用于制造压花纤维网的方法

申请号 CN201080011367.3 申请日 2010-03-11 公开(公告)号 CN102348438B 公开(公告)日 2014-01-08
申请人 宝洁公司; 发明人 K.J.斯通; R.D.扬;
摘要 本 发明 公开了一种用于制造压花 纤维 网的方法。在成形结构和柔顺基底之间提供前体纤维网。成形结构具有多个离散的突出元件和完全围绕着它们的平面。在柔顺基底和成形结构之间提供压 力 以使前体纤维网适形于成形结构,从而形成压花纤维网。所得的压花纤维网具有被平面区域完全围绕的多个离散的延伸元件。
权利要求

1.一种用于制造压花纤维网的方法,所述压花纤维网包括与所述压花纤维网整体形成的多个离散的延伸元件,所述延伸元件具有开口近侧部分、闭合或开口远端以及侧壁,所述延伸元件在所述远端处和/或沿着所述侧壁被减薄,所述方法包括以下步骤:
提供成形结构,其包括多个离散的突出元件和完全围绕所述离散的突出元件的平面,其中所述离散的突出元件各具有小于500微米的直径;
提供柔顺基底;
在所述柔顺基底和所述成形结构之间提供前体纤维网;其中所述前体纤维网包括合成材料、金属材料、生物材料或它们的组合;和
在所述柔顺基底和所述成形结构之间提供足以使所述前体纤维网适形于所述成形结构的所述离散的突出元件的压以形成所述压花纤维网;以及
所述压花纤维网的所述离散的延伸元件具有至少0.2的纵横比。
2.一种用于制造压花纤维网的方法,所述压花纤维网包括与所述压花纤维网整体形成的多个离散的延伸元件,所述延伸元件具有开口近侧部分、闭合或开口远端以及侧壁,所述延伸元件在所述远端处和/或沿着所述侧壁被减薄,所述方法包括以下步骤:
提供成形结构,其包括多个离散的突出元件和完全围绕所述离散的突出元件的平面,其中所述成形结构每平方厘米包括至少95个离散的突出元件;
提供柔顺基底;
在所述柔顺基底和所述成形结构之间提供前体纤维网;其中所述前体纤维网包括合成材料、金属材料、生物材料或它们的组合;以及
在所述柔顺基底和所述成形结构之间提供足以使所述前体纤维网适形于所述成形结构的所述离散的突出元件的压力以形成所述压花纤维网;以及
所述压花纤维网的所述离散的延伸元件具有至少0.2的纵横比。
3.一种用于制造压花纤维网的方法,所述压花纤维网包括与所述压花纤维网整体形成的多个离散的延伸元件,所述延伸元件具有开口近侧部分、闭合或开口远端,以及侧壁,所述延伸元件在所述远端处和/或沿着所述侧壁被减薄,所述方法包括以下步骤:
提供成形结构,其包括多个离散的突出元件和完全围绕所述离散的突出元件的平面,其中所述离散的突出元件各具有非柱形形状;
提供柔顺基底;
在所述柔顺基底和所述成形结构之间提供前体纤维网;其中所述前体纤维网包括合成材料、金属材料、生物材料或它们的组合;以及
在所述柔顺基底和所述成形结构之间提供足以使所述前体纤维网适形于所述成形结构的所述离散的突出元件的压力以形成所述压花纤维网;以及
所述压花纤维网的所述离散的延伸元件具有至少0.2的纵横比。
4.一种用于制造压花纤维网的方法,所述压花纤维网包括与所述压花纤维网整体形成的多个离散的延伸元件,所述延伸元件具有开口近侧部分、闭合或开口远端以及侧壁,所述延伸元件在所述远端处和/或沿着所述侧壁被减薄,所述方法包括以下步骤:
提供成形结构,其包括多个离散的突出元件和完全围绕着所述离散的突出元件的平面,其中所述离散的突出元件具有平均高度;
提供具有30至80硬度计的肖氏A级硬度的柔顺基底;
在所述柔顺基底和所述成形结构之间提供前体纤维网;其中所述前体纤维网包括合成材料、金属材料、生物材料或它们的组合;并且其中所述前体纤维网具有厚度;和在所述柔顺基底和所述成形结构之间提供足以使所述前体纤维网适形于所述成形结构的所述离散的突出元件的压力以形成所述压花纤维网;以及
其中所述突出元件的所述平均高度与所述前体纤维网的所述厚度的比率为至少2:1;
以及
所述压花纤维网的所述离散的延伸元件具有至少0.2的纵横比。
5.如前述任一项权利要求所述的方法,其中所述前体纤维网是以至少0.01米/秒的速率被喂入所述柔顺基底和所述成形结构之间。
6.如权利要求1-4中任一项所述的方法,其中所述压力被施加到所述前体纤维网的给定部分并持续小于5秒的保压时间。
7.如权利要求1-4中任一项所述的方法,其中所述前体纤维网具有熔点,并且其中所述方法在小于所述前体纤维网的所述熔点的温度下执行。
8.如权利要求1-4中任一项所述的方法,其中所述前体纤维网是包括聚乙烯、聚丙烯或者它们的混合物的热塑性薄膜
9.如权利要求1-4中任一项所述的方法,其中所述柔顺基底包括具有30至80硬度计的肖氏A级硬度的橡胶
10.如权利要求1-4中任一项所述的方法,其中所述柔顺基底呈辊的形式,并且所述成形结构呈辊的形式。
