清洁印刷机用的耐磨无纺织物及清洁方法

申请号 CN200680013061.5 申请日 2006-02-17 公开(公告)号 CN101163590B 公开(公告)日 2011-04-13
申请人 纳幕尔杜邦公司; 发明人 T·E·贝尼姆; J·M·V·萨拉梅罗;
摘要 通过将由高熔点聚酯基体 纤维 和低熔点粘合用纤维制备的无纺纤维网 水 刺,然后将该织物热粘合制备适合于清洁印刷机滚筒,特别是刻花或粗糙印刷机滚筒,具有 耐磨性 和吸收性的无纺织物。
权利要求

1. 一种用于清洁滚筒的无纺织物,所述织物包括射流喷网无纺织物,所述射流喷网无纺织物包含20-50%重量包含低熔点组分的粘合用纤维和50-80%重量高熔点聚酯基体纤维,其中所述低熔点组分包含熔点比高熔点聚酯基体纤维的熔点低的聚酯共聚物,且其中所述射流喷网织物通过使粘合用纤维的皮组分至少部分软化或熔融来热粘合,以提供热粘合射流喷网无纺织物。
2. 权利要求1的无纺织物,所述无纺织物在干织物上测得的300次旋转后泰伯磨损值不超过2,在湿织物测得的50次旋转后丁达里磨损值不超过1.3。
3. 权利要求1的无纺织物,其中所述射流喷网织物为通过将第一纤维网和相邻第二纤维网刺形成的多层纤维网,其中第一纤维网形成所述射流喷网织物的外表面并比第二纤维网包含更高重量百分比的粘合用纤维。
4. 权利要求3的无纺织物,其中所述多层纤维网还包含第三纤维网且第二纤维网夹在第一和第三纤维网之间,其中第三纤维网比第二纤维网包含更高重量百分比的粘合用纤维。
5. 权利要求1-4中任一项的无纺织物,其中所述粘合用纤维为双组分皮-芯纤维,其中所述皮包含低熔点聚酯共聚物组分而所述芯包含聚对苯二甲酸乙二醇酯。
6. 权利要求1-4中任一项的无纺织物,其中所述热粘合射流喷网织物在热粘合后经过轧光。
7. 权利要求6的无纺织物,其中所述轧光在25℃下进行。
8. 一种清洁具有外表面的滚筒的方法,所述方法包括提供权利要求1或2的织物和使所述滚筒的外表面与所述织物接触的步骤。
9. 权利要求8的方法,其中所述滚筒为印刷机的组件。
10. 权利要求9的方法,其中所述滚筒为具有粗糙外表面的压印滚筒或金属辊。
11. 权利要求10的方法,其中所述滚筒为在其至少一部分外表面具有有机脱离剂涂层的刻花辊。

说明书全文

清洁印刷机用的耐磨无纺织物及清洁方法

技术领域

[0001] 本发明涉及清洁机械滚筒(如印刷机滚筒),特别是刻花或粗糙表面滚筒用的无纺织物。

背景技术

[0002] 采用无纺织物清洁印刷机滚筒在本领域中是公知的。 Gasparrini等的美国专利5,974,976描述了空气含量降低的无纺清洁织物及这种织物用于清洁印刷机滚筒的用途。
Tanaka等的美国专利申请公开2002/0187307描述了用于清洁印刷机滚筒的湿法成网布。
所述湿法成网布包含5-50%重量粘合用纤维并经过刺和起绉,随后加热使所述粘合用纤维熔化。 湿法成网布的实例包括包含至少60%浆粕的布。
[0003] 以往,印刷机通常配置有三个滚筒:印版滚筒、橡皮布滚筒和压印滚筒。 压印滚筒通常为光滑金属滚筒,托住纸并使之贴紧传像橡皮布滚筒。 最近,通过用具有刻花(不光滑)或粗糙表面的滚筒代替光滑表面的压印滚筒,可将印刷机设计成允许在单通道中对已印刷薄片的第二面进行印刷,所述具有刻花(不光滑)或粗糙表面的滚筒使得与已印刷面的接触点最少化。 所述刻花或粗糙压印滚筒任选带有涂层,如有机等剥离涂层。未涂布刻花或粗糙滚筒易被磨损。 当剥离涂层随着时间和使用而磨损(通过印刷份数度量)时,即使涂布辊也将变得易被磨损。
