制造空心体的方法

申请号 CN201280063626.6 申请日 2012-12-21 公开(公告)号 CN104066610A 公开(公告)日 2014-09-24
申请人 英瑞杰汽车系统研究公司; 发明人 B·克里尔; 皮埃尔·德凯泽; 埃里克·布克;
摘要 本 发明 涉及一种用于制造空心体的方法,所述空心体包括热塑性塑料壁和 纤维 加强件,所述纤维加强件 焊接 在所述壁的表面的至少一部分上,优选地为所述壁的外表面;所述纤维加强件包含与所述空心体的壁的热塑性塑料相似或兼容的热塑性塑料,并具有至少1mm的厚度且包含重量比为30%至60%的纤维,根据所述方法:将所述空心体的外表面用于焊接所述加强件的部分加热;将所述纤维加强件加热从而使所述加强件的热塑性塑料 软化 或者更优选地 熔化 ;以及将所述加强件移动并施加到所述空心体外表面的所述部分,其中将所述加强件施加到所述空心体外表面的所述部分的步骤包括:在所述加强件的至少一部分上施加初始压 力 ;利用自动化压力施加装置施加压力以便进行最终焊接。
权利要求

1.一种用于制造空心体的方法,所述空心体包括热塑性塑料壁和纤维加强件,所述纤维加强件焊接在所述壁的表面的至少一部分上,优选地为所述壁的外表面;所述纤维加强件包含与所述空心体的壁的热塑性塑料相似或兼容的热塑性塑料,并具有至少1mm的厚度且包含重量比为30%至60%的纤维,根据所述方法:
-将所述空心体的外表面用于焊接所述加强件的部分加热;
-将所述纤维加强件加热从而使所述加强件的热塑性塑料软化或者更优选地熔化;以及
-将所述加强件移动并施加到所述空心体外表面的所述部分,其中将所述加强件施加到所述空心体外表面的所述部分的步骤包括:
-在所述加强件的至少一部分上施加初始压
-利用自动化压力施加装置施加压力以便进行最终焊接。
2.如权利要求2所述的方法,其中所述自动化压力施加装置包括至少一个滚筒。
3.如权利要求1或2所述的方法,其中利用自动化夹持装置移动所述加强件。
4.如权利要求3所述的方法,其中将所述自动化夹持装置与所述自动化压力施加装置结合在同一机器人支架上。
5.如权利要求1至4中任一项所述的方法,其中焊接部分包括三维表面,并且其中所述加强件在焊接期间成型。
6.如权利要求1至5中任一项所述的方法,所述方法包括在加热期间、焊接期间和/或焊接之后向所述空心体施加内部压力。
7.如前述权利要求中任一项所述的方法,其中加热步骤采用红外辐射
8.如前述权利要求中任一项所述的方法,其中将所述加强件放置在网格上并且在至少一侧进行红外加热。
9.如前述权利要求中任一项所述的方法,所述方法使用可移动网格,所述可移动网格可以插入到固定在底架上的两个红外加热器之间,或者插入到在所述加强件/网格上面的红外组件和在所述加强件/网格下面的反射表面之间。
10.如前述权利要求中任一项所述的方法,所述方法使用加热器和“掩膜”,所述掩膜为金属板,优选地用循环冷却,所述金属板放置在加热器和所述空心体之间并且具有类似于所述加强件的形状和尺寸的开口。
11.如前述权利要求中任一项所述的方法,其中所述空心体包括壁,所述壁限定用于储存和/或运输车载流体的内部容积,并且所述壁是通过吹塑成型而获得。
12.如权利要求11所述的方法,其中所述空心体是车辆燃料箱,优选地是混合动力车辆燃料箱、注油管、涡轮增压导管或者选择性催化还原系统的前体箱。
13.如前述权利要求中任一项所述的方法,其中所述纤维加强件包含连续纤维,优选地是编织的连续纤维。
14.如前述权利要求中任一项所述的方法,其中所述纤维加强件包含玻璃纤维。
15.如前述权利要求中任一项所述的方法,其中所述纤维加强件含有距离其表面仅
0.05mm的纤维。

说明书全文

制造空心体的方法

技术领域