11.如权利要求1-4中任一项所述的方法,其中所述离散的突出元件各具有大致柱形形状和至少0.5的纵横比。
12.如权利要求1-4中任一项所述的方法,其中所述离散的突出元件具有30微米至
650微米的平均边缘至边缘间距。
13.如权利要求1-4中任一项所述的方法,其中所述离散的延伸元件具有至少0.5的纵横比。
14.如权利要求1-4中任一项所述的方法,其中所述柔顺基底和所述成形结构之间的所述压力为0.3至68.9MPa。
15.如权利要求1-4中任一项所述的方法,其中所述延伸元件相对于所述压花纤维网的所述平面区域被减薄至少25%。
16.如权利要求1-4中任一项所述的方法,其中所述延伸元件的所述远端是闭合的。
17.如权利要求1-4中任一项所述的方法,其中所述延伸元件的所述远端是开口的。
18.如权利要求1-4中任一项所述的方法,其中所述前体纤维网具有屈服点,其中所述前体纤维网通过所述方法被拉伸超过所述屈服点。

说明书全文

用于制造压花纤维网的方法

发明领域

[0001] 本发明涉及一种用于制造包括多个离散的延伸元件的压花纤维网的方法。
[0002] 发明背景
[0003] 材料纤维网诸如热塑性薄膜具有多种用途,包括吸收制品的组件材料(诸如顶片和底片)、包装材料(诸如流动包裹、收缩包装膜和塑料袋)、垃圾袋、食品包裹物、牙线、擦拭物、电子元件等。就材料纤维网的这些用途中的许多而言,可有益地使材料纤维网具有纹理化表面,所述纹理化表面可为材料纤维网的表面提供所期望的手感、视觉印象和/或听觉印象。
[0004] 表现出柔软且丝般触觉印象的聚合物纤维网可通过真空成形法或液压成形法来制造。在典型的真空成形法中,将前体纤维网加热并放置到成形结构上。然后空气真空迫使前体纤维网适形于成形结构的纹理。取决于成形结构的纹理,所得聚合物纤维网具有可提供柔软且丝般触觉印象的纹理。尽管真空成形法可适用于制造柔软且丝般聚合物纤维网,但真空成形法通常受到与能够被施加到前体纤维网上的压大小相关的限制。因此,通常需要在放置到成形结构上之前加热前体薄膜以显著地软化或熔融前体薄膜,以便将前体薄膜真空成形到成形结构上。因此,由于加热步骤和由真空成形法所产生的有限的压力,该方法为一种低效的方法。
[0005] 在典型的液压成形法中,将前体纤维网放置到成形结构上,并且高压和高温喷迫使前体纤维网适形于成形结构的纹理。取决于成形结构的纹理,所得聚合物纤维网可具有可提供柔软且丝般触觉印象的纹理。液压成形法虽然能够生产出柔软且丝般的聚合物纤维网,但其通常为一种涉及到使用高压和高温喷水和后续干燥步骤(包括脱水步骤)的高成本且低效率的方法。
[0006] 压花为一种如下的方法,其通常涉及对基底进行机械加工以使基底在压力下适形于雕刻于或以其他方式形成于压花辊上的图案的深度和轮廓。所述方法被广泛地用于消费品的生产中。制造商们使用压花方法向产品中赋予纹理或浮雕图案,所述产品由纺织物、纸材、合成材料、塑性材料、金属和木材制成。
[0007] 压花方法已被用来向聚合物薄膜提供纹理。然而,此类压花方法通常需要将熔融树脂挤出到成形结构上,或者在放置到成形结构上之前加热前体纤维网,然后进行压花以生产出压花纤维网。然后冷却压花纤维网,通常通过冷却用来压花加热过的前体纤维网或熔融树脂的压花辊或板来进行冷却。所述冷却步骤常常用来定形压花纤维网中的纹理。然而,这些加热步骤和冷却步骤为所述方法增加了不可取的成本和低效率、以及复杂程度。此外,此类压花方法通常还涉及到相对长的保压时间,这可导致缓慢低效的方法。
[0008] 使用常规的压花方法通常也难以赋予前体纤维网相对小尺度的纹理。此外,典型的压花方法还趋于生产出在整个纤维网中具有相对均匀厚度的压花纤维网。
[0009] 尽管存在本领域的认识,但仍然期望开发出一种更高效的用于制造压花纤维网的方法,所述纤维网具有所期望的手感、视觉印象和/或听觉印象,尤其是压花纤维网在压花纤维网的所期望的区域中表现出减薄。在某些方面,一种期望的方法就所述方法所需要的能量和资源而言是高效的。在某些方面,一种期望的方法能够高速地运行。在某些方面,一种期望的方法能够在相对低的温度诸如环境温度下运行。
[0010] 发明概述
[0011] 本发明涉及一种用于制造包括多个离散的延伸元件的压花纤维网的方法。所述方法包括:(a)提供成形结构,其包括多个离散的突出元件和完全围绕着所述离散的突出元件的平面;(b)提供柔顺基底;和(c)在成形结构和柔顺基底之间提供基底纤维网;和(d)在柔顺基底和成形结构之间提供足以使基底纤维网围绕着成形结构的离散的突出元件适形的压力以形成压花纤维网。