[0004] 包含木浆的常规无纺印刷机清洁织物已有效地用于清洁具有光滑表面的压印滚筒的印刷机,但发现缺少清洁刻花压印滚筒所需的耐用性,经常在这种应用中磨损或起毛。 希望提供用于清洁刻花或粗糙印刷机滚筒的改良清洁织物,所述织物具有高耐磨性和低起毛性,同时 保持足够的吸收性以有效地将油墨、溶剂和其它固体或糊状残渣(如集聚的纸毛纤维)从滚筒表面除去。

发明内容

[0005] 本发明涉及用于清洁滚筒的无纺织物,所述织物包含射流喷网无纺织物,所述射流喷网无纺织物包含约20-50%重量包含低熔点组分的粘合用纤维和约50-80%重量高熔点聚酯基体纤维,其中所述低熔点组分包含熔点比高熔点聚酯基体纤维的熔点低的聚酯共聚物,且其中通过使粘合用纤维的皮组分至少部分软化或熔融来将所述射流喷网织物热粘合,以提供热粘合射流喷网无纺织物且所述无纺织物在干织物上测得的300次旋转后泰伯(Taber)磨损值不超过约2,在湿织物上测得的50次旋转后丁达里(Martindale)磨损值不超过约1.3。
[0006] 本发明还涉及采用所述无纺织物清洁印刷滚筒的方法。

具体实施方式

[0007] 本文中所用的术语“无纺织物”和“无纺纤维网”是指独立纤维的布结构,与针织织物或机织织物相反,所述独立纤维以随机方式排列来形成没有确定图案的平面材料。
[0008] 本文中所用的术语“射流喷网无纺织物”是指通过采用流体射流使无纺纤维网中的纤维缠绕而制备的无纺织物。 例如,在水刺法等中可用筛网等多孔载体支撑纤维网并通过使受支撑网通过水注下方使所述网缠绕来制备射流喷网无纺织物。 [0009] 本文中所用的术语“纵向”是指生产无纺纤维网的方向(如支撑面行进的方向,在无纺纤维网制备过程中将纤维铺在所述支撑面上)。 术语“横向”是指总地垂直于网平面纵向的方向。
[0010] 本文中所用的术语“聚酯”将包括其中至少85%重复单元是二羧酸和二羟醇的缩合产物(具有形成酯单元而产生的酯键)的聚合物。 这包括芳族、脂族、饱和及不饱和二元酸和二元醇。 聚酯的常见实例是聚对苯二甲酸乙二醇酯(PET),其为乙二醇和对苯二甲酸的缩合产物。
[0011] 本文中所用的术语“粘合用纤维”是指在低于无纺纤维网中与其结合在一起的高熔点基体纤维降解温度或熔点的温度下可热粘合(即可熔融或可部分熔融的)的纤维。粘合用纤维可为均相的或可包含多组分纤维。 本文中所用的术语“多组分纤维”是指由至少两种不同聚合物组分组成的纤维,所述至少两种不同聚合物组分一起纺丝形成单一纤维。 将所述至少两种聚合物组分沿着多组分纤维横截面排列在不同、位置基本不变的区域,这些区域沿着纤维长度基本连续延伸。 适合用作粘合用纤维的多组分纤维在其至少一部分外周表面上包含低熔点聚合物组分。 所述低熔点聚合物组分的熔点低于纤维网中高熔点基体纤维的熔点。 本文中所用的术语“双组分纤维”是指由两种不同聚合物组分组成的多组分纤维。 一个实施方案中,粘合用纤维为皮芯纤维,所述皮芯纤维包含形成所述皮的第一低熔点聚合物组分和形成所述芯的第二高熔点聚合物组分。 [0012] 术语“短纤维”是指天然纤维或从长丝切断的短切纤维。 通常短纤维的长度为约0.25-5.0英寸(0.6-15.2cm)。
[0013] 本发明涉及适合清洁印刷机或其它设备滚筒的热粘合射流喷网无纺织物。 所述无纺织物是低起毛的且具有改进的干、湿表面耐摩性和吸收性平衡,这些性能是清洁粗糙或刻花滚筒表面所需的。
[0014] 适合制备用于本发明的射流喷网无纺织物的前体纤维网包含约20-50%重量包含低熔点聚酯共聚物的粘合用纤维和约50-90%重量包含高熔点聚酯的基体纤维的混合物。一个实施方案中,无纺织物包含约20-30%重量粘合用纤维和约70-80%重量基体纤维。