[0001] 本发明涉及一种空心体、用于制造该空心体的方法及其在车辆中的用途。

背景技术

[0002] 混合发动机通常是指内燃机电动机的组合。
[0003] 混合动车辆的一般工作原理包括:基于操作模式,或者使电动机运行,或者使内燃机运行,或者同时使这两者运行。
[0004] 具体原理中的一个原理如下:
[0005] -在静止阶段(当车辆是静止的)期间,两种发动机均关闭;
[0006] -在启动时,使用电动机驱动车辆,直至较高的速度(25或30km/h);
[0007] -当达到较高速度时,内燃机接替电动机运行;
[0008] -在快速加速的情况下,两种发动机同时工作,由此可以获得等同于相同功率发动机的加速度、或者甚至更大的加速度;
[0009] -在减速和制动阶段中,利用动能电池再充电(应当注意的是并非在目前市售的所有混合发动机中均可实现此功能)。
[0010] 根据上述原理,内燃机并非持续运行,因而,不能正常地执行汽油气吸收箱(canister,活性炭过滤器,其避免燃料蒸气被释放到大气中)的净化阶段,因为在这些净化阶段,可能被预热的空气在汽油气吸收箱中循环以使其再生(即汽油气吸收箱中吸附的燃料蒸汽解吸出来),该空气随后进入发动机以便在其中燃烧。此外,混合动力车辆是被开发用来减少燃料消耗和废气排放,这使得对燃烧来自汽油气吸收箱的燃料蒸气的发动机管理更加复杂,或者甚至不可能在不降低发动机性能的情况下实现。
[0011] 因此,通常这些发动机的燃料箱是密封的(通常,在大约300-400mbar的压强下)以便限制汽油气吸收箱的负载量;从而导致由于温度波动所引起的压强变动。
[0012] 因而,与常规内燃机的燃料箱相比,这些燃料箱必须具有改善的机械强度,尤其是在塑料箱的情况下。
[0013] 目前市场上的解决方法包括具有相当大厚度的金属箱,这会大幅增加燃料箱的重量并且因此增加燃料消耗和废气排放。此外,塑料燃料箱为设计提供更大的灵活性(以优化车辆中的可利用容积)。
[0014] 解决前述压强问题的其它已知解决方法可包括增加塑料箱的壁厚和/或使用将两个壁连接在一起的内部加强件(杆、隔板等),但这些解决方法通常对重量产生负面影响,减小箱的工作容积并增加箱的成本。另一个解决方法可包括为箱提供焊合部(kiss points,即下壁与上壁的局部焊接),但此解决方法导致箱工作容积的减小。
[0015] 本申请人名下的专利申请WO 2011/110519公开了一种用于制造燃料箱的方法,所述燃料箱包括热塑性壁和位于其至少一部分外表面上的纤维加强件,根据该方法:
[0016] -使熔融的热塑性型坯在模具中成型并冷却从而获得箱的壁;
[0017] -选择包含与箱壁材料相似或兼容的热塑性塑料的纤维加强件,并且将该加强件加热从而使其热塑性塑料软化或者甚至熔化;以及
[0018] -通过施加一个可以将加强件和箱的外表面焊接在一起的力而将加强件施加到箱的外表面。
[0019] 该专利文件建议限制加强件的厚度(该厚度理想地应在0.2和1mm之间),以在通过IR(红外)辐射同时加热这两个元件(也就是说:利用经过该加强件的红外辐射将箱加热)之后/的同时,能够利用该辐射将所述加强件焊接在箱上。然而,也如该专利文件中所述,优选地是使加强件具有较高的拉伸强度(因此,较大的厚度)以便增强其加强效果。然而,这种较大厚度将会要求分别地加热箱和加强件,因此后者在被焊接在前者上之前应被处理(夹持和运送),同时所述加强件的热塑性塑料应保持软化/熔融从而允许进行焊接。
[0020] 本申请人已发现假设所述加强件的厚度为至少1mm并且假设其纤维含量是在给定的范围内,那么这种处理和焊接仍然是可行的,从而导致从机械性能方面来说新的且令人感兴趣的结构,该结构不仅可用于如上所述的混合动力车辆燃料箱,而且还可用于车辆中所使用的可能承受高热应力和/或机械应力的任何其它空心体。