[0012] 在一个实施方案中,本发明包括一种用于制造压花纤维网的方法,所述压花纤维网包括与所述压花纤维网整体形成的多个离散的延伸元件,所述延伸元件具有开口近侧部分、闭合的或开口的远端、和侧壁,所述延伸元件在所述远端和/或沿着所述侧壁被减薄,所述方法包括以下步骤:(a)提供成形结构,其包括多个离散的突出元件和完全围绕着所述离散的突出元件的平面,其中所述离散的突出元件各具有小于约500微米的直径;(b)提供柔顺基底;(c)在所述柔顺基底和所述成形结构之间提供前体纤维网;其中所述前体纤维网包括合成材料、金属材料、生物材料或者它们的组合;和(d)在所述柔顺基底和所述成形结构之间提供足以使所述前体纤维网适形于所述成形结构的所述离散的突出元件的压力以形成所述压花纤维网。
[0013] 在另一个实施方案中,本发明包括一种用于制造压花纤维网的方法,所述压花纤维网包括与所述压花纤维网整体形成的多个离散的延伸元件,所述延伸元件具有开口近侧部分、闭合的或开口的远端、和侧壁,所述延伸元件在所述远端和/或沿着所述侧壁被减薄,所述方法包括以下步骤:(a)提供成形结构,其包括多个离散的突出元件和完全围绕着所述离散的突出元件的平面,其中所述成形结构包括至少约95个离散的突出元件每平方厘米;(b)提供柔顺基底;(c)在所述柔顺基底和所述成形结构之间提供前体纤维网;其中所述前体纤维网包括合成材料、金属材料、生物材料或它们的组合;和(d)在所述柔顺基底和所述成形结构之间提供足以使所述前体纤维网适形于所述成形结构的所述离散的突出元件的压力以形成所述压花纤维网。
[0014] 在另一个实施方案中,本发明包括一种用于制造压花纤维网的方法,所述压花纤维网包括与所述压花纤维网整体形成的多个离散的延伸元件,所述延伸元件具有开口近侧部分、闭合的或开口的远端,所述延伸元件在所述远端处或附近被减薄,所述方法包括以下步骤:(a)提供成形结构,其包括多个离散的突出元件和完全围绕着所述离散的突出元件的平面,其中所述离散的突出元件各具有非柱形形状;(b)提供柔顺基底;(c)在所述柔顺基底和所述成形结构之间提供前体纤维网;其中所述前体纤维网包括合成材料、金属材料、生物材料或它们的组合;和(d)在所述柔顺基底和所述成形结构之间提供足以使所述前体纤维网适形于所述成形结构的所述离散的突出元件的压力以形成所述压花纤维网。
[0015] 在另一个实施方案中,本发明包括一种用于制造压花纤维网的方法,所述压花纤维网包括与所述压花纤维网整体形成的多个离散的延伸元件,所述延伸元件具有开口近侧部分、闭合的或开口的远端,所述延伸元件在所述远端处或附近被减薄,所述方法包括以下步骤:(a)提供成形结构,其包括多个离散的突出元件和完全围绕着所述离散的突出元件的平面,其中所述离散的突出元件具有平均高度;(b)提供具有约30至约80硬度计的肖氏A级硬度的柔顺基底;(c)在所述柔顺基底和所述成形结构之间提供前体纤维网,其中所述前体纤维网包括合成材料、金属材料、生物材料或它们的组合,并且其中所述前体纤维网具有厚度;(d)在所述柔顺基底和所述成形结构之间提供足以使所述前体纤维网适形于所述成形结构的所述离散的突出元件的压力以形成所述压花纤维网;和(e)其中所述突出元件的所述平均高度与所述前体纤维网的所述厚度的比率为至少约2∶1。
[0016] 附图简述
[0017] 图1是本发明的一种成形结构的一部分的透视图。
[0018] 图2是图1中所示的成形结构的一部分的放大透视图。
[0019] 图3是本发明的一种成形结构的顶视图。
[0020] 图4是本发明的一种成形结构的突出元件的侧视图。
[0021] 图5是显示本发明的一种成形结构的侧视图的显微照片。
[0022] 图6是本发明的一种压花纤维网的一部分的透视图。
[0023] 图7是本发明的一种压花纤维网的一部分的剖面图。
[0024] 图8是显示本发明的一种压花纤维网的顶视图的显微照片。
[0025] 图9是显示本发明的一种压花纤维网的一部分的剖面图的显微照片。
[0026] 图10是本发明的一种压花纤维网的一部分的透视图。
[0027] 图11是用于以批量方法制造本发明的压花纤维网的一种液压机的透视图。
[0028] 图12是用于制造本发明的压花纤维网的连续方法的示意图。
[0029] 图13是示出了压力和温度对本发明的压花纤维网的离散的延伸元件的平均高度的影响的曲线图。
[0030] 图14是示出了压力对由不同基重的前体纤维网制成的本发明的压花纤维网的离散的延伸元件的平均高度的影响的曲线图。
[0031] 图15是示出了不同压力下柔顺基底的硬度对本发明的压花纤维网的离散的延伸元件的平均高度的影响的曲线图。
[0032] 图16A和16B是示出了柔顺基底厚度对本发明的压花纤维网的离散的延伸元件的平均高度的影响的曲线图。
[0033] 图17A和17B是示出了按不同的工艺速度以及成形结构和柔顺基底间的接合深度生产压花纤维网的效果的曲线图。
