种底部填充片,其在150℃、0.05~0.20转/分钟时的粘度为1000~10000Pa·s,且在100~200℃、0.3~0.7转/分钟时的最低粘度为100Pa·s以上。
2.如权利要求1所述的底部填充片,其包含平均粒径为0.01~10μm的填料
15~70重量%、丙烯酸树脂2~30重量%。
3.如权利要求1或2所述的底部填充片,其在175℃下进行1小时热固化处理后的储能模量E'MPa及热膨胀系数αppm/K在25℃下满足下述式(1)
E'×α<250000Pa/K···(1)。
4.如权利要求3所述的底部填充片,其中,所述储能模量E'为100~10000MPa,且所述热膨胀系数α为10~200ppm/K。
5.如权利要求3或4所述的底部填充片,其中,所述储能模量E'MPa与所述热膨胀系数αppm/K满足下述式(2)
100006.如权利要求1~5所述的底部填充片,其包含热固化性树脂。
7.如权利要求6所述的底部填充片,其中,所述热固化性树脂包含环氧树脂树脂。
8.一种背面研削用胶带一体型底部填充片,其具备背面研削用胶带、及层叠在所述背面研削用胶带上的权利要求1~7中任一项所述的底部填充片。
9.一种切割胶带一体型底部填充片,其具备切割胶带、及层叠在所述切割胶带上的权利要求1~7中任一项所述的底部填充片。
10.一种半导体装置的制造方法,其包括借助权利要求1~7中任一项所述的底部填充片将半导体元件固定于被粘接体的工序。

说明书全文

底部填充片、背面研削用胶带一体型底部填充片、切割胶带

一体型底部填充片及半导体装置的制造方法

技术领域

[0001] 本发明涉及一种底部填充片、背面研削用胶带一体型底部填充片、切割胶带一体型底部填充片及半导体装置的制造方法。

背景技术

[0002] 近年来,由电子设备的小型、薄型化带来的高密度安装的要求急剧地增加。因此,关于半导体封装,适于高密度安装的表面安装型代替先前的插件型成为主流。
[0003] 在表面安装后,为了确保半导体元件表面的保护或半导体元件与基板之间的连接可靠性,而对半导体元件与基板之间的空间进行液状的密封树脂的填充。然而,在窄间距的半导体装置的制造中,若使用液状的密封树脂,则有时产生空隙(气泡)。因此,还提出了使用片状的密封树脂(底部填充片)填充半导体元件与基板之间的空间的技术(专利文献1)。
[0004] 在先技术文献
[0005] 专利文献
[0006] 专利文献1:日本专利第4438973号

发明内容

[0007] 发明所要解决的问题
[0008] 一般而言,使用底部填充片的工艺中,将设置有端子(等)的半导体元件的电路面与底部填充片贴合,因此要求底部填充片追随电路面的凹凸而密合。然而,若底部填充片的粘度较高,则有时无法充分地将凹凸埋入而产生空隙。另外,在将半导体元件的端子与被粘接体的端子连接时,存在这些端子间的底部填充材料未退让,底部填充材料介于中间而发生连接不良的可能。另一方面,若底部填充片的粘度较低,则存在脱气(アウトガス)产生(在连接时或热固化时产生的气体)时形成空隙的情形。
[0009] 本发明是鉴于上述问题而完成的,其目的在于提供一种底部填充片,其可良好地将凹凸埋入,可将半导体元件的端子与被粘接体的端子良好地连接,可减少脱气所致的空隙的产生。另外,本发明的目的在于提供一种背面研削用胶带一体型底部填充片、切割胶带一体型底部填充片及半导体装置的制造方法。
[0010] 用于解决问题的方法
[0011] 本申请发明人发现通过采用下述构成可解决上述课题,从而完成了本发明。
[0012] 即,本发明涉及一种底部填充片,其在150℃、0.05~0.20转/分钟时的粘度为1000~10000Pa·s,且在100~200℃、0.3~0.7转/分钟时的最低粘度为100Pa·s以上。
[0013] 通常在使用底部填充片的半导体装置的制造工艺中,在加热条件下,借助底部填充片而将半导体元件固定于被粘接体。本发明的底部填充片在150℃、0.05~0.20转/分钟时的粘度为1000~10000Pa·s,因此加热条件下的底部填充片的流动性成为最佳范围,可良好地埋入半导体元件表面的凹凸。另外,端子间的底部填充材料良好地退让,因此可将半导体元件的端子与被粘接体的端子良好地连接。
[0014] 另外,本发明的底部填充片在100~200℃、0.3~0.7转/分钟时的最低粘度为100Pa·s以上,因此可减少脱气所致的空隙的产生。
[0015] 本发明的底部填充片优选包含平均粒径为0.01~10μm的填料15~70重量%、丙烯酸系树脂2~30重量%。由此,可良好地实现上述粘度。
[0016] 本发明的底部填充片优选为,在175℃下进行1小时热固化处理后的储能模量E'[MPa]及热膨胀系数α[ppm/K]在25℃下满足下述式(1)。
[0017] E'×α<250000[Pa/K]···(1)
[0018] 若底部填充片的热固化后的储能模量E'[MPa]及热膨胀系数α[ppm/K]满足上述式(1),则可缓和半导体元件与被粘接体的热响应行为之差,可获得接合部的断裂受到抑制的连接可靠性高的半导体装置。在上述式(1)中,储能模量E'与热膨胀系数α成反比例关系。若储能模量E'升高,则底部填充片自身的刚性提高而可吸收或分散应。此时,热膨胀系数α变低,底部填充片自身的热膨胀行为受到抑制,因此可降低对邻接的构件(即,半导体元件或被粘接体)的机械损伤。另一方面,若储能模量E'变低,则底部填充片自身的柔软性提高,而可吸收邻接的构件、尤其是被粘接体的热响应行为。此时,热膨胀系数α变高,底部填充片的热响应行为与被粘接体的热响应行为同步,且由于储能模量E'的降低故对半导体元件的影响受到抑制,整体上使应力缓和。如此,可谋求半导体元件、被粘接体、及底部填充片相互的应力的最佳缓和,因此还可抑制连接构件(凸块)的断裂,其结果为,可提高半导体装置的连接可靠性。需要说明的是,储能模量E'及热膨胀系数α的测定方法如实施例的记载。
[0019] 优选为所述储能模量E'为100~10000[MPa],且所述热膨胀系数α为10~200[ppm/K]。通过使储能模量E'及热膨胀系数α分别为这样的范围,可有效地缓和整个系统的应力。
[0020] 优选为所述储能模量E'[MPa]与所述热膨胀系数α[ppm/K]满足下述式(2)。
[0021] 10000
[0022] 通过使储能模量E'及热膨胀系数α满足上述式(2),可更容易地实现半导体元件、被粘接体、及底部填充片相互的应力的最佳缓和。
[0023] 本发明的底部填充片优选包含热固化性树脂。另外,所述热固化性树脂优选包含环氧树脂树脂。由此,可良好地实现所述粘度,并且可容易地实现底部填充片的上述式(1)的充分性。
[0024] 另外,本发明涉及一种背面研削用胶带一体型底部填充片,其具备背面研削用胶带、及层叠在所述背面研削用胶带上的所述底部填充片。通过将背面研削用胶带与底部填充片一体地使用,可提高制造效率。