[0021] 因此,本发明涉及一种空心体,所述空心体包括热塑性塑料壁和纤维加强件,所述纤维加强件焊接在所述壁的表面的至少一部分上,所述表面优选地为所述壁的外表面;所述纤维加强件包含与所述空心体的壁的热塑性塑料相似或兼容的热塑性塑料,并具有至少1mm的厚度且包含重量比为30%至60%的纤维。
[0022] 根据本发明的空心体包括壁,该壁限定用于储存和/或运输车载流体的内部容积。此空心体由热塑性塑料制成,优选地通过吹塑成型制成。本发明适用于承受高热应力和/或机械应力的空心体,如(优选地为混合动力)车辆燃料箱、注油管、涡轮增压导管和用于减少废气中NOx气体的SCR(选择性催化还原)系统中所使用的前体(如尿素或者吸附氨的固体)箱。
[0023] 术语“热塑性塑料”应被理解成表示任何热塑性聚合物,包括热塑性弹性体、以及它们的混合物。术语“聚合物”应被理解成既表示均聚物也表示共聚物(尤其是二元或三元共聚物)。这些共聚物的实例包括但不限于:无规共聚物、线性嵌段共聚物、非线性嵌段共聚物和接枝共聚物。
[0024] 其熔点低于分解温度的任何类型的热塑性聚合物或共聚物均是可适用的。具有熔融温度的范围覆盖至少10℃的合成热塑性塑料是尤其合适的。这些材料的实例包括在分子量上呈现多分散性的材料。
[0025] 具体地,可使用聚烯、热塑性聚酯类、聚类、聚酰胺类及它们的共聚物。也可以使用聚合物或共聚物的混合物,同样,也可以使用带有无机、有机和/或天然填充物(例如但不限于:、粘土、盐类和其它无机衍生物、天然纤维或聚合纤维)的聚合材料的混合物。还可以使用由结合在一起的堆叠层所构成的多层结构,该结构包含至少一种上述的聚合物或共聚物。
[0026] 经常使用的一种聚合物是聚乙烯。利用高密度聚乙烯(HDPE)已获得优异的效果。
[0027] 空心体的壁可由单个热塑性材料层或两层构成。基于空心体所储存/运输的流体,一个或更多的可能的附加层可以有利地由阻隔液体和/或气体的材料制成的层所组成。优选地,通过对阻隔层的种类和厚度加以选择从而使与空心体内表面接触的液体和气体的渗透性最小化。当空心体是燃料箱时,优选地,所述层是基于阻隔性树脂,也就是说对于燃料是不可渗透的树脂,例如EVOH(部分解的乙烯/乙酸乙烯酯共聚物)。可替代地,为了使箱对于燃料是不可渗透的,也可以使箱经受表面处理(氟化或磺化)。根据本发明此实施例的箱优选地包括位于基于HDPE的外层之间的基于EVOH的阻隔层。
[0028] 纤维加强件可具有多种形式;它通常是包含短切纤维或长纤维或连续纤维的片材,所述纤维可以是或者可以不是编织的。通常,短切纤维具有数十/数百微米的最终长度。就长纤维而言,剩余长度为几毫米。当使用纤维的长度为数十厘米时,这些纤维被称为连续纤维或者连续长丝。连续纤维是优选的,尤其是编织的连续纤维。
[0029] 这些纤维可以是基于玻璃、碳、聚合物(诸如聚酰胺,例如芳香族聚酰胺诸如芳纶)的,或者甚至可以是天然纤维诸如大麻或剑麻。它们优选地是玻璃纤维(E玻璃、S玻璃或者其它玻璃类型的玻璃纤维)。
[0030] 根据本发明的纤维加强件的纤维优选地是与热塑性塑料兼容,因此通常与聚烯烃兼容,尤其是与HDPE兼容。为了获得此兼容性,可用增容性物质(诸如烷)对这些纤维进行涂覆(表面处理)。也可以使用反应性的HDPE型粘结剂。在此背景下,可以有利地使用顺丁烯二酸酐类型的反应性官能团。
[0031] 根据本发明,纤维加强件包含与空心体的材料兼容或者甚至与之相同的热塑性塑料。对燃料箱来说,该热塑性塑料通常是聚乙烯,尤其是HDPE。
[0032] 该加强件具有至少1mm的厚度,优选地为至少1.5mm。