[0034] 发明详述
[0035] 本发明包括一种用于制造压花纤维网的方法,所述方法包括:(a)提供成形结构,其包括多个离散的突出元件和完全围绕着所述离散的突出元件的平面;(b)提供柔顺基底;(c)在成形结构和柔顺基底之间提供前体纤维网;和(d)在柔顺基底和成形结构之间提供足以使前体纤维网适形地围绕着成形结构的离散的突出元件的压力以形成压花纤维网。
[0036] 成形结构
[0037] 用于本发明的方法的成形结构包括多个离散的突出元件和完全围绕着所述离散的突出元件的平面。本发明的成形结构的离散的突出元件按照比例相对于在压花方法中用在模具上的典型图案较小。成形结构的离散的突出元件还具有较高的纵横比。这种特性组合可允许本发明的所述方法生产包括具有变薄远端的较高纵横比的延伸元件的压花纤维网,甚至不用加热前体纤维网甚至以高速生产。
[0038] 本发明的成形结构(例如针对图1所提到的成形结构8)用于在本发明的方法中制造压花纤维网。成形结构有时候被称为成形筛网。图1在局部透视图中显示本发明的成形结构8的一部分。图1的离散的突出元件10从成形结构第一表面12伸出且具有大致柱形的柱状形状。
[0039] 图2是图1所示成形结构8的进一步放大的局部透视图,并且与图7中的压花纤维网18的类似视图相比较。离散的突出元件10可用下面所描述的方法制造成从第一表面12延伸到远端14。如图2所示,离散的突出元件10可具有从最小幅度测得的高度(“hp”),所述最小幅度是从相邻突出之间的第一表面12至远端14测得。同样,第一表面12构成完全围绕着离散的突出元件10的平面区域。突出元件高度hp可为至少约30微米,至少约50微米,至少约75微米,至少约100微米,至少约150微米,至少约250微米,或者至少约380微米。突出元件10具有直径(“dp”),对于大致圆柱形的结构,其为外径。对于突出元件10的非均匀的横截面和/或非圆柱形结构,直径dp被测量为在突出元件10的1/2高度hp处的突出元件的平均横截面尺寸,如图2所示。突出元件可具有可为约10微米至约5,000微米的直径dp。其它合适的直径包括例如约50微米至约500微米、约65微米至约300微米、约75微米至约200微米、约100微米至约25,000微米、约500微米至约5000微米、或约800微米至约2,500微米的直径。在某些实施方案中,突出元件可具有较大的直径以用于成形宏尺度离散的延伸元件。例如,突出元件可具有至多约2.5厘米、至多约2厘米、至多约1.5厘米、至多约1cm、至多约0.5厘米、或至多约0.1厘米的直径。在一个实施方案中,成形结构的突出元件将具有小于约500微米或小于约300微米的直径。
[0040] 对于每个突出元件10,可确定定义为hp/dp的突出元件纵横比。突出元件10可具有至少约0.5、至少约0.75、至少约1、至少约1.5、至少约2、至少约2.5、或至少约3或更高的纵横比hp/dp。突出元件10可具有在两个相邻的突出元件10之间的中心至中心间距Cp,其为约100微米至约1,020微米、为约100微米至约640微米、为约150微米至约500微米、或为约180微米至约430微米。
[0041] 一般来讲,据信两个相邻突出元件10之间的实际距离(即,边缘至边缘尺寸)应当大于前体纤维网厚度t的二倍,以确保前体纤维网在相邻突出元件10之间的变形适当。离散的突出元件10通常将具有约30微米至约800微米、约30微米至约650微米、约50微米至约500微米、或者约60至约300微米的边缘至边缘间距。
[0042] 一般来讲,本发明的成形结构对于成形结构的给定部分而言每平方厘米将包括至少约95个离散的突出元件,每平方厘米至少约240个离散的突出元件,每平方厘米约350至约10,000个离散的突出元件,每平方厘米约500至约5,000个离散的突出元件,每平方厘米或者约700至约3,000个离散的突出元件。
[0043] 在某些实施方案中,成形结构的给定部分可包括如在前面段落中所述的离散的突出元件的面密度,并且成形结构的其它部分根本不包括离散的突出元件。在其它实施方案中,成形结构的离散的突出元件可位于成形结构的不同水平面上。
[0044] 一般来讲,由于每个单独的突出元件10的实际高度hp可变化,因此多个突出元件10的平均高度(“hpavg”)可通过确定成形结构8的预定面积上的突出元件平均最小幅度(“Apmin”)和突出元件平均最大幅度(“Apmax”)而确定。类似地,对于变横截面尺寸,可针对多个突出8确定平均突出直径(“dpavg”)。此类幅度和其他尺寸的测量可通过本领域已知的任何方法,诸如通过计算机辅助扫描显微镜法和相关数据处理来进行。因此,对于成形结构8的预设部分而言,突出元件10的平均纵横比(“ARpavg”)可表示成hpavg//dpavg。突出元件10的尺寸hp和dp可根据用于制造成形结构8的已知技术规范间接地确定,如下面更全面公开的那样。