[0025] 另外,本发明涉及一种切割胶带一体型底部填充片,其具备切割胶带、及层叠在所述切割胶带上的所述底部填充片。通过将背面研削用胶带与底部填充片一体地使用,可提高制造效率。
[0026] 另外,本发明涉及一种半导体装置的制造方法,其包括借助所述底部填充片将半导体元件固定于被粘接体的工序。附图说明
[0027] 图1为背面研削用胶带一体型底部填充片的剖面示意图。
[0028] 图2A为表示使用背面研削用胶带一体型底部填充片的半导体装置的制造方法的一工序的图。
[0029] 图2B为表示使用背面研削用胶带一体型底部填充片的半导体装置的制造方法的一工序的图。
[0030] 图2C为表示使用背面研削用胶带一体型底部填充片的半导体装置的制造方法的一工序的图。
[0031] 图2D为表示使用背面研削用胶带一体型底部填充片的半导体装置的制造方法的一工序的图。
[0032] 图2E为表示使用背面研削用胶带一体型底部填充片的半导体装置的制造方法的一工序的图。
[0033] 图2F为表示使用背面研削用胶带一体型底部填充片的半导体装置的制造方法的一工序的图。
[0034] 图2G为表示使用背面研削用胶带一体型底部填充片的半导体装置的制造方法的一工序的图。
[0035] 图3为切割胶带一体型底部填充片的剖面示意图。
[0036] 图4A为表示使用切割胶带一体型底部填充片的半导体装置的制造方法的一工序的图。
[0037] 图4B为表示使用切割胶带一体型底部填充片的半导体装置的制造方法的一工序的图。
[0038] 图4C为表示使用切割胶带一体型底部填充片的半导体装置的制造方法的一工序的图。
[0039] 图4D为表示使用切割胶带一体型底部填充片的半导体装置的制造方法的一工序的图。

具体实施方式

[0040] [底部填充片]
[0041] 本发明的底部填充片在150℃、0.05~0.20转/分钟时的粘度为1000Pa·s以上,优选为2000Pa·s以上。由于为1000Pa·s以上,因此可防止加压时挤出的树脂所致的加压装置的污染。
[0042] 另外,在150℃、0.05~0.20转/分钟时的粘度为10000Pa·s以下,优选为8000Pa·s以下。由于为10000Pa·s以下,因此加热条件下的底部填充片的流动性成为最佳范围,可良好地埋入半导体元件表面的凹凸。另外,端子间的底部填充材料良好地退让,因此可将半导体元件的端子与被粘接体的端子良好地连接。
[0043] 150℃、0.05~0.20转/分钟时的粘度可通过二氧化硅填料的粒径、二氧化硅填料的含量、丙烯酸系树脂的含量、丙烯酸系树脂的分子量、热固化性树脂的含量等进行控制。
[0044] 例如,通过减小二氧化硅填料的粒径、增大二氧化硅填料的含量、增大丙烯酸系树脂的含量、增大丙烯酸系树脂的分子量、减少热固化性树脂的含量、可提高150℃、0.05~0.20转/分钟时的粘度。
[0045] 另外,本发明的底部填充片在100~200℃、0.3~0.7转/分钟时的最低粘度为100Pa·s以上,优选为500Pa·s以上。由于为100Pa·s以上,因此可减少脱气所致的空隙的产生。
[0046] 另外,100~200℃、0.3~0.7转/分钟时的最低粘度优选为10000Pa·s以下,更优选为8000Pa·s以下。若为10000Pa·s以下,则加热条件下的底部填充片的流动性成为最佳范围,可良好地埋入半导体元件表面的凹凸。另外,由于端子间的底部填充材料良好地退让,因此可将半导体元件的端子与被粘接体的端子良好地连接。
[0047] 100~200℃、0.3~0.7转/分钟时的最低粘度可通过二氧化硅填料的粒径、二氧化硅填料的含量、丙烯酸系树脂的含量、丙烯酸系树脂的分子量、热固化性树脂的含量等进行控制。
[0048] 例如,通过减小二氧化硅填料的粒径、增大二氧化硅填料的含量、增大丙烯酸系树脂的含量、增大丙烯酸系树脂的分子量、减少热固化性树脂的含量、可提高100~200℃、0.3~0.7转/分钟时的最低粘度。
[0049] 需要说明的是,150℃、0.05~0.20转/分钟时的粘度、及100~200℃、0.3~0.7转/分钟时的最低粘度可使用流变仪进行测定。具体而言,可通过实施例中记载的方法进行测定。
[0050] 本发明的底部填充片优选为,在175℃下进行1小时热固化处理后的储能模量E'[MPa]及热膨胀系数α[ppm/K]在25℃下满足下述式(1)。
[0051] E'×α<250000[Pa/K]···(1)。
[0052] 通过满足上述式(1),可缓和半导体元件与被粘接体的热响应行为之差,可获得接合部的断裂受到抑制的连接可靠性高的半导体装置。另外,可实现半导体元件、被粘接体、及底部填充片的相互作用的应力的最佳缓和,因此还可抑制连接构件的断裂,可提高半导体装置的连接可靠性。
[0053] 优选上述储能模量E'为100~10000[MPa],且上述热膨胀系数α为10~200[ppm/K]。通过使储能模量E'及热膨胀系数α分别为这样的范围,可有效地缓和半导体装置整体的系统应力。
[0054] 优选上述储能模量E'[MPa]与上述热膨胀系数α[ppm/K]满足下述式(2)。
[0055] 10000
[0056] 通过使热固化后的底部填充片的储能模量E'及热膨胀系数α满足上述式(2),可更容易地实现半导体元件、被粘接体、及底部填充片的相互应力的最佳缓和。
[0057] 将底部填充片在175℃下进行1小时热固化处理后的玻璃化转变温度(Tg)优选为100~180℃,更优选为130~170℃。通过将热固化后的底部填充片的玻璃化转变温度设为上述范围,可抑制热循环可靠性试验的温度范围内的急剧物性变化,可期待更进一步的可靠性的提高。
[0058] 需要说明的是,热固化前的底部填充片在温度23℃、湿度70%的条件下的吸率优选为1重量%以下,更优选为0.5重量%以下。通过使底部填充片具有如上所述的吸水率,从而向底部填充片的水分的吸收受到抑制,可更有效地抑制半导体元件的安装时的空隙产生。需要说明的是,上述吸水率的下限越小越好,优选实质上为0重量%,更优选为0重量%。
[0059] 作为底部填充片的构成材料,从离子性杂质少且耐热性较高、可确保半导体元件的可靠性方面出发,优选使用丙烯酸系树脂。
[0060] 作为上述丙烯酸系树脂,并无特别限定,可列举以1种或2种以上的具有数30以下、尤其是碳数4~18的直链或支链的烷基的丙烯酸或甲基丙烯酸的酯作为成分的聚合物等。作为上述烷基,例如可列举:甲基、乙基、丙基、异丙基、正丁基、叔丁基、异丁基、戊基、异戊基、己基、庚基、环己基、2-乙基己基、辛基、异辛基、壬基、异壬基、癸基、异癸基、十一烷基、月桂基、十三烷基、十四烷基、硬脂基、十八烷基、或十二烷基等。