[0033] 该加强件中的纤维含量的重量比在30%和60%之间,理想地是大约45%。优选地将热塑性塑料熔化在大量纤维的周围/之间从而形成均匀的片材/平板,该片材/平板在其表面的至少一部分上具有热塑性塑料以便于焊接。在实际中,这可以通过压缩成型、注射成型、喷射成型、真空成型或者压延而实现。优选地,用于制造该加强件的方法是压缩成型或喷射成型,更优选地是将分别由纤维和热塑性塑料制成的数层压缩成型,外层优选地是热塑性塑料层。此压缩成型可以是分批工艺(batch process,通常包括将分别由纤维和热塑性塑料制成的数层加热并且施加静压下挤压到一起)或者连续工艺(通常包括在滚筒之间挤压所述层),后者是优选的,因为它较前者更便宜且更快,这也其常用于工业规模的原因。相当出人意料地,虽然利用此连续工艺获得的加强件含有距离它们的表面仅0.05mm的纤维,但它们在本发明范围内仍可保证相当好的性能(焊接)。
[0034] 本发明中所使用的加强件的尺寸适合于促进其预热和将其焊接到空心体的壁上,2 2
同时确保高性能的加强效果。其表面积优选地是在数十cm 的范围内(通常在50和1000cm
2
之间,或者甚至在100和500cm 之间)。
[0035] 为了使加强件获得有效的机械性能,其拉伸强度优选地是至少2000MPa、或者甚至至少3000MPa;在某些情况下,加强件可以甚至有利地具有至少5000MPa、或者甚至10000MPa的强度。
[0036] 根据本发明的一个有利变体,加强件包括开口(孔)从而避免空气阻塞在所述加强件和空心体壁之间。这些开口的尺寸通常可以是在mm的范围内。
[0037] 壁表面中加强件被焊接的部分可以是外表面的一部分(即与大气接触的一面)或者是内表面的一部分(与空心体内部接触),当然,外表面的一部分和内表面的一部分两者均包括被焊接的加强件的情况并不被排除在本发明的范围之外。
[0038] 当把加强件焊接到燃料箱的内表面的一部分时,优选地是在模制所述箱的同时进行焊接,该模制优选地由最终从同一圆柱形型坯中切割出的两个片材成型,更优选地是使用本申请人的专利申请WO 2008/040766中所描述的方法,该专利申请以引用的方式并入本申请中。
[0039] 然而,也可以(或者附加地)将加强件焊接到已完成的空心体,该空心体已在焊接之前模制并冷却。
[0040] 因此,本发明还涉及一种用于制造如上所述的空心体的方法,根据该方法:
[0041] -将所述空心体的外表面用于焊接所述加强件的部分加热;
[0042] -将所述纤维加强件加热从而使所述加强件的热塑性塑料软化或者更优选地熔化;以及
[0043] -将所述加强件移动并施加到所述空心体外表面的所述部分,其中将所述加强件施加到所述空心体外表面的所述部分的步骤包括:
[0044] -在所述加强件的至少一部分上施加初始压力;
[0045] -利用自动化压力施加装置施加压力以便进行最终焊接。
[0046] 施加在加强件至少一部分上的初始压力使加强件能够充分地粘附到空心体上,因此加强件可以保持在位直到利用自动化压力施加装置施加最终的压力。
[0047] 在一个优选实施例中,自动化压力施加装置以使褶皱和气泡最小化并确保压力均匀的方式施加最终的压力。该自动化压力施加装置可以例如包括至少一个滚筒。
[0048] 根据本发明,在实施焊接之前,将加强件和空心体外表面中加强件将被焊接的部分加热。在现有的加热技术中,可提及的是:
[0049] -旋转加热;
[0050] -振动加热;
[0051] -超声加热;
[0052] -感应加热
[0053] -微波加热;
[0054] -通过加热电阻的加热;
[0055] -利用被加热的金属(也称为“加热板”)的加热;
[0056] -热气体加热;
[0057] -红外(IR)加热;
[0058] -激光加热。