所述低熔点聚酯共聚物组分优选熔点至少比高熔点聚酯基体纤维组分的熔点低约100℃。
低熔点粘合用组分的熔点通常比高熔点基体纤维组分低100-140℃。 适用于本发明的粘合用纤维为包含聚对苯二甲酸乙二醇 酯共聚物皮和聚对苯二甲酸乙二醇酯芯的双组分纤维。 合适的聚对苯二甲酸乙二醇酯共聚物的实例包括聚对苯二甲酸乙二醇酯的间苯二甲酸共聚物。 适用于本发明的基体纤维包括聚对苯二甲酸乙二醇酯纤维。 粘合用纤维含量的提高导致干、湿表面耐磨性提高和起毛性降低,但通常提高了织物成本。 一个实施方案中,无纺织物可基本上由聚酯基粘合用纤维和基体纤维的混合物组成。 或者,至多约10%重量基体纤维可包含微纤维(纤维纤度低于1旦尼尔)或亲水性聚酯纤维以获得提高的吸收性。 例如,纤维网中约5-10%重量的纤维可包含微纤维和/或亲水性聚酯纤维。 亲水性聚酯纤维的实例包括用亲水性整理剂处理的那些纤维。 一个实例是产自Advansa(Gremany)的Hydrofix 亲水性聚酯纤维。 适用于本发明的微纤维实例包括裂膜纤维。 通过将两种或多种不同聚合物组分共纺丝成多组分纤维,使得所述聚合物组分沿着纤维横截面形成沿着纤维长度延伸的不咬合可分离瓣来制备可裂膜纤维。 可裂膜纤维横截面包括其中交替的聚合物组分为花瓣形并被相邻瓣部分重叠的“菊瓣”横截面、并列形、橘瓣形(楔形瓣)、中空橘瓣形、镶拼十字形、三叶型和本领域中已知的其它形状横截面。 可将可裂膜纤维结合到纤维网中并在下述水刺步骤中分离。 [0015] 可从采用干铺技术制备的前体纤维网,如一层或多层梳理纤维层、一层或多层气流法纤维层或其组合制备本发明的无纺织物。 制备气流法网和梳理纤维网的方法在本领域中是众所周知的。 例如气流法网可按照Zafiroglu的美国专利3,797,074或采用the RandoMachine Corporation生产Rando Webber制备并已在美国专利2,451,915、2,700,188、
2,703,441和2,890,497中描述。 通常优选采用纤维长度为约30-75mm而纤维纤度为约
1-15的短纤维制备梳理无纺纤维网。 优选采用纤维长度为约12.7mm-25.4mm且纤维纤度为约0.9-4的短纤维制备气流法无纺纤维网。优选粘合用纤维和基体纤维的纤度非常匹配以获得更好的加工性能。 可在梳理成形过程或类似 过程中将基体纤维和粘合用纤维混合在纤维网中,或采用常规纺织混纺技术,然后将混纺的纤维梳理来混合所述纤维。 或者,在气流成网工艺中将纤维混合物分散于气流中并在多孔装置上聚集。 或者,可将包含粘合用纤维和/或基体纤维的各网铺层,然后将结合的各层水刺形成一面所含的粘合用纤维比另一面多的射流喷网无纺织物。 例如,可将由粘合用纤维组成的网和由基体纤维组成的网铺层,然后水刺。 或者,这些层的一层或多层可包含粘合用纤维和基体纤维的混合物,其中一外层的粘合用纤维的重量百分比比另一外层高。 另一实施方案中,可通过以粘合用纤维网-基体纤维网-粘合用纤维网结构铺设各层来制备3层夹层结构,其中所述粘合用纤维网可由粘合用纤维组成或由粘合用纤维和基体纤维的混合物组成,基体纤维网可由基体纤维或粘合用纤维和基体纤维的混合物组成,其中一层或两层粘合用纤维层的粘合用纤维重量百分比比基体纤维层高。 然后可将该纤维网水刺形成具有一层
2
或两层富含粘合用纤维面的射流喷网无纺织物。 基重为约40-120g/m,优选约50-75g/
2
m 的无纺纤维网适用于本发明。