[0061] 另外,作为形成上述聚合物的其他单体,并无特别限定,例如可列举:丙烯腈之类的含氰基单体;丙烯酸、甲基丙烯酸、丙烯酸羧基乙酯、丙烯酸羧基戊酯、衣康酸、来酸、富马酸或巴豆酸等之类的含羧基单体;马来酸酐或衣康酸酐等之类的酸酐单体;(甲基)丙烯酸2-羟基乙酯、(甲基)丙烯酸2-羟基丙酯、(甲基)丙烯酸4-羟基丁酯、(甲基)丙烯酸6-羟基己酯、(甲基)丙烯酸8-羟基辛酯、(甲基)丙烯酸10-羟基癸酯、(甲基)丙烯酸12-羟基月桂酯或(4-羟基甲基环己基)-甲基丙烯酸酯等之类的含羟基单体;苯乙烯磺酸、烯丙基磺酸、2-(甲基)丙烯酰胺-2-甲基丙磺酸、(甲基)丙烯酰胺丙磺酸、(甲基)丙烯酸磺丙酯或(甲基)丙烯酰氧基磺酸等之类的含磺酸基单体;或如2-羟基乙基丙烯酰基磷酸酯等之类的含磷酸基单体。
[0062] 底部填充片中的丙烯酸系树脂的含量优选为2重量%以上,更优选为5重量%以上。若为2重量%以上,则可良好地调整为上述最低粘度。另外,底部填充片中的丙烯酸系树脂的含量优选为30重量%以下,更优选为25重量%以下。若为30重量%以下,则容易落入上述150℃时的粘度范围,可良好地埋入半导体元件表面的凹凸。另外,端子间的底部填充材料良好地退让,因此可将半导体元件的端子与被粘接体的端子良好地连接。
[0063] 作为底部填充片的构成材料,优选使用热固化性树脂。
[0064] 作为上述热固化性树脂,可列举:酚醛树脂、胺基树脂、不饱和聚酯树脂、环氧树脂、聚酯树脂、硅树脂、或热固化性聚酰亚胺树脂等。这些树脂可单独使用或并用2种以上。尤其是从腐蚀半导体元件的离子性杂质等含有较少的方面出发,从可抑制切割的切断面中,底部填充片的糊的挤出,且可抑制切断面彼此的再粘着(粘连)的方面出发,优选为环氧树脂。另外,作为环氧树脂的固化剂,优选为酚醛树脂。
[0065] 上述环氧树脂只要是通常用作胶粘剂组合物的环氧树脂,则并无特别限定,例如可使用:双酚A型、双酚F型、双酚S型、溴化双酚A型、氢化双酚A型、双酚AF型、联苯型、萘型、芴型、苯酚酚醛型、邻甲酚酚醛型、三羟基苯基甲烷型、四羟苯基乙烷型等二官能环氧树脂或多官能环氧树脂、或者乙内酰脲型、异氰尿酸三缩水甘油酯型或缩水甘油胺型等环氧树脂。这些可单独使用或并用2种以上。这些环氧树脂中,特别优选为:酚醛型环氧树脂、联苯型环氧树脂、三羟基苯基甲烷型树脂或四羟苯基乙烷型环氧树脂。其原因在于,这些环氧树脂富有与作为固化剂的酚醛树脂的反应性,且耐热性等优异。
[0066] 此外,上述酚醛树脂作为上述环氧树脂的固化剂发挥作用,例如可列举:苯酚线性酚醛树脂、苯酚芳烷基树脂、甲酚线性酚醛树脂、叔丁基苯酚线性酚醛树脂、壬基苯酚线性酚酚醛树脂等线性酚醛型酚醛树脂、甲阶酚醛型酚醛树脂、聚对氧苯乙烯等聚氧苯乙烯等。它们可单独使用或并用2种以上。这些酚醛树脂中,特别优选为苯酚线性酚醛树脂、苯酚芳烷基树脂。其原因在于,可提高半导体装置的连接可靠性。
[0067] 关于上述环氧树脂与酚醛树脂的配合比例,例如,优选为以相对于上述环氧树脂成分中的每1当量的环氧基,而使酚醛树脂中的羟基成为0.5~2.0当量的方式进行配合。更优选为0.8~1.2当量。若偏离上述范围,则无法进行充分的固化反应,而底部填充片的特性容易劣化。
[0068] 底部填充片中的热固化性树脂的含量优选为10重量%以上,更优选为20重量%以上。若为10重量%以上,则固化后的热特性提高,容易保持可靠性。另外,底部填充片中的热固化性树脂的含量优选为80重量%以下,更优选为70重量%以下。若为80重量%以下,则容易缓和应力,容易保持可靠性。
[0069] 作为环氧树脂与酚醛树脂的热固化促进催化剂,并无特别限定,可自公知的热固化促进催化剂中适当选择而使用。热固化促进催化剂可单独使用或组合2种以上使用。作为热固化促进催化剂,例如可使用:胺系固化促进剂、磷系固化促进剂、咪唑系固化促进剂、系固化促进剂、磷-硼系固化促进剂等。
[0070] 热固化促进催化剂的含量相对于环氧树脂及酚醛树脂的合计含量100重量份,优选为0.1重量份以上。若为0.1重量份以上,则可使利用热处理的固化时间变短而提高生产率。另外,热固化促进催化剂的含量优选为5重量份以下。若为5重量份以下,则可提高热固化性树脂的保存性。
[0071] 为了去除焊料凸块表面的氧化膜而使半导体元件的安装变得容易,也可在底部填充片中添加助熔剂。作为助熔剂,并无特别限制,可使用以往公知的具有助焊作用的化合物,例如可列举:二苯酚酸、己二酸、乙酰水杨酸、苯甲酸、二苯乙醇酸、壬二酸、苄基苯甲酸丙二酸、2,2-双(羟基甲基)丙酸、水杨酸、邻甲氧基苯甲酸、间羟基苯甲酸、琥珀酸、2,6-二甲氧基甲基对甲酚、苯甲酸酰肼、碳酰肼、丙二酸二酰肼、琥珀酸二酰肼、戊二酸二酰肼、水杨酸酰肼、亚胺基二乙酸二酰肼、衣康酸二酰肼、柠檬酸三酰肼、硫代碳酰肼、二苯甲酮腙、4,4'-氧基双苯磺酰肼及己二酸二酰肼等。助熔剂的添加量只要是发挥上述助熔作用的程度即可,通常相对于底部填充片中所含的树脂成分(丙烯酸系树脂、热固化性树脂等的树脂成分)100重量份为0.1~20重量份左右。
[0072] 底部填充片还可以视需要进行着色。在底部填充片中,通过着色所呈现的颜色并无特别限制,例如优选为:黑色、蓝色、红色、绿色等。在进行着色时,可自颜料、染料等公知的着色剂中适当选择而使用。
[0073] 在预先使底部填充片进行某种程度的交联的情况下,制作时,可预先添加与聚合物的分子链末端的官能团等反应的多官能性化合物作为交联剂。由此,可提高高温下的粘接特性,实现耐热性的改善。
[0074] 作为上述交联剂,尤其是更优选为甲苯二异氰酸酯、二苯基甲烷二异氰酸酯、对苯二异氰酸酯、1,5-萘二异氰酸酯、多元醇与二异氰酸酯的加成物等多异氰酸酯化合物。交联剂的含量可适当设定,例如,相对于树脂成分(丙烯酸系树脂、热固化性树脂等树脂成分)100重量份优选为1重量份以上,更优选为5重量份以上。若为1重量份以上,则可良好地调整至上述最低粘度。另外,交联剂的含量优选为50重量份以下,更优选为20重量份以下。若为50重量份以下,则可在保持流动性的并且谋求耐热性的改善。
[0075] 优选在底部填充片中配合平均粒径0.01~10μm的二氧化硅填料。由此,可调整粘度范围、储能模量。另外,可提高导电性或导热性。作为二氧化硅填料,并无特别限定,可优选使用熔融二氧化硅。
[0076] 二氧化硅填料的平均粒径优选为0.01μm以上,更优选为0.05μm以上。若为0.01μm以上,则可抑制填料的表面积对片可挠性的影响。二氧化硅填料的平均粒径优选为10μm以下,更优选为1μm以下。若为10μm以下,则可高效地填充于芯片与基板之间的间隙。
[0077] 需要说明的是,平均粒径是利用光度式(日文:光度式)粒度分布计(HORIBA制造,装置名:LA-910)求出的值。
[0078] 底部填充片中的二氧化硅填料的含量优选为15重量%以上,进一步优选为40重量%以上。若为15重量%以上,则容易保持高温时的树脂的粘度。另外,底部填充片中的二氧化硅填料的含量优选为70重量%以下。若为70重量%以下,则可保持150℃下的热固化性树脂的流动性,提高对凹凸的埋入性。