[0059] 在这些技术中,那些不与热源接触的技术是优选的,因为它们允许加热三维表面,并且还因为,如上所述反应性粘结剂(添加剂)经常用于加强件,因此它们的表面具有粘性。可替代地,假设加强件的表面层是无添加剂的,则可以使用接触性工具。也可以使用由特定的合金制成的工具。
[0060] 在以上列出的“非接触”技术中,红外加热是优选的,因为它适合于所有的塑料材料和纤维,且快速并相当便宜。优选地,红外辐射使厚度至少为0.5mm的空心体的壁和加强件的所有热塑性材料熔化。在多层空心体(例如具有阻隔层的燃料箱)的情况下,理想地阻隔层不被熔化。就传统的HDPE/EVOH箱而言,熔化深度优选地不大于1mm、理想地大约为0.5mm。
[0061] 聚乙烯基质主要吸收中红外(波长为3-8μm)范围内的红外线。然而,短红外(波长为1.4-3μm)和中红外这两种都能使用。短红外加热器具有更深的穿透性和更大的反应性。短红外加热器只需数秒便达到它们的最高温度,而中红外加热器则需要数分钟。通常,中红外加热器必须在全部的生产时间中保持开启状态,而近红外加热器可以在该过程中打开和关闭。
[0062] 因此,短红外加热器是优选的。红外加热器以许多商业形式存在(陶瓷、带钨丝的灯、带碳丝的灯…)。本发明的一个优选型式包括使用具有位于石英管内部的钨丝的近红外加热器,该加热器优选地集成金反射器以便能够控制辐射的方向。优选地将加热功率以及加热器与样品之间的距离加以优化。在使用HDPE样品的情况下,通过将样品放置在距离具2
有大约130kw/m 加热功率密度的加热器10mm至200mm(优选地80至180mm)处而获得良好的结果。当使用数个具有不同加热功率的灯时也可获得良好的结果,此时在加强件的边界上使用最强功率的灯。
[0063] 为了能够使加强件的热塑性塑料完全熔化,优选地将所述加强件放在网格上并在至少一侧加热。这可以通过使用可移动网格来完成,该可移动网格可以插入到固定在底架上的两个红外加热器之间(如图 1所示),或者插入到加强件/网格上面的一个红外组件和在网格下面的加强件底部的反射表面之间,以提高加热的效率。在这些实施例中,所述网格优选地具有特定的设计(小接触面),以防止加强件粘附以及实施高效而均匀的焊接。
[0064] 为了能够将加强件焊接到HDPE空心体上,该空心体表面的温度优选地在140℃(比HDPE的熔点高10℃)以上持续至少10秒,这是拿取加强件并将其定位在空心体表面所通常需要的时间。
[0065] 为了防止损伤空心体上/中可能的附件,并且为了防止在焊接期间使空心体变形过大,被加热区域优选地局限于焊接区域。这可以例如通过使用定制的红外灯,或者通过使用“掩膜”(mask)而完成。在该实施例中,将可通过水循环冷却的金属板放置在加热器和空心体之间。该金属板优选地具有一个开口,该开口优选地在金属板的中心,并具有类似于加强件的形状和尺寸。这样的一个实施例(其中的一个变体示于附图2中)允许使用标准商用红外“灯”,该灯当然比定制的红外灯便宜。
[0066] 根据本发明,一旦将加强件以及空心体的焊接部分加热,则将加强件移动到所述焊接部分,并通过施加一个能够将这两个元件焊接在一起的力而将加强件施加到所述焊接部分。得益于根据本发明的加强件的厚度和纤维含量,当把所述加强件局部地按压在空心体上(例如:在三维表面的上部)时,加强件将在原位保持不变形直到向其施加压力以便进行最后焊接,这使得褶皱和气泡最小化。在焊接区域包括三维表面的情况下,可能有利地是在加热(例如通过热成型)之前、在加热期间、在运输期间或者在焊接期间,使加强件成型。