[0045] 在一个实施方案中,离散的突出元件的平均高度hpavg对前体纤维网的厚度的比率为至少约2∶1、至少约3∶1、至少约4∶1、或者至少约5∶1。这个比率对确保前体纤维网被足够拉伸以使它变成永久变形来生产本发明的压花纤维网可能是重要的,尤其是在所期望的工艺条件和速度下。
[0046] 图3是本发明的成形结构的一个实施方案的顶视图。成形结构包括完全被平面区域16围绕的多个离散的突出元件10。
[0047] 成形结构的离散的突出元件可具有远端,它们可为平直的、圆形的或尖锐的,这取决于是希望生产具有带开口(在成形结构上要求较尖锐的突出元件)还是闭合的(在成形结构上要求更圆形的突出元件)远端的离散的延伸元件的压花纤维网。成形结构的离散的突出元件的圆形远端可具有某个尖端半径,例如为约5微米至约150微米、约10微米至约100微米、约20微米至约75微米、或者约30微米至约60微米。
[0048] 离散的突出元件的侧壁可为完全直立的或者可为锥形的。在一个实施方案中,离散的突出元件具有锥形侧壁,因为当柔顺基底围绕着成形结构的离散的突出元件适形时锥形侧壁可通过缓和柔顺基底上的压缩或拉紧而对本发明的柔顺基底的耐久性和保质期有影响。这也可允许纤维网在压花之后更容易地与成形结构分离。在一个实施方案中,侧壁通常将具有约0°至约50°、约2°至约30°、或者约5°至约25°的锥度。
[0049] 图4显示成形结构8的离散的突出元件10的一个实施方案的剖面图,其中离散的突出元件10的圆形远端14具有约为46微米(0.0018英寸)的尖端半径。离散的突出元件10的侧壁具有约11°的锥度。
[0050] 图5是包括多个离散的突出元件的成形结构的显微照片,所述离散的突出元件具有如图4所描述的尺寸。
[0051] 在一个实施方案中,突出元件10的直径是恒定的或者随着幅度增大而减小。如图2所示,例如,突出元件10的直径或最大的横向横截面尺寸靠近第一表面12最大并且稳定地减小到远端14。据信,这种结构对帮助确保压花纤维网可从成形结构8容易地移除是所期望的。
[0052] 成形结构的离散的突出元件可包括多种不同的形状,诸如大致柱状的或非柱状的形状,包括圆形、椭圆形、正方形、三形、六边形、梯形、脊形、棱锥、沙漏形等、以及它们的组合。
[0053] 成形结构8可由如下的任何材料制成:所述材料可被形成为具有突出元件10且突出元件10具有制造本发明的压花纤维网所需的尺寸;所述材料在成形结构8所经历的工艺温度范围内是尺寸上稳定的;所述材料具有至少约30MPa、至少约100MPa、至少约200MPa、至少约400MPa、至少约1,000MPa、或者至少约2,000MPa的拉伸模量,至少约2MPa、至少约5MPa、至少约10MPa、或者至少约15MPa的屈服强度,和至少约1%、至少约5%、或者至少约
10%的断裂应变。已发现随着成形结构的材料的模量增加,较高纵横比的突出元件形成较好的压花纤维网,只要成形结构具有足够的断裂应变(即,不太脆)以便不断裂。对于模量和屈服强度数据,可依照已知的方法通过测试来确定值,并可以100%/分钟的应变速率在标准的TAPPI条件下对值进行测试。
[0054] 在一个实施方案中,突出元件10与成形结构8整体制成。就是说,或是通过移除材料或是通过装配材料,将成形结构作为整体结构进行制造。例如,具有所需的相对小尺度的突出元件10的成形结构8可通过以如下方式局部选择性地除去材料来制造:诸如通过化学蚀刻、机械蚀刻,或通过使用高能量源诸如放电机(EDM)或激光或通过电子束(e束)进行消融,或通过电化学加工(ECM)。在一个实施方案中,成形结构一般可根据美国专利4,342,314的教导通过光蚀刻层压方法来构造。
[0055] 在制造成形结构8的一种方法中,易于激光改性的基体材料被激光“蚀刻”以选择性地移除材料来形成突出元件10。对于“易于激光改性的”,它是指所述材料可通过激光以可控制的方式选择性地被移除,要认识到在激光方法中所用光线的波长以及功率水平可需要与材料相匹配(或反之亦然)以便获得最优结果。激光蚀刻可通过已知的激光技术来实现,根据需要选择波长、功率和时间参数以形成所述期望的突出元件尺寸。目前已知的易于激光改性的材料包括热塑性塑料诸如聚丙烯、乙缩树脂诸如源自DuPont(Wilmington DE,USA)的 热固性塑料诸如交联聚酯、或环化物、甚至金属诸如黄铜、镍、不锈、或它们的合金。任选地,热塑性和热固性材料可被填充以颗粒或纤维填充料以增强对于某些光波长的激光的相容性和/或改善模量或韧性以制造更耐用的突出元件10。例如,某些聚合物例如PEEK可通过用足够数量的中空纳米管纤维均匀填充聚合物而以较高分辨率和以较高的速度进行激光加工。