[0079] 需要说明的是,可在底部填充片中视需要适当地配合其他添加剂。作为其他添加剂,例如可列举:阻燃剂、硅烷偶联剂或离子捕获剂等。作为上述阻燃剂,例如可列举:三氧化锑、五氧化锑、溴化环氧树脂等。它们可单独使用或并用2种以上。作为上述硅烷偶联剂,例如可列举:β-(3,4-环氧基环己基)乙基三甲氧基硅烷、γ-环氧丙氧基丙基三甲氧基硅烷、γ-环氧丙氧基丙基甲基二乙氧基硅烷等。这些化合物可单独使用或并用2种以上。作为上述离子捕获剂,例如可列举:水滑石类、氢氧化铋等。它们可单独使用或并用2种以上。
[0080] 底部填充片例如可以如下的方式制作。首先,配合作为底部填充片的形成材料的上述各成分,使其溶解或分散于溶剂(例如甲基乙基酮、乙酸乙酯等)中而制备涂布液。其次,将所制备的涂布液以成为特定厚度的方式涂布于基材隔离件上而形成涂布膜后,将该涂布膜在特定条件下进行干燥,而形成底部填充片。
[0081] 底部填充片的厚度只要考虑半导体元件与被粘接体间的间隙或连接构件的高度而适当设定即可。厚度优选为10~100μm。
[0082] 底部填充片优选被隔离件保护。隔离件具有作为在供于实用前保护底部填充片的保护材料的功能。隔离件在将半导体元件贴合于底部填充片上时被剥去。作为隔离件,也可使用聚对苯二甲酸乙二醇酯(PET)、聚乙烯、聚丙烯、或者经氟系剥离剂、丙烯酸长链烷基酯系剥离剂等剥离剂进行过表面涂布的塑料膜或纸等。
[0083] 可使用本发明的底部填充片利用通常的方法制造半导体装置。具体而言,在加热条件下,借助底部填充片将半导体元件固定于被粘接体,由此可制造半导体装置。
[0084] 作为加热条件,并无特别限定,优选为200~300℃。本发明的底部填充片具有上述粘度特性,因此在上述加热条件下,流动性成达到最佳范围,可良好地将半导体元件表面的凹凸埋入,可将端子间良好地连接。另外,还可减少脱气所致的空隙的产生。
[0085] 作为半导体元件,可列举半导体晶片半导体芯片等。作为被粘接体,可列举:配线电路基板、挠性基板、内插器、半导体晶片、半导体芯片等。
[0086] [背面研削用胶带一体型底部填充片]
[0087] 本发明的背面研削用胶带一体型底部填充片具备背面研削用胶、及上述底部填充片。
[0088] 图1是背面研削用胶带一体型底部填充片10的剖面示意图。如图1所示,背面研削用胶带一体型底部填充片10具备背面研削用胶带1、及层叠于背面研削用胶带上的底部填充片2。需要说明的是,底部填充片2可如图1所示而未层叠于背面研削用胶带1的整个面,也可以充分的尺寸设置为与半导体晶片3(参照图2A)贴合。
[0089] (背面研削用胶带)
[0090] 背面研削用胶带1具备基材1a及层叠于基材1a上的粘合剂层1b。需要说明的是,底部填充片2层叠于粘合剂层1b上。
[0091] 上述基材1a成为背面研削用胶带一体型底部填充片10的强度母体。例如,可列举:低密度聚乙烯、直链状聚乙烯、中密度聚乙烯、高密度聚乙烯、超低密度聚乙烯、无规共聚聚丙烯、嵌段共聚聚丙烯、均聚丙烯、聚丁烯、聚甲基戊烯等聚烯、乙烯-乙酸乙烯酯共聚物、离聚物树脂、乙烯-(甲基)丙烯酸共聚物、乙烯-(甲基)丙烯酸酯(无规、交替)共聚物、乙烯-丁烯共聚物、乙烯-己烯共聚物、聚氨酯、聚对苯二甲酸乙二醇酯、聚萘二甲酸乙二醇酯等聚酯、聚碳酸酯、聚酰亚胺、聚醚醚酮、聚酰亚胺、聚醚酰亚胺、聚酰胺、全芳香族聚酰胺、聚苯硫醚、芳族聚酰胺(纸)、玻璃、玻璃布、氟树脂、聚氯乙烯、聚偏二氯乙烯、纤维素系树脂、硅酮树脂、金属(箔)、纸等。在粘合剂层1b为紫外线固化型的情况下,基材1a优选为对紫外线具有透射型的基材。
[0092] 还可对基材1a的表面实施惯用的表面处理
[0093] 上述基材1a可适当地选择而使用同种或异种的基材,可视需要使用混合多种而成的基材。另外,为了对基材1a赋予防静电能力,可在上述基材1a上设置由金属、合金、它们的氧化物等构成的厚度为 左右的导电性物质的蒸层。基材1a可为单层或2种以上的多层。
[0094] 基材1a的厚度可适当地决定,通常为约5μm以上且200μm以下,优选为35μm以上且120μm以下。
[0095] 需要说明的是,在基材1a中,还可以在无损本发明的效果等的范围内包含各种添加剂(例如,着色剂、填充剂、增塑剂、抗老化剂、抗氧化剂表面活性剂、阻燃剂等)。
[0096] 用于形成粘合剂层1b的粘合剂只要为在切割时借助底部填充片而牢固地保持半导体晶片或半导体芯片、在拾取时能够以可剥离的方式控制带有底部填充片的半导体芯片的粘合剂,则并无特别限制。例如可使用丙烯酸系粘合剂、橡胶系粘合剂等通常的压敏性胶粘剂。作为上述感压性胶粘剂,从半导体晶片、玻璃等忌避污染的电子部件的利用超纯水或醇等有机溶剂进行清洗的洁净清洗性等方面出发,优选以丙烯酸系聚合物作为基础聚合物的丙烯酸系粘合剂。
[0097] 作为上述丙烯酸系聚合物,可列举将丙烯酸酯用作主单体成分的聚合物。作为上述丙烯酸酯,例如可列举使用(甲基)丙烯酸烷基酯(例如甲酯、乙酯、丙酯、异丙酯、丁酯、异丁酯、仲丁酯、叔丁酯、戊酯、异戊酯、己酯、庚酯、辛酯、2-乙基己酯、异辛酯、壬酯、癸酯、异癸酯、十一烷酯、十二烷酯、十三烷酯、十四烷酯、十六烷酯、十八烷酯、二十烷酯等烷基的碳原子数为1~30、尤其是碳原子数为4~18的直链状或支链状的烷基酯等)及(甲基)丙烯酸环烷基酯(例如环戊酯、环己酯等)中的一种或两种以上作为单体成分的丙烯酸系聚合物等。需要说明的是,(甲基)丙烯酸酯是指丙烯酸酯和/或甲基丙烯酸酯,本发明的(甲基)均为相同的含义。
[0098] 以凝聚力、耐热性等的改性为目的,上述丙烯酸系聚合物视需要可以包含能够与上述(甲基)丙烯酸烷基酯或环烷基酯共聚的其他单体成分所对应的单元。作为这样的单体成分,例如可列举:丙烯酸、甲基丙烯酸、(甲基)丙烯酸羧基乙酯、(甲基)丙烯酸羧基戊酯、衣康酸、马来酸、富马酸、巴豆酸等含羧基单体;马来酸酐、衣康酸酐等酸酐单体;(甲基)丙烯酸2-羟基乙酯、(甲基)丙烯酸2-羟基丙酯、(甲基)丙烯酸4-羟基丁酯、(甲基)丙烯酸6-羟基己酯、(甲基)丙烯酸8-羟基辛酯、(甲基)丙烯酸10-羟基癸酯、(甲基)丙烯酸12-羟基月桂酯、(甲基)丙烯酸(4-羟基甲基环己基)甲酯等含羟基单体;苯乙烯磺酸、烯丙基磺酸、2-(甲基)丙烯酰胺-2-甲基丙磺酸、(甲基)丙烯酰胺丙磺酸、(甲基)丙烯酸磺丙酯、(甲基)丙烯酰氧基萘磺酸等含磺酸基单体;2-羟基乙基丙烯酰基磷酸酯等含磷酸基单体;丙烯酰胺、丙烯腈等。这些能够共聚的单体成分可以使用1种或2种以上。这些能够共聚的单体的使用量优选为全部单体成分的40重量%以下。
[0099] 此外,上述丙烯酸系聚合物为了交联,也可以视需要包含多官能性单体等作为共聚用单体成分。作为这样的多官能性单体,例如可列举:己二醇二(甲基)丙烯酸酯、(聚)乙二醇二(甲基)丙烯酸酯、(聚)丙二醇二(甲基)丙烯酸酯、新戊二醇二(甲基)丙烯酸酯、季戊四醇二(甲基)丙烯酸酯、三羟甲基丙烷三(甲基)丙烯酸酯、季戊四醇三(甲基)丙烯酸酯、二季戊四醇六(甲基)丙烯酸酯、(甲基)丙烯酸环氧酯、聚酯(甲基)丙烯酸酯、氨基甲酸酯(甲基)丙烯酸酯等。这些多官能性单体也可以使用一种或两种以上。从粘合特性等方面出发,多官能性单体的使用量优选为全部单体成分的30重量%以下。