[0067] 移动和焊接操作必须尽可能地快速,以便将加强件维持在熔融状态。已观察到在加热后加强件保持在熔融状态可长达10秒。在工业过程中,这些操作优选地是自动化的,因此可以使用自动化夹持装置和自动化压力施加装置。这两个装置可以是同一个设备(例如:由塑料或金属制成且安装在弹簧上的吸盘),或者它们可以是单独的设备(例如:作为夹持器的吸盘和作为压力施加装置的至少一个滚筒)。当它们是单独的设备时,有利地将它们结合在同一机器人支架上以避 免阻碍在空心体周围的工作空间。在一个优选实施例中,同一机器人臂中配备有这两种装置,甚至更优选地(因为这样是非常紧凑的设计)使它们位于安装在机器人臂上的机器人手的两侧上,该机器人手可以从一个位置(夹持)旋转到另一个位置(压力施加)。
[0068] 在一个优选实施例中,机器人手配备有:
[0069] -在第一侧上具有安装在导轨上的至少1排吸盘。各吸盘优选地被固定在转向节上,因此即使在三维表面上也可以使吸盘朝向加强件。
[0070] -在第二侧上具有滚筒。该滚筒可以具有1节(section)或者多节,以与空心体表面更好地接触。滚筒的硬度优选地是适于匹配空心体表面的均匀性。
[0071] 该实施例如附图3(机器人手的侧视图)和附图4(机器人手的俯视图)所示。
[0072] 根据本发明,将加强件按压到空心体表面上,以实现良好的焊接(不仅是粘附)。在上述实施例中,通过吸盘施加初始压力。吸盘可以被安装在弹簧上以获得更大的灵活性。
然后,滚筒在加强件的表面上滚过。压力通常是在70至80MPa的范围内。可以将滚筒安装在导轨上以简化机器人手的移动(如果需要)。
[0073] 本发明的另一个实施例包括仅使用吸盘来按压加强件。在这种情况下,无需滚筒。该实施例是基于以下事实:如果10%(在吸盘之间)的表面不被焊接,加强件的有效性不会变化。
[0074] 吸盘和/或滚筒优选地由不粘附热的加强件的材料制成。可以使用特定的弹性体(例如,氟化的或者含有硅树脂的弹性体)或者铜合金(见上)。
[0075] 空心体壳体易于在加热阶段发生变形,特别是由于将加强件按压在其表面上。因此,为了限制变形,优选的解决方法包括在加热期间、在焊接期间和/或在焊接后,向空心体施加内部压力(在20和100mbar之间,优选地在50和80mbar之间)。此压力在加热阶段可以是恒定的并且在将加强件焊接在空心体上的期间是增加的。一个优选实施例包括施加空气压力(而不是水压力)。另一个选择是(与前者 兼容)在焊接后将空心体放置在后吹冷却壳体上。在这种情况下,施加内部空气压力(基于空心体的几何形状,通常在100mbar至1500mbar、优选地200至500mbar的范围内)。
[0076] 本发明还涉及如上所述(通过工艺而获得)的空心体作为(混合动力)车辆的燃料箱的用途。此箱也可以用于常规车辆中,其中可利用所获得的加强效果来避免金属绑带的使用,该金属绑带通常是用于当把箱紧固到车体底部时防止箱下壁的蠕变。加强件的存在也可以减小箱的厚度,以减小重量和增加工作容积。
[0077] 也应当注意的是,通过本发明主题所获得的加强效果可以(且优选地)与其它已知加强方法的使用相结合,诸如上述的绑带、焊合部、内部加强件(杆、隔板)、包覆成型纤维织物等,以及任何其它类型的内部和外部加强件(尤其如此,因为第一种类型可以有助于获得耐压区)。本发明与这些已知技术的组合能够减小焊合部、内部加强件(杆、隔板)、包覆成型纤维织物等的尺寸和/或数量。因此,使最终解决方案的重量最小化并且使箱的工作容积最大化。
[0078] 如上所述,通过示意性表示的附图1至附图4来非限制性地说明本发明:
[0079] -图1示出了根据本发明一个实施例的用于加热加强件的加热站,其包括插入到固定在底架上的两个红外加热器之间的可移动网格;
[0080] -图2示出了根据本发明一个实施例的用于加热箱的加热站,其包括允许仅加热箱的焊接区的掩膜和安装在底架上的灯;
[0081] -图3和图4示出了分别在一侧具有吸盘、在另一侧具有滚筒的机器人手的侧视图和俯视图。
QQ群二维码
意见反馈