[0056] 在一个实施方案中,成形结构可以连续方法进行激光加工。例如,可将聚合材料诸如 提供为圆柱形形式以作为基体材料,所述基体材料具有中心纵向轴线、外表面和内表面,所述外表面和内表面限定基体材料的厚度。也可将其提供为实心辊。活动激光源可大致正交于所述外表面进行指向。所述活动激光源可在平行于基体材料的中心纵向轴线的方向上移动。所述圆柱形基体材料可围绕中心纵向轴线旋转,同时激光源加工或蚀刻基体材料的外表面以按某种图案除去基体材料的选定部分,所述图案限定多个离散的突出元件。每个突出元件可各具有大致圆柱形的和柱状形状,如本文所公开的那样。通过当圆柱形基体材料转动时平行于圆柱形基体材料的纵向轴线移动激光源,可使相对运动(即转动和激光运动)同步,使得在圆柱形基体材料进行每次完全转动时,突出元件的预定图案可类似于螺钉的“螺纹”以连续方法被成形。
[0057] 本发明的成形结构可呈如下形式:平板、辊、带、套管等。在一个实施方案中,成形结构呈辊的形式。
[0058] 成形结构的底部表面可为例如多孔的或无孔的。例如,底部表面可包括开口,开口具有足够小的宽度以便前体纤维网不会变形进入开口中,开口通过允许空气通过成形结构而给成形结构通。在一个实施方案中,提供用于使在纤维网下方所捕集的任何空气逸出的装置。例如,可提供真空辅助来移除纤维网下方的空气,例如通过使空气通过成形结构中的排气孔,以便不增大生产压花纤维网所需要的必需压力。
[0059] 本发明的成形结构任选地还可包括凹痕或孔。如果成形结构还包括凹痕或孔,则当在本发明的一种方法中与柔顺基底结合使用时,前体纤维网可受柔顺基底迫使进入成形结构的凹痕或孔中,使得离散的延伸元件可在前体纤维网中成形,从前体纤维网的与如下表面相对的表面伸出:成形结构的突出元件由该表面形成离散的突出元件。因此,可形成两侧压花的纤维网,在压花纤维网的每侧上具有不同图案或尺寸的延伸元件。取决于在成形结构和柔顺基底之间所生成的压力以及突出元件的几何形状和任选的成形结构的凹痕或孔,压花纤维网的离散的延伸元件可具有闭合或开口远端。
[0060] 柔顺基底
[0061] 在本发明的方法中利用了一种柔顺基底来提供顶靠成形结构的力。在最低程度,柔顺基底的外表面(即,柔顺基底的朝向成形结构取向的表面)包括柔顺材料。例如,柔顺基底可包括被柔顺材料所覆盖的刚性材料。刚性材料可为金属(例如钢)、塑料或者明显硬于柔顺材料的任何其它材料。柔顺材料覆盖刚性材料的厚度通常将不大于约26mm,为约1mm至约26mm,或者为约1mm至约7mm。作为另外一种选择,整个柔顺基底均可由柔顺材料制成。
[0062] 柔顺基底或柔顺材料可包括弹性体、毡、充液囊状物、以及它们的组合。在一个实施方案中,柔顺基底包括多孔弹性体。柔顺基底或柔顺基底中所用的柔顺材料优选地具有弹力特性(诸如压缩恢复),使得柔顺材料足够快速地回弹以有利于本发明的方法尤其是连续方法的进行。
[0063] 柔顺基底或柔顺基底中所用的柔顺材料优选地还具有足够的耐久性,以对大量的前体纤维网材料进行压花。因此,柔顺基底需要具有合适的耐磨度,其中在该方法期间柔顺基底将趋于被成形结构磨蚀。
[0064] 柔顺基底可呈如下形式:平板、辊、带、套管等。在一个实施方案中,柔顺基底为用柔顺材料例如橡胶覆盖的金属辊。在另一个实施方案中,柔顺基底和成形结构两者均呈辊的形式。在另一个实施方案中,柔顺基底为辊,其具有大于成形结构辊的直径的直径。在另一个实施方案中,柔顺基底为辊,其具有小于成形结构辊的直径的直径。在另一个实施方案中,柔顺基底辊具有与成形结构辊的直径相同的直径。
[0065] 柔顺基底或柔顺基底中所用的柔顺材料通常将具有约30至约80硬度计、约30至约60硬度计、约30至约50硬度计、或者约60至约80硬度计的按肖氏A级硬度标度计的硬度。肖氏A级硬度通常通过使用ASTM D2240硬度计诸如得自PTC Instruments(Los Angeles,California)的型号为306的A型经典式硬度计来确定。应当认识到,柔顺基底可表现出变硬度例如靠近柔顺基底的外表面硬度较低而朝向内表面硬度较高(即,在柔顺基底的z方向上的变硬度)或者横跨柔顺基底的外表面的变硬度(即,在柔顺基底的x-y平面中的变硬度)。
[0066] 柔顺基底中所用的柔顺材料通常将具有约1至约20MPa、约2至约18MPa、或者约4至约15MPa的拉伸模量。柔顺材料的拉伸模量可在0.1sec-1的应变速率下进行确定。