[0100] 上述丙烯酸系聚合物可通过将单一单体或2种以上单体混合物供于聚合而获得。聚合可以通过溶液聚合、乳液聚合、本体聚合、悬浮聚合等任一种方式进行。从防止对洁净的被粘接体的污染等方面出发,优选为低分子量物质的含量小。从这方面出发,丙烯酸系聚合物的数均分子量优选为30万以上,进一步优选为40万~300万左右。
[0101] 另外,为了提高作为基础聚合物的丙烯酸系聚合物等的数均分子量,在上述粘合剂中还可以适当地采用外部交联剂。作为外部交联方法的具体的方法,可列举添加聚异氰酸酯化合物、环氧化合物、氮丙啶化合物、三聚氰胺系交联剂等所谓的交联剂而使其反应的方法。在使用外部交联剂的情况下,其使用量根据与应交联的基础聚合物的平衡、以及作为粘合剂的使用用途来适当地确定。一般而言,相对于上述基础聚合物100重量份,优选配合5重量份左右以下,进一步优选配合0.1~5重量份。此外,在粘合剂中,视需要,除了上述成分以外,还可以使用以往公知的各种增粘剂、抗老化剂等添加剂。
[0102] 粘合剂层1b可以利用放射线固化型粘合剂来形成。放射线固化型粘合剂通过紫外线等放射线的照射而使交联度增大,能够容易地降低其粘合力,并且能够容易地进行拾取。作为放射线,可列举X射线、紫外线、电子束、α射线、β射线、中子射线等。
[0103] 放射线固化型粘合剂可以无特别限制地使用具有碳-碳双键等放射线固化性的官能团且显示粘合性的粘合剂。作为放射线固化型粘合剂,例如,可例示出在上述丙烯酸系粘合剂、橡胶系粘合剂等一般的压敏性粘合剂中配合了放射线固化性的单体成分、低聚物成分的添加型的放射线固化性粘合剂。
[0104] 作为所配合的放射线固化性的单体成分,例如可列举:氨基甲酸酯低聚物、氨基甲酸酯(甲基)丙烯酸酯、三羟甲基丙烷三(甲基)丙烯酸酯、四羟甲基甲烷四(甲基)丙烯酸酯、季戊四醇三(甲基)丙烯酸酯、季戊四醇四(甲基)丙烯酸酯、二季戊四醇单羟基五(甲基)丙烯酸酯、二季戊四醇六(甲基)丙烯酸酯、1,4-丁二醇二(甲基)丙烯酸酯等。另外,放射线固化性的低聚物成分可列举氨基甲酸酯系、聚醚系、聚酯系、聚碳酸酯系、聚丁二烯系等各种低聚物,适宜为重均分子量为100~30000左右的范围的物质。放射线固化性的单体成分、低聚物成分的配合量可以根据上述粘合剂层的种类而适当地确定能够降低粘合剂层的粘合力的量。一般而言,相对于构成粘合剂的丙烯酸系聚合物等基础聚合物100重量份,例如为5~500重量份,优选为40~150重量份左右。
[0105] 另外,作为放射线固化型粘合剂,除了上述说明的添加型的放射线固化性粘合剂以外,可以列举使用了在聚合物侧链、或者主链中或主链末端具有碳-碳双键的聚合物作为基础聚合物的内在型的放射线固化性粘合剂。内在型的放射线固化性粘合剂无需含有或无需大量含有作为低分子量成分的低聚物成分等,因此低聚物成分等不会经时地在粘合剂中移动,能够形成稳定的层结构的粘合剂层,因此优选。
[0106] 上述具有碳-碳双键的基础聚合物可以无特别限制地使用具有碳-碳双键且具有粘合性的聚合物。作为这样的基础聚合物,优选以丙烯酸系聚合物作为基本骨架的聚合物。作为丙烯酸系聚合物的基本骨架,可列举上述例示的丙烯酸系聚合物。
[0107] 向上述丙烯酸系聚合物中导入碳-碳双键的方法没有特别的限制,可以采用各种方法,在分子设计中容易将碳-碳双键导入到聚合物侧链中。例如可列举如下方法,即,预先将丙烯酸系聚合物与具有官能团的单体共聚后,使具有能够与该官能团反应的官能团及碳-碳双键的化合物,在维持碳-碳双键的放射线固化性的状态下进行缩聚或加成反应。
[0108] 作为这些官能团的组合的示例,可列举羧酸基与环氧基、羧酸基与氮丙啶基、羟基与异氰酸酯基等。在这些官能团的组合中,从追踪反应的容易性出发,优选羟基与异氰酸酯基的组合。另外,若是通过这些官能团的组合而生成上述具有碳-碳双键的丙烯酸系聚合物的组合,则官能团可位于丙烯酸系聚合物和上述化合物的任一侧,在上述优选的组合中,优选丙烯酸系聚合物具有羟基、上述化合物具有异氰酸酯基的情形。在该情况下,作为具有碳-碳双键的异氰酸酯化合物,例如,可列举甲基丙烯酰基异氰酸酯、2-甲基丙烯酰氧基乙基异氰酸酯、间异丙烯基-α,α-二甲基苄基异氰酸酯等。另外,作为丙烯酸系聚合物,使用将上述例示的含羟基单体、2-羟基乙基乙烯基醚、4-羟基丁基乙烯基醚、二乙二醇单乙烯基醚的醚系化合物等共聚而得到的聚合物。
[0109] 上述内在型的放射线固化性粘合剂可以单独使用上述具有碳-碳双键的基础聚合物(特别是丙烯酸系聚合物),但也可以以不会使特性变差的程度配合上述放射线固化性的单体成分、低聚物成分。放射线固化性的低聚物成分等通常相对于基础聚合物100重量份为30重量份的范围内,优选为0~10重量份的范围。
[0110] 在上述放射线固化型粘合剂中,在利用紫外线等使其固化的情况下,优选含有光聚合引发剂。作为光聚合引发剂,例如可列举:4-(2-羟基乙氧基)苯基(2-羟基-2-丙基)酮、α-羟基-α,α’-二甲基苯乙酮、2-甲基-2-羟基苯丙酮、1-羟基环己基苯酮等α-酮醇系化合物;甲氧基苯乙酮、2,2-二甲氧基-2-苯基苯乙酮、2,2-二乙氧基苯乙酮、2-甲基-1-[4-(甲基硫代)-苯基]-2-吗啉代丙烷-1等苯乙酮系化合物;苯偶姻乙基醚、苯偶姻异丙基醚、茴香偶姻(アニソイン)甲基醚等苯偶姻醚系化合物;苄基二甲基缩酮等缩酮系化合物;2-萘磺酰氯等芳香族磺酰氯系化合物;1-苯酮-1,2-丙二酮-2-(o-乙氧基羰基)肟等光活性肟系化合物;二苯甲酮、苯甲酰基苯甲酸、3,3’-二甲基-4-甲氧基二苯甲酮等苯酮系化合物;噻吨酮、2-氯噻吨酮、2-甲基噻吨酮、2,4-二甲基噻吨酮、异丙基噻吨酮、2,4-二氯噻吨酮、2,4-二乙基噻吨酮、2,4-二异丙基噻吨酮等噻吨酮系化合物;樟脑醌;卤化酮;酰基氧化膦;酰基磷酸酯等。光聚合引发剂的配合量相对于构成粘合剂的丙烯酸系聚合物等基础聚合物100重量份例如为0.05~20重量份左右。
[0111] 需要说明的是,在放射线照射时发生氧所致的固化阻碍的情况下,理想的是利用某些方法从放射线固化型的粘合剂层1b的表面阻断氧(空气)。例如可列举:以隔离件被覆粘合剂层1b的表面的方法;在氮气气氛中进行紫外线等放射线的照射的方法等。
[0112] 需要说明的是,在粘合剂层1b中,还可以在不损害本发明效果等的范围内包含各种添加剂(例如着色剂、增稠剂、增量剂、填充剂、增粘剂、增塑剂、抗老化剂、抗氧化剂、表面活性剂、交联剂等)。
[0113] 粘合剂层1b的厚度没有特别的限定,从防止芯片切断面的残缺和底部填充片2的固定保持的兼顾性等观点出发,优选为1~50μm左右。优选为2~30μm,进一步优选为5~25μm。
[0114] (背面研削用胶带一体型底部填充片的制造方法)