[0016] 梳理纤维网通常具有基本在纵向取向的纤维,而气流法网中的纤维基本随机取向。可将梳理纤维网交叉来提高纵向和横向性能的平衡。 通常优选无纺织物的纵向和横向性能是平衡的,然而,本发明一个实施方案中,由梳理纤维网制备无纺织物,其中纤维基本在纵向取向。 不局限于任何理论,相信更多在纵向取向的纤维数有助于减小当用织物清洁刻花滚筒表面(如某些印刷机滚筒粗糙表面)时纤维被拉出织物的程度。 [0017] 在制备包含基体纤维和粘合用纤维的纤维网之后,将该纤维网水刺。 生产射流喷网无纺织物的水刺法在本领域中为众所周知。 水刺法中,将纤维网放在筛或其它有孔载体上并经过一系列高压水注,从而使纤维缠绕形成射流喷网无纺织物。 常规水刺法已在Evans的美国专利3,485,706和Nakamae等的US4,891,262中描述。 载体可为 多孔载体,如金属或塑料带或由圆形或其它形状线、单丝或纱制备的筛或多孔板。 正如本领域中所知,根据载体的选择,水刺织物可为有孔或无孔的。 水刺法中,将纤维网传输到载体上并通过几个水注管下方。通常可采用约4-135bar的喷射压。可通过提高水刺压力或采用更多有力喷射类型如7/20、4/80和5/60(7mil孔,20孔/英寸等)提高射流喷网无纺织物的耐磨性和拉伸性能。可在一个或多个步骤中进行水刺法。 例如,可在第一步骤中采用递增喷射压力在第一水刺载体上水刺织物,再在第二水刺载体上进行第二水刺步骤,其可为第一步骤的递增喷射压力分布的连续,然后是一系列三至五个等压喷射。 载体优选在100帕斯卡下的空气流速为约2.0-4.0m/sec。 水刺后,采用本领域已知的方法干燥所得织物。
[0018] 在将纤维网水刺后,将所得射流喷网无纺织物热粘合。 选择热粘合条件,使得低熔点粘合用纤维组分(如皮芯粘合用纤维的皮)软化或熔融而高熔点基体纤维和粘合用纤维的芯组分不熔融且保持其纤维结构。 应选择粘合条件使最终织物具有所需耐磨性和起毛性能。可将射流喷网无纺织物卷绕起来并以后在独立步骤中热粘合。 或者,可在水刺后在线进行热粘合,如在热空气干燥器中进行。 在这种方法中,在使织物通过干燥器之前,可如通过真空脱水系统或挤压辊除去射流喷网无纺织物的过量水。 一个实施方案中,在通干燥器中将射流喷网无纺织物热粘合,其中热气体,通常空气穿过所述织物。 将气体加热到足够软化或熔化粘合用纤维的低熔点组分而不软化或融化基体纤维,以使粘合用纤维和基体纤维在交叉点处粘合。 与仅为表面粘合相反,通风粘合通常沿着织物宽度和贯穿织物厚度得到基本均匀粘合。 通风粘合机通常包括多孔转鼓(其接收织物)和围绕多孔转鼓的罩。 热气体来自罩,穿过射流喷网无纺织物,进入多孔转鼓。 选择在通风粘合机中的停留时间和热气体的温度来干燥该织物(如果它是湿的)并提供所需热粘合度。可使用一个或多个串联的通风干燥器来获得所需粘合度。已经发现:当基体纤维是熔点为约 250-260℃的聚对苯二甲酸乙二醇酯纤维而粘合用纤维是包含熔点为约100-120℃的聚对苯二甲酸乙二醇酯的低熔点间苯二甲酸共聚物皮和聚对苯二甲酸乙二醇酯芯时,在织物水刺后立即在线热粘合时,干燥器中约180℃的粘合空气温度(织物温度为约130-150℃)和约8-12秒的停留时间提供具有足够耐磨性的织物。
[0019] 所述热粘合无纺织物可任选经过轧光。 可采用室温轧光来减小织物的厚度。 这允许更长织物长度卷绕到芯上来提供所需卷厚度(当用作印刷机清洁织物时),如Gasparrini等的美国专利5,974,976中所述。 已发现采用约25℃的未加热辊和-1约32-300×10 N/cm的夹辊压力适合于室温轧光。 高达约0.7mm的织物厚度(按照EDANA30.5-99测定)适用于本发明。尽管可采用更高厚度,从经济学观点来看这是不理想的且对于给定筒尺寸还产生较不线性的织物度量。 本发明通常优选约0.20mm-0.40mm的织物厚度且可采用轧光获得这些厚度。 优选更低的厚度来在筒辊中获得更多线性织物度量,从而筒不那么频繁地要求更换。 或者,如果需要其它热粘合可采用一个或多个热辊对织物进行轧光。 然而,应该选择轧光条件,使得所得织物保持足够吸水以将油墨残余物、溶剂或其它材料从正被清洁的滚筒表面除去。 90-100℃的轧光温度通常是合适-1