[0067] 合适的柔顺材料的非限制性实例包括天然橡胶、尿烷橡胶、聚酯橡胶、氯磺化聚乙烯橡胶(以商品名 得自DuPont)、氯丁二烯橡胶、降片橡胶、腈橡胶、氢化腈橡胶、苯乙烯橡胶、丁苯橡胶、丁二烯橡胶、橡胶、乙烯-丙烯-二烯(“EPDM”)橡胶、异丁烯-异戊二烯橡胶、毡(诸如压制的羊毛毡)等。尤其适用的柔顺材料为异戊二烯、EPDM、氯丁橡胶、和 它们具有约30至约50硬度计、约40至约70硬度计、或
约60至约80硬度计的肖氏A级硬度。
[0068] 在某些实施方案中,例如在连续的高速方法中,具有较高肖氏A级硬度和较低厚度的柔顺材料可为有益的。在一个实施方案中,柔顺材料具有约70至约80硬度计的肖氏A级硬度和约1mm至约5mm的厚度。
[0069] 其它适用的柔顺材料包括可再生的柔顺材料,例如皮革或者自修复柔顺材料。例如,在皮革已在某一方法例如本文所公开的那些方法中被使用一段时间之后,可将皮革润湿及干燥以“补注”皮革。自修复柔顺材料可包括基于超分子化学的自修复橡胶,例如以商品名Reverlink得自Arkema的那些材料。
[0070] 柔顺材料也可为可在刚性材料和成形结构之间连同前体纤维网一起喂入的某一材料例如吸收芯。这样一种材料可用来生成顶靠前体纤维网和成形结构的压力以便对前体纤维网进行压花。这样一种材料接着可连同压花纤维网一起被加入成品消费品例如妇女卫生制品中。
[0071] 柔顺基底任选地可包括凹进区域,所述凹进区域的深度在本发明的方法中足以防止在特定区域中对前体纤维网进行压花或者在特定区域中仅对前体纤维网进行最低程度的压花。柔顺基底的任选的凹进区域可呈具体图案或设计的形式,诸如花、、条带、波纹、卡通人物、徽标等形式,以便压花纤维网将具有未压花区域,所述未压花区域相对于压花纤维网的压花区域在视觉上突显出来、和/或具有不同的手感。
[0072] 前体纤维网
[0073] 依照本发明的所述方法将前体纤维网转换成压花纤维网。合适的前体纤维网包括可因在本发明的成形结构和柔顺基底之间产生的压力而变形的材料,使得前体纤维网能够适形于成形结构的外形以生产出压花纤维网。
[0074] 本发明的前体纤维网通常包括合成材料、金属材料、生物材料(具体地讲,动物衍生材料)、或它们的组合。前体纤维网可任选地包括纤维素材料。在一个实施方案中,前体纤维网不含纤维素材料。适用的前体纤维网的非限制性实例包括聚合物薄膜、金属箔(例如,铝、黄铜、铜等)、包括供应充足的聚合物的纤维网、泡沫、包括合成纤维的(例如,的纤维质非织造纤维网、胶原薄膜、丁聚糖膜、人造丝、玻璃纸等。合适的前体纤维网还包括这些材料的层压体或共混物。
[0075] 如果所述前体为纤维网,则所述纤维网通常将具有高密度使得其行为类似于薄膜材料。这种高密度纤维网的一个实例为
[0076] 在一个实施方案中,前体纤维网为聚合物薄膜。合适的聚合物薄膜包括热塑性薄膜诸如聚乙烯、聚丙烯、聚苯乙烯、聚对苯二甲酸乙二酯(PET)、聚甲基丙烯酸甲酯(PMMA)、聚乙烯醇(PVA)、尼龙、聚四氟乙烯(PTFE)(例如,特氟隆)、或它们的组合。合适的聚合物薄膜可包括聚合物的共混物或混合物。
[0077] 在某些实施方案中,前体纤维网可为包括供应充足的聚合物的纤维网,所述聚合物为诸如聚交酯、聚乙交酯、聚羟基链烷酸酯、多糖、聚己酸内酯等、或它们的混合物。
[0078] 压花之前的前体纤维网的厚度通常将在约5至约300微米、约5微米至约150微米、约5微米至约100微米、或约15微米至约50微米的范围内。其它合适的厚度包括约1、2、3、4、5、6、7、8、9、10、20、30、40、50、60、70、80、90、100、150、200、250或300微米。
[0079] 前体纤维网诸如聚合物纤维网通常将具有约-100℃至约120℃、或约-80℃至约100℃、或其他合适范围内的玻璃化转变温度。前体纤维网诸如聚合物纤维网可具有约100℃至约350℃的熔点。例如,由LDPE或LDPE和LLDPE的共混物形成的前体纤维网具有约110℃至约122℃的熔点。由聚丙烯形成的前体纤维网具有约165℃的熔点。由聚酯形成的前体纤维网具有约255℃的熔点。由尼龙6形成的前体纤维网具有约215℃的熔点。由PTFE形成的前体纤维网具有约327℃的熔点。
[0080] 在一个实施方案中,该方法是在小于前体纤维网的熔点的温度下进行。例如,该方法可在比前体纤维网的熔点低10℃的温度下进行。在另一个实施方案中,该方法在大体上等于前体纤维网的熔点的温度下进行。在一个实施方案中,该方法在大于前体纤维网的玻璃化转变温度的温度下进行。
[0081] 任选地,在本发明的方法中在压花之前,前体纤维网可被增塑以使它具有较小脆性。
[0082] 在一个实施方案中,前体纤维网是应变硬化的。在本发明的方法中,可期望前体纤维网的应变硬化特性有利于前体纤维网适形于成形结构的离散的突出元件。这对于生产其中期望压花纤维网的延伸元件具有闭合远端的压花纤维网可为优选的。