[0115] 背面研削用胶带一体型底部填充片10例如可通过分别预先制作背面研削用胶带1及底部填充片2,并在最后将它们贴合而制成。
[0116] (使用背面研削用胶带一体型底部填充片的半导体装置的制造方法)
[0117] 接下来,对使用背面研削用胶带一体型底部填充片10的半导体装置的制造方法进行说明。图2为表示使用背面研削用胶带一体型底部填充片10的半导体装置的制造方法的各工序的图。
[0118] 具体而言,该半导体装置的制造方法包括:贴合工序,将半导体晶片3的形成有连接构件4的电路面3a与背面研削用胶带一体型底部填充片10的底部填充片2进行贴合;研削工序,对半导体晶片3的背面3b进行研削;晶片固定工序,在半导体晶片3的背面3b粘贴切割胶带11;剥离工序,将背面研削用胶带1剥离;切割工序,将半导体晶片3切割而形成带有底部填充片2的半导体芯片5;拾取工序,将带有底部填充片2的半导体芯片5自切割胶带11剥离;连接工序,以底部填充片2填充被粘接体6与半导体芯片5之间的空间、并且借助连接构件4而将半导体芯片5与被粘接体6电连接;及固化工序,使底部填充片2固化。
[0119] <贴合工序>
[0120] 在贴合工序中,将半导体晶片3的形成有连接构件4的电路面3a与背面研削用胶带一体型底部填充片10的底部填充片2贴合(参照图2A)。
[0121] 半导体晶片3的电路面3a上形成有多个连接构件4(参照图2A)。作为连接构件4的材质,并无特别限定,例如可列举:-铅系金属材料、锡-系金属材料、锡-银-系金属材料、锡-锌系金属材料、锡-锌-铋系金属材料等焊料类(合金)、或金系金属材料、铜系金属材料等。连接构件4的高度也可以根据用途而决定,一般为约15~100μm。当然,半导体晶片3中的每个连接构件4的高度可以相同也可以不同。
[0122] 优选形成于半导体晶片3表面的连接构件4的高度X(μm)与底部填充片2的厚度Y(μm)满足下述关系。
[0123] 0.5≤Y/X≤2
[0124] 通过使连接构件4的高度X(μm)与底部填充片2的厚度Y(μm)满足上述关系,而可充分地填充半导体芯片5与被粘接体6之间的空间,并且可防止底部填充片2自该空间的过量溢出,可防止底部填充片2所致的半导体芯片5的污染等。需要说明的是,在各连接构件4的高度不同的情况下,以最高的连接构件4的高度为基准。
[0125] 首先,将任意地设置于背面研削用胶带一体型底部填充片10的底部填充片2上的隔离件适当地剥离,如图2A所示,使半导体晶片3的形成有连接构件4的电路面3a与底部填充片2相向,将底部填充片2与半导体晶片3贴合(安装)。
[0126] 贴合的方法并无特别限定,优选为压接的方法。压接的压力优选为0.1MPa以上,更优选为0.2MPa以上。若为0.1MPa以上,则可良好地埋入半导体晶片3的电路面3a的凹凸。另外,压接的压力的上限并无特别限定,优选为1MPa以下,更优选为0.5MPa以下。
[0127] 贴合的温度优选为60℃以上,更优选为70℃以上。若贴合的温度为60℃以上,则底部填充片2的粘度降低,可无空隙地填充半导体晶片3的凹凸。另外,贴合的温度优选为100℃以下,更优选为80℃以下。若为100℃以下,则可在抑制底部填充片2的固化反应的状态下进行贴合。
[0128] 贴合优选在减压下进行,例如为1000Pa以下,优选为500Pa以下。下限并无特别限定,例如为1Pa以上。
[0129] <研削工序>
[0130] 在研削工序中,对半导体晶片3的与电路面3a相反一侧的面(即背面)3b进行研削(参照图2B)。作为用于半导体晶片3的背面研削的薄型加工机,并无特别限定,例如可例示研削机(背磨机)、研磨垫等。另外,还可利用蚀刻等化学方法进行背面研削。背面研削进行至半导体晶片3成为所希望的厚度(例如,700~25μm)为止。
[0131] <晶片固定工序>
[0132] 在研削工序后,在半导体晶片3的背面3b粘贴切割胶带11(参照图2C)。需要说明的是,切割胶带11具有在基材11a上层叠有粘合剂层11b的构造。作为基材11a及粘合剂层11b,可使用背面研削用胶带1的基材1a及粘合剂层1b项中所示的成分及制法而适当制作。
[0133] <剥离工序>
[0134] 接着,将背面研削用胶带1剥离(参照图2D)。由此,成为底部填充片2露出的状态。
[0135] 在将背面研削用胶带1剥离时,在粘合剂层1b具有放射线固化性的情况下,可通过对粘合剂层1b照射放射线而使粘合剂层1b固化,而容易地进行剥离。放射线的照射量只要考虑所使用的放射线的种类、粘合剂层的固化度等而适当设定即可。
[0136] <切割工序>
[0137] 在切割工序中,如图2E所示将半导体晶片3及底部填充片2切割而形成切割后的带有底部填充片2的半导体芯片5。切割按照常法自半导体晶片3的贴合有底部填充片2的电路面3a来进行。例如,可采用切入至切割胶带11为止的被称为全切割的切断方式等。作为用于本工序的切割装置,并无特别限定,可使用以往公知的装置。
[0138] 需要说明的是,在继切割工序之后进行切割胶带11的扩展的情况下,该扩展可使用以往公知的扩展装置进行。
[0139] <拾取工序>
[0140] 为了回收粘接固定于切割胶带11的半导体芯片5,如图2F所示,进行带有底部填充片2的半导体芯片5的拾取,将半导体芯片5与底部填充片2的层叠体20自切割胶带11剥离。
[0141] 作为拾取的方法,并无特别限定,可采用以往公知的各种方法。
[0142] 此处,在切割胶带11的粘合剂层11b为紫外线固化型的情况下,对该粘合剂层11b照射紫外线后进行拾取。由此,粘合剂层11b对半导体芯片5的粘合力降低,半导体芯片5的剥离变得容易。其结果为,能够不损伤半导体芯片5地进行拾取。
[0143] <连接工序>
[0144] 在连接工序中,用底部填充片2填充被粘接体6与半导体芯片5之间的空间,且借助连接构件4将半导体芯片5与被粘接体6电连接(参照图2G)。具体而言,按照常法将层叠体20的半导体芯片5以半导体芯片5的电路面3a与被粘接体6相向的形态固定于被粘接体6。例如,一边使形成于半导体芯片5的连接构件4与粘附于被粘接体6的连接垫的接合用导电材料7接触并进行推压,一边使导电材料7熔融,由此可确保半导体芯片5与被粘接体6的电连接,使半导体芯片5固定于被粘接体6。由于半导体芯片5的电路面3a粘贴有底部填充片2,因此在将半导体芯片5与被粘接体6电连接的同时,底部填充片2填充半导体芯片5与被粘接体6之间的空间。
[0145] 作为连接工序的加热条件,与上述底部填充片的加热条件相同。
[0146] 底部填充片2具有上述粘度特性,因此在上述加热条件下,流动性达到最佳范围,可良好地埋入半导体元件表面的凹凸,可将端子间良好地连接。另外,还可以减少脱气所致的空隙的发生。需要说明的是,在上述加热条件下,可使连接构件4及导电材料7的一者或两者熔融。