的,夹辊压力为150-250×10 N/cm。
[0020] 本发明的清洁织物可与常规滚筒清洁系统一起使用。 通常将清洁织物卷绕在芯(如空心圆筒芯,可将其安装在印刷机滚筒清洁系统的退卷位置上)上。滚筒清洁系统可还包括卷绕辊,清洁织物的已用部分(在已用于清洁印刷机滚筒后)被卷绕在其上。 通常提供一种工具来将清洁织物定位在邻近印刷机滚筒。 例如,可将清洁织物放置使得其通过印刷机滚筒时接触滚筒。
[0021] 通常,将清洁溶剂或溶液施加到清洁织物上。 可在将一卷清洁织物安装到印刷机滚筒清洁系统之前或之后将清洁溶液施加到织物。 可用清洁溶液预浸渍清洁织物并包装以备后用,如Gasparrini等的美 国专利5,368,157中所述。 或者,可在将清洁织物安装到印刷机清洁系统之后将清洁组合物施加到清洁织物上,如通过本领域中已知的、喷淋棒、管线等施加。 也可采用手动喷淋器或其它合适仪器施加清洁组合物。 [0022] 采用清洁织物来将墨水残余物、清洁溶剂、绒毛和其它固体或糊状物质从印刷机滚筒除去。清洁过程中,通常压垫将清洁织物挤压到与滚筒接触。 除了耐磨性外,清洁织物必须具有足够吸水性以吸收残余溶剂等(当在压力下将其从滚筒表面除去时)。已惊人地发现:不包含木浆的本发明的清洁织物在清洁印刷机滚筒过程中表现良好,尽管具有比常规清洁布(如射流喷网木浆/聚酯织物)低的吸收性。
[0023] 为了适合清洁粗糙或刻花的印刷机滚筒表面,在干织物上测定,热粘合射流喷网无纺织物300次旋转后的泰伯磨损值不超过4,且优选300次旋转后的泰伯磨损值不超过2;在湿织物上测定,300次周期后的马丁达里磨损值不超过约1.5,优选50次旋转后不超过1.3,其中泰伯和马丁达里磨损值按照下面描述的方法测定。优选织物还具有高的润滑(用表面活性剂打湿)断裂强度与干断裂强度之比及高干湿硬度,这表明当用清洁溶剂打湿时织物在负荷下变形较少。变形较少导致织物的纤维移位较少。 织物将具有不超过约100,000纤维/平方米的纤维起毛值。
[0024] 本发明的清洁织物还可用于清洁其它类型仪器的滚筒,其中需要耐磨性与吸收性平衡。 例如,本发明的清洁织物可用于清洁其它纺织和无纺应用,包括但不局限于轧光机、纺织浸轧设备、纺织和无纺整理设备中的滚筒。
[0025] 测试方法
[0026] 在下面非限定性实施例中,采用以下测试方法来测定各报道的特征和性能。ASTM是指美国试验与材料协会。 ISO是指国际标准组织。 EDANA是指欧洲、中东和非洲的欧州非织造布贸易协会。 IEST是 指美国环境科学和技术协会。 [0027] 基重是织物或薄片每单位面积质量的度量,按照EDANA40.3-90或ASTM
2
D-3776测定且以g/m(gsm)为单位报道。
[0028] 无纺织物厚度按照EDANA30.5-99或ASTM D1777测定,以mm为单位报道。 [0029] 拉伸性能(抓样断裂强度和抓样模量)按照ASTM D5034在干和润滑样品上测定。
[0030] 以kg为单位报道断裂强度。
[0031] 对干和润滑织物测定模量并在本文中以kN/m为单位报道。 通过浸入0.1%的Dupanol ME溶液30秒来制备润滑样品。 然后将样品放在粗糙筛上沥干30秒,再放在干净干纸巾上60秒。 润滑样品没有被手弄污。 在从溶液中移出2分钟后对润滑样品进行测试。