[0147] 需要说明的是,还可以分多阶段进行连接工序中的热压接处理。通过分多阶段进行热压接处理,从而可高效率地去除连接构件与焊盘间的树脂,可获得更良好的金属间接合。
[0148] 加压条件并无特别限定,优选为10N以上,更优选为20N以上。若为10N以上,则容易推开位于接合端子与连接基板之间的底部填充,容易获得良好的接合。上限优选为300N以下,更优选为150N以下。若为300N以下,则可抑制半导体芯片5受到的损伤。
[0149] <固化工序>
[0150] 进行了半导体元件5与被粘接体6的电连接后,通过加热底部填充片2而使其固化。由此,可保护半导体元件5的表面,并且可确保半导体元件5与被粘接体6之间的连接可靠性。作为用以使底部填充片2固化的加热温度,并无特别限定,例如在150~200℃下进行10~120分钟。需要说明的是,还可以通过连接工序中的加热处理而使底部填充片固化。
[0151] <密封工序>
[0152] 接下来,为了保护具备所安装的半导体芯片5的半导体装置30整体,还可以进行密封工序。密封工序使用密封树脂进行。作为此时的密封条件,并无特别限定,通常通过在175℃下进行60秒~90秒的加热,而进行密封树脂的热固化,但本发明并不限定于此,例如可在165℃~185℃下进行数分钟固化(キュア)。
[0153] 作为密封树脂,优选具有绝缘性的树脂(绝缘树脂),可以从公知的密封树脂中适当选择来使用。
[0154] <半导体装置>
[0155] 在半导体装置30中,半导体芯片5与被粘接体6借助形成于半导体芯片5上的连接构件4及设置于被粘接体6上的导电材料7而电连接。另外,在半导体元件5与被粘接体6之间,以填充其空间的方式配置有底部填充片2。
[0156] [切割胶带一体型底部填充片]
[0157] 本发明的切割胶带一体型底部填充片具备切割胶带、及上述底部填充片。
[0158] 图3为切割胶带一体型底部填充片50的剖面示意图。如图3所示,切割胶带一体型底部填充片50具备切割胶带41、及层叠于切割胶带41上的底部填充片42。
[0159] 切割胶带41具备基材41a、及层叠于基材41a上的粘合剂层41b。作为基材41a,可使用基材1a中所例示的基材。作为粘合剂层41b,可使用粘合剂层1b中所例示的粘合剂。
[0160] (使用切割胶带一体型底部填充片的半导体装置的制造方法)
[0161] 接下来,对使用切割胶带一体型底部填充片50的半导体装置的制造方法进行说明。图4为表示使用切割胶带一体型底部填充片50的半导体装置的制造方法的各工序的图。具体而言,该半导体装置的制造方法包括:贴合工序,将两面形成有具有连接构件44的电路面的半导体晶片43与切割胶带一体型底部填充片50的底部填充片42贴合;切割工序,将半导体晶片43切割而形成带有底部填充片42的半导体芯片45;拾取工序,将带有底部填充片42的半导体芯片45自切割胶带41剥离;连接工序,用底部填充片42填充被粘接体46与半导体芯片45之间的空间、并且借助连接构件44而将半导体芯片45与被粘接体46电连接;及固化工序,使底部填充片42固化。
[0162] <贴合工序>
[0163] 在贴合工序中,如图4A所示,将两面形成有具有连接构件44的电路面的半导体晶片43与切割胶带一体型底部填充片50的底部填充片42贴合。需要说明的是,通常半导体晶片43的强度较弱,因此有时为了补强而将半导体晶片固定于支承玻璃等支承体(未图示)。在该情况下,还可以包括如下工序:在半导体晶片43与底部填充片42的贴合后,将支承体剥离。关于将半导体晶片43的哪个电路面与底部填充片42进行贴合而言,根据目标半导体装置的结构进行变更即可。
[0164] 半导体晶片43的两面的连接构件44彼此可以电连接,也可以不进行连接。连接构件44彼此的电连接,可列举被称为TSV形式的利用借助于通孔的连接而进行的连接。作为贴合条件,可采用背面研削用胶带一体型底部填充片的贴合工序中所例示的条件。
[0165] <切割工序>
[0166] 在切割工序中,将半导体晶片43及底部填充片42切割而形成带有底部填充片42的半导体芯片45(参照图4B)。
[0167] 作为切割条件,可采用背面研削用胶带一体型底部填充片的切割工序中所例示的条件。
[0168] <拾取工序>
[0169] 在拾取工序中,将带有底部填充片42的半导体芯片45自切割胶带41剥离(图4C)。
[0170] 作为拾取条件,可采用背面研削用胶带一体型底部填充片的拾取工序中所例示的条件。
[0171] <连接工序>
[0172] 在连接工序中,用底部填充片42填充被粘接体46与半导体元件45之间的空间,并且借助连接构件44将半导体元件45与被粘接体46电连接(参照图4D)。具体的连接方法与背面研削用胶带一体型底部填充片的连接工序中所说明的内容相同。作为连接工序的加热条件,与上述的底部填充片的加热条件相同。
[0173] <固化工序及密封工序>
[0174] 固化工序及密封工序与背面研削用胶带一体型底部填充片的固化工序及密封工序中所说明的内容相同。由此,可制造半导体装置70。
[0175] 实施例
[0176] 以下,例示性地详细说明本发明的优选的实施例。然而,该实施例中所记载的材料或配合量等只要没有特别限定性的记载,则并非旨在将本发明的范围仅限定于此。另外,份表示重量份。
[0177] [底部填充片的制作]
[0178] 将以下成分以表1所示的比例溶解于甲基乙基酮中,制备固体成分浓度为23.6~60.6重量%的胶粘剂组合物的溶液。
[0179] 丙烯酸系树脂1:以丙烯酸丁酯-丙烯腈为主成分的丙烯酸酯系聚合物(商品名“SG-28GM”,长濑Chemtex株式会社制造)
[0180] 丙烯酸系树脂2:以丙烯酸乙酯-甲基丙烯酸甲酯为主成分的丙烯酸酯系聚合物(商品名“Parachron W-197CM”,根上工业株式会社制造)
[0181] 环氧树脂1:商品名“Epikote 828”,JER株式会社制造
[0182] 环氧树脂2:商品名“Epicoat 1004”,JER株式会社制造
[0183] 酚醛树脂:商品名“Mirex XLC-4L”,三井化学株式会社制造
[0184] 二氧化硅填料1:球状二氧化硅(商品名“SO-25R”,平均粒径:500nm(0.5μm),株式会社Admatechs制造)
[0185] 二氧化硅填料2:球状二氧 化硅(商品名“YC050C-MJF”,平均粒 径:50nm(0.05μm),株式会社Admatechs制造
[0186] 有机酸:邻茴香酸(商品名“ortho-anisic acid”,东京化成株式会社制造)[0187] 固化剂:咪唑催化剂(商品名“2PHZ-PW”,四国化成株式会社制造)
[0188] 通过将该胶粘剂组合物的溶液涂布于作为剥离衬垫(隔离件)的经硅酮脱模处理的厚度50μm的由聚对苯二甲酸乙二醇酯膜构成的脱模处理膜上后,在130℃下干燥2分钟,制作出厚度50μm的底部填充片。
[0189] 对所获得的底部填充片进行以下的评价。将结果示于表1。