[0032] 泰伯磨损是当在受控压力和摩擦作用条件下织物经受旋转摩擦作用时抵抗磨损的度量,按照ASTM测试方法D 3884-80,采用产自Teledyne Taber,North Tonawanda,NY的Taber Abraser Model 503测定。测试机具有橡胶基类Calibrade CS-O轮且每轮的负荷为250g。在干织物测定泰伯磨耗值并将泰伯值报道成等级1-15,其中1为最好,15为最差。使织物经过摩擦测试并在50、100、150、200、250和300次旋转后评估。对每个实施例的每次旋转周期进行两次测定。 在第一织物样品的一面进行第一次测定,在第二织物样品的相对面进行第二次测定,然后将两次测定平均。每次旋转周期使用新样品。 [0033] 重量损耗泰伯是使基体经过旋转摩擦作用从基体表面离开的材料量的量度。 在已在70±2 (21.1±1.1℃)和50±5%相对湿度下平衡24小时的10.2cm直径织物样品上测定重量损失。 将样品安装在产自 Teledyne Taber,North Tonawanda,NY的Taber Abraser Model 503上。测试机安装臂具有H-10Calibrade轮,每个安装臂的负荷为250g。称量织物样品,精确到0.0001g并以受测试面面对旋转平台将其安装,经过50周期,然后再称量样品。重量损失报道为摩擦前后的重量差异并以克为单位报道。 在两个样品上进行测定并取平均值,如上针对泰伯磨损所述。
[0034] 马丁达里磨损是当以连续变化图案被标准磨料摩擦时织物抵抗磨损的度量,除非另有说明,按照ASTM D4966,采用Nu-MartindaleAbrasion and Pilling Tester Model406(配有砝码来产生12Kpa压力和Lissajous图案)在湿样品上测定。 按照标准测试方法,所不同的是将测试样品放在固定夹具中,磨料织物放在移动头中,没有将样品平衡到实验室湿度和温度。摩擦后,在100-110℃烘箱干燥样品5分钟。在每个实施例的4-8个样品以特定周期数进行马丁达里磨损测试并将各结果平均。 以1-6等级测定马丁达里磨损,较低马丁达里值对应较好耐磨性(最好=1,最差=6)。对50、100、150、200、
250和300次旋转进行测定。 在对比实施例A的聚酯面和实施例1和2的一面测定马丁达里值。
[0035] 双轴振动测试用于测量被水打湿从织物释放或响应通过搅动赋予的机械能从织物释放或产生的颗粒数。 总地按照IEST-RP-CC-004.2中所述进行该测试,对技术和计算有一些简化。该测试中,将织物放在瓶中并用水摇晃。 除去等量水并分析可释放和产生的颗粒的总和。采用双轴振动器(产自W.S.Tyler)和装配有PMS Model LS 200液体采2
样器的Automatic Particle Counter(PMS Liquilaz Model S05)。 结果报道成颗粒数/m。 [0036] 起毛性是从织物释放和产生的颗粒的度量。按照如下确定可释放纤维碎屑。 将织物样品裁剪成约300乘300mm。按照ASTM D6650 测定外赋吸附能力。将单层测试样品平放在300mm×500mm×60mm塑料盘中心并将500ml蒸馏水加入该盘中来完全覆盖样品。 在样品吸水达到其最大限度后,用手抓住盘末端并平缓地上下举起另一端来缓慢地使水溢流过样品表面30±3秒。将水倾倒入2升烧杯中并保存。另外重复两次这种溢流作用,每次采用500ml新鲜水。测量水的总体积到50ml。用搅拌棒缓慢搅拌悬浮液,然后立即采用带刻度的圆筒等分,所述带刻度圆筒能读出等分体积到三位精确数。 记录等分体积并通过采用Millipore kit XX71047-11等的黑色47.0mm直径、0.8微米孔径、3.0-mm格网方格、100平方/过滤面积膜过滤器过滤等分悬浮液。室温下,将薄膜过滤器风干并遮盖以防污垢、绒毛或其它空气颗粒。 采用带有校正目镜十字标线的显微镜,测量过滤器薄膜各网格上可释放的纤维碎屑并测量网格的数目来获得可释放纤维碎屑,以颗粒数/
2
m 为单位。 按照如下测定产生的纤维碎屑。 将已测试可释放纤维碎屑的同一样品层放
2
入4升瓶。 加入一定体积的蒸馏水,其体积等于测试样品外赋吸收能力(ml/m)乘以测
2
试样品面积(m)的至少20倍,使总体积至少为250ml。 采用频率接近280循环/秒,在振荡平面最大和最小轴的振幅分别为17和8mm的振动器,如Tyler Model RX-86等将瓶振动3分钟。 缓慢摇晃悬浮液并立即等分。采用上述过滤仪器,通过黑色薄膜过滤器(上述)过滤等分的纤维碎屑悬浮液。 然后室温下风干薄膜过滤器并如上所述数出过滤
2
膜各网格上的产生纤维碎屑。 起毛值以可释放和产生的纤维碎屑报道,以颗粒/m 为单位。
[0037] 起毛性测定长度超过50微米的纤维碎屑而测量颗粒的双轴振动测试测量0.5-20微米的不可见颗粒。
[0038] 实施例
[0039] 实施例1
[0040] 在此实施例中,将聚酯双组分皮/芯纤维和聚酯单组分纤维的混 合物制备成射流喷网热粘合织物并当用于清洁粗糙表面的压印滚筒时对其进行耐用性和清洁效率评估。
[0041] 所 述 双 组 分 纤 维(2.2dtex、50mm长、 圆 截 面, 产 自TREVIRAGmbH ofBobingen,Germany)包含由熔点为约110℃的低熔点聚对苯二甲酸乙二醇酯的间苯二甲酸共聚物形成皮和由熔点为约256℃的聚对苯二甲酸乙二醇酯形成的芯。 所述聚酯单组分纤维(2.2dtex、38mm长,产自Wellman,USA)由聚对苯二甲酸乙二醇酯制备且熔点为约256℃,并和双组分纤维混合形成包含25%重量双组分纤维和75%重量单组分纤维的纤维混合物。将混合的纤维加工通过两个高速Thibeau梳理机来形成梳理纤维网,然后在以下条件下按照Evans3,485,706的通用方法对其进行水刺:
[0042] 水刺载体1:由聚酯线机织的冲洗带(购自Albany InternationalCorporation,Albany,NY)
[0043] 水刺载体2:由聚酯线机织的冲洗鼓(购自Albany InternationalCorporation,Albany,NY)
[0044] 载体速度:90m/min
[0045] 17个喷射带,各带具有40孔/英寸(15.7孔/cm),孔直径为5mil(0.13mm),后面是单一喷射带,垂直度为30度,如Oathout等的美国专利申请公开US2002/0116801中所述。 成角度喷射带也具有40孔/英寸(15.7孔/cm),孔直径为5mil(0.13mm)。 [0046] 压力为4-125bar递增分布的九个喷嘴组成水刺载体1。对于水刺载体2,采用8喷嘴,喷嘴压力为125-135bar,压力增加达到一个平台,然后再下降。 然后采用3.0bar的均匀压力将水刺布挤压卷绕,并用2个Fleissner干燥器在180℃通风干燥,每个干燥器中的停留时间为5-6秒。 将织物性质报道于下表1中。
[0047] 将热粘合射流喷网无纺织物的性能报道于下表1中。 所有性能测定在8个样品上进行并平均。
[0048] 实施例2