[0190] (150℃、0.05~0.20转/分钟时的粘度的测定)
[0191] 使用流变仪,将间隙设定为100μm,将旋转速度设为1分钟0.1转并保持固定在150℃测定300秒,将自测定开始300秒后的值设为150℃时的粘度。
[0192] (100~200℃、0.3~0.7转/分钟时的最低粘度的测定)
[0193] 使用流变仪,将间隙设定为100μm,以旋转速度成为1分钟0.5转的方式进行设定,以10℃/分钟的升温速度进行升温,通过固化反应使粘度上升,进行测定直至无法旋转为止。将100℃至200℃的范围内的粘度最低值设为最低粘度。
[0194] (热膨胀率α的测定)
[0195] 使用热机械测定装置(TA INSTRUMENTS公司制造:型号Q-400EM)测定热膨胀率α。具体而言,将测定试样的尺寸设为长度15mm×宽度5mm×厚度200μm,将测定试样安装于上述装置的膜拉伸测定用夹具后,在-50~300℃的温度范围,置于拉伸载荷2g、升温速度10℃/min的条件下,由20℃~60℃的膨胀率算出热膨胀系数α。
[0196] (储能模量E'的测定)
[0197] 关于储能模量的测定,将底部填充片在175℃热固化处理1小时,然后使用固体粘弹性测定装置(Rheometric Scientific公司制,型号:RSA-III)进行测定。即,将样品尺寸设为长长度40mm×宽度10mm×厚度200μm,将测定试样安装于膜拉伸测定用夹具,在频率1Hz、升温速度10℃/min的条件下测定-50~300℃的温度范围的拉伸储能模量及损耗弹性模量,读取25℃下的储能模量(E’)。
[0198] (玻璃化转变温度的测定)
[0199] 首先,通过175℃下的1小时的加热处理使底部填充片热固化,之后用切割刀切割为厚度200μm、长度40mm(测定长度)、宽度10mm的长条状,使用固体粘弹性测定装置(RSAIII、Rheometric Scientific(株)制),测定-50~300℃下的储能模量及损耗弹性模量。测定条件设为频率1Hz、升温速度10℃/min。进一步地,通过算出tanδ(G”(损耗弹性模量)/G’(储能模量))的值而得到玻璃化转变温度。
[0200] [背面研削用胶带一体型底部填充片的制作]
[0201] 使用手压辊将底部填充片贴合于背面研削用胶带(商品名“UB-2154”,日东电工株式会社制造)的粘合剂层上,制作出背面研削用胶带一体型底部填充片。
[0202] [半导体装置的制作]
[0203] 准备单面形成有凸块的单面带有凸块的硅晶片,将所制作的背面研削用胶带一体型底部填充片以底部填充片作为贴合面的方式,贴合于该单面带有凸块的硅晶片的形成有凸块一侧的表面。作为单面带有凸块的硅晶片,使用以下的晶片。另外,贴合条件如下所述。底部填充片的厚度Y(=45μm)相对于凸块的高度X(=45μm)之比(Y/X)为1。
[0204] <单面带有凸块的硅晶片>
[0205] 硅晶片的直径:8英寸
[0206] 硅晶片的厚度:0.7mm(700μm)
[0207] 凸块的高度:45μm
[0208] 凸块的间距:50μm
[0209] 凸块的材质:锡-银共晶焊料
[0210] <贴合条件>
[0211] 粘贴装置:商品名“DSA840-WS”,日东精机株式会社制造
[0212] 粘贴速度:5mm/min
[0213] 粘贴压力:0.25MPa
[0214] 粘贴时的载置台温度:70℃
[0215] 粘贴时的减压度:150Pa
[0216] 在贴合后,对硅晶片的背面进行研削。研削后,将底部填充片与硅晶片一起自背面研削用胶带剥离,将硅晶片粘贴于切割胶带,进行硅晶片的切割。切割以成为7.3mm见方的芯片尺寸的方式进行全切割。接着,自各切割胶带的基材侧以针的顶起方式,拾取底部填充片与单面带有凸块硅芯片的层叠体。拾取条件如下所示。
[0217] <拾取条件>
[0218] 拾取装置:商品名“SPA-300”株式会社新川制造
[0219] 针根数:9根
[0220] 针顶起量:500μm(0.5mm)
[0221] 针顶起速度:20mm/秒
[0222] 拾取时间:1秒
[0223] 扩展量:3mm
[0224] 最后,通过下述热压接条件,在使硅芯片的凸块形成面与BGA基板相向的状态下,将硅芯片热压接于BGA基板而进行硅芯片的安装。由此,获得BGA基板上安装有硅芯片的半导体装置。
[0225] <热压接条件>
[0226] 热压接装置:商品名“FCB-3”Panasonic制造
[0227] 加热温度:260℃
[0228] 载荷:30N
[0229] 保持时间:10秒
[0230] 对所获得的半导体装置进行以下的评价。将结果示于表1。
[0231] (空隙的评价)
[0232] 与芯片面平行地对所得的半导体装置进行研磨至底部填充树脂部分为止,利用显微镜观察底部填充,研究空隙的有无。将无空隙的情形判定为○,将有空隙的情形判定为×。
[0233] (端子间连接的评价)
[0234] 以焊料接合部露出的方式在垂直面上对半导体装置进行研磨,将其剖面未断裂的情形判定为○(良品),将断裂的情形判定为×(缺陷品)。
[0235] (可靠性的评价)
[0236] 将半导体装置各制成10个样品,将-55℃~125℃以30分钟循环1次的热循环重复进行500次循环后,用包埋用环氧树脂包埋半导体装置。接着,以焊料接合部露出的方式将半导体装置以垂直于基板的方向切断,并对所露出的焊料接合部的剖面进行研磨。之后,利用光学显微镜(倍率:1000倍)对研磨后的焊料接合部的剖面进行观察,将焊料接合部未断裂的情形评价为良品,将焊料接合部断裂的情形评价为缺陷品。
[0237]
[0238] 1···背面研削用胶带
[0239] 1a···基材
[0240] 1b···粘合剂层
[0241] 2···底部填充片
[0242] 3···半导体晶片
[0243] 3a···半导体晶片的电路面
[0244] 3b···半导体晶片的与电路面相反一侧的面
[0245] 4···连接构件(凸块)
[0246] 5···半导体芯片
[0247] 6···被粘接体
[0248] 7···导通材料
[0249] 10···背面研削用胶带一体型底部填充片
[0250] 11···切割胶带
[0251] 11a···基材
[0252] 11b···粘合剂层
[0253] 20···层叠体
[0254] 30···半导体装置
[0255] 41···切割胶带
[0256] 41a···基材
[0257] 41b···粘合剂层
[0258] 42···底部填充片
[0259] 43···半导体晶片
[0260] 44···连接构件(凸块)
[0261] 45···半导体芯片
[0262] 46···被粘接体
[0263] 47···导通材料
[0264] 50···切割胶带一体型底部填充片
[0265] 60···层叠体
[0266] 70···半导体装置
QQ群二维码
意见反馈