[0049] 在此实施例中,将聚酯双组分皮/芯纤维和聚酯单组分纤维的混合物制备成射流喷网热粘合织物、冷轧光,并当用于清洁粗糙表面的压印滚筒时对其进行耐用性和清洁效率评估。
[0050] 采用包含26%重量熔点为100-120℃的共聚(对苯二甲酸乙二醇酯)/聚对苯二甲酸乙二醇酯粘合用纤维和74%重量的聚对苯二甲酸纤维,均为1.62dtex、38mm长,产自Advansa(Germany),如上针对实施例1所述制备热粘合射流喷网织物。 [0051] 在以下条件下对热粘合射流喷网织物进行轧光:
[0052] 夹辊压力:90×10-1顿/厘米
[0053] 夹持点:1
[0054] 温度:室温
[0055] 速度:60米/分钟
[0056] 辊1:不锈
[0057] 辊2:肖氏D硬度为84的聚酰胺
[0058] 将实施例2轧光织物的性能报道于下表1中。 在4个测试样品上进行测量并平均。
[0059] 发现实施例1和实施例2的织物都在清洁粗糙表面或刻花印刷机滚筒中表现良好。 尽管没有吸水纤维,该织物良好地将墨水、溶剂和其它碎屑从印刷机滚筒除去而没有撕裂或明显磨损清洁织物。
[0060] 对比实施例A
[0061] 对比实施例A是目前用于清洁印刷机滚筒的木浆/聚酯射流喷网无纺织物商品,产自E.I.du Pont de Nemours and Company(Wilmington,DE)的Printmaster Style 8835。当将该织物用于清洁粗糙表面或刻花印刷机滚筒时发现其被撕破。
[0062] 表1无纺织物性能
[0063]性能 实施例1 实施例2 对比实施例A
2
基重(g/m) 72.9 69.5 73.9
厚度(mm) 0.58 0.30 0.36
XD抓样断裂强度(干,N) 93.0 82.8 111.2
MD抓样断裂强度(干,N) 183.7 217.6 190.0
XD抓样断裂强度(润滑的,N) 83.7 70.8 81.9
MD抓样断裂强度(润滑的,N) 171.8 186.5 145.1
XD抓样硬度(干,N/cm) 48 31.5 52
MD抓样硬度(干,N/cm) 174 156 123
XD抓样硬度(润滑的,N/cm) 42.7 28 8
MD抓样硬度(润滑的,N/cm) 184 80.5 43
重量损失泰伯(干,g),50周期 0.134 0.174 0.029
泰伯磨损,干(300次旋转) 1 3.5 12
泰伯磨损,干(700次旋转) 7.5 9.5 失败(>15)
泰伯磨损,干(1000次旋转) 7.5 10.5 失败(>15)
泰伯磨损,干(50次旋转) 6 6.5 8.9
泰伯磨损,干(100次旋转) 7 7.5 12.5
泰伯磨损,干(300次旋转) 12 14 14.5
马丁达里磨损(50)(湿) 0.7 1.0 0.8
马丁达里磨损(100)(湿) 0.8 1.0 1.3
马丁达里磨损(150)(湿) 0.8 1.0 1.3
马丁达里磨损(200)(湿) 1.0 1.0 2.0
马丁达里磨损(250)(湿) 1.0 1.0 3.1
马丁达里磨损(300)(湿) 1.2 1.3 3.6
起毛性(颗粒/m2) 4.5×104 9.62×104 1.3×106
双轴振动(颗粒/m2) 5.9×106 10.0×106 31.37×106
[0064] 实施例1和2的泰伯磨损结果显示出相对对比实施例A在干态15步骤中超过8步骤和在湿态25-50%的提高(这取决于旋转次数)。 在700和1000次旋转时,对比实施例A完全失败,而实施例1和2都保持结构完整。 实施例1和实施例2的马丁达里结
QQ群二维码
意见反馈