[0083] 前体纤维网可为任何材料诸如聚合物薄膜,所述材料具有足够的材料特性以通过本发明的压花方法成形为本文所述的压花纤维网。前体纤维网通常将具有屈服点,并且前体纤维网优选地通过本发明的方法而被拉伸超过其屈服点以形成压花纤维网。就是说,前体纤维网应当具有足够的屈服特性,使得前体纤维网可被无破裂地应变至某种程度以生产出所期望的具有闭合远端的离散的延伸元件,或在压花纤维网包括具有开口远端的离散的延伸元件的情形中,产生破裂以形成开口远端。如下所述,工艺条件诸如温度可因给定的聚合物而有变化以允许其有破裂或无破裂地拉伸,从而形成本发明的包括所期望的离散的延伸元件的压花纤维网。因此,一般来讲,已发现优选的要用作用于生产本发明纤维网的前体纤维网的原材料表现出低屈服和高伸长特征。此外,如前所述,前体纤维网优选地应变硬化。在本发明的方法中适于用作前体纤维网的薄膜的实例包括包含如下物质的薄膜:低密度聚乙烯(LDPE),线性低密度聚乙烯(LLDPE)、以及线性低密度聚乙烯和低密度聚乙烯的共混物(LLDPE/LDPE)。
[0084] 为用作本发明的前体纤维网,前体纤维网还必须具有充分的可变形性并具有充分的延展性。如本文所用的术语“可变形的”描述如下的材料,当被拉伸超过其弹性限度时,所述材料将大体上保持其新形成的构象,并且在或靠近所得压花纤维网的离散的延伸元件的远端处表现出减薄。
[0085] 一种被发现适于用作本发明的前体纤维网的材料为得自The Dow Chemical Company(Midland,MI,USA)的DOWLEX 2045A聚乙烯树脂。厚度为20微米的由这种材料形成的薄膜可具有至少12MPa的拉伸屈服强度;至少53MPa的极限拉伸强度;至少635%的极限伸长率;和至少210MPa的拉伸模量(2%正割)(以上测量值中的每个均根据ASTM D 882确定)。其他合适的前体纤维网包括得自RKW US的约25微米(1.0mil)厚且具有约24克/平方米(“gsm”)的基重的聚乙烯薄膜以及得自RKW US的具有约14gsm的基重和约15微米的厚度的聚乙烯/聚丙烯薄膜。
[0086] 前体纤维网可为两个或更多个纤维网的层压体,并且可为共挤出的层压体。例如,前体纤维网可包括两个层,并且前体纤维网可包括三个层,其中最内层被称为芯层,并且所述两个最外层被称为表皮层。在一个实施方案中,前体纤维网包括总体厚度为约25微米(0.001英寸)的三层共挤出层压体,其中芯层具有约18微米(0.0007英寸)的厚度;并且每个表皮层具有约3.5微米(0.00015英寸)的厚度。
[0087] 在一个实施方案中,这些层可包括具有不同应力/应变和/或弹性特性的聚合物。
[0088] 前体纤维网可使用在常规共挤出薄膜制造设备上生产多层薄膜的常规规程来制造。如果需要包括共混物的层,可首先干共混上述各组分的粒料,然后在喂送该层的挤出机中进行熔融混合。作为另外一种选择,如果在挤出机中进行的混合不充分,则可首先对所述粒料进行干共混,然后在预配混挤出机中进行熔融混合,随后在薄膜挤出之前重新制粒。用于制造前体纤维网的合适的方法公开于美国专利5,520,875和美国专利6,228,462中。
[0089] 一般来讲,在压花纤维网上形成高面密度(或低平均中心至中心间距)的离散的延伸元件的能力可能会受到前体纤维网的厚度的限制。例如,在一个实施方案中,据信两个相邻离散的延伸元件的中心至中心间距应当大于前体纤维网的厚度的约两倍,以允许在成形结构的相邻离散的突出元件之间形成足够且完全的三维压花纤维网。此外,在一个实施方案中,成形结构的所述多个离散的突出元件的平均高度和前体纤维网的厚度的比率通常将为至少约1∶1,至少约2∶1,至少约3∶1,至少约4∶1,或者至少约5∶1。
[0090] 在某些实施方案中,前体纤维网还可任选地包括表面活性剂。如果利用的话,优选的表面活性剂包括来自非离子族的那些例如:醇乙氧基化物、烷基酚乙氧基化物、羧酸酯、甘油酯、脂肪酸的聚氧乙烯酯、与松香酸相关的脂族羧酸的聚氧乙烯酯、脱水山梨醇酯、乙氧基化脱水山梨醇酯、乙氧基化天然脂肪、油、和蜡、脂肪酸的乙二醇酯、羧基氨化物、二乙醇胺缩合物、和聚环氧烷嵌段共聚物。所选择的用于本发明的表面活性剂的分子量可在约200克/摩尔至约10,000克/摩尔的范围内。优选的表面活性剂具有约300至约1,000克/摩尔的分子量。
[0091] 如果要利用的话,则初始时共混到前体纤维网中的表面活性剂的含量可多达按总前体纤维网的重量计10%。在所述优选的分子量范围(300-1,000克/摩尔)内的表面活性剂可按较低的含量(一般为或低于总前体纤维网的约5%重量的含量)加入。
[0092] 在某些实施方案中,前体纤维网也可在所述共混聚合物中包括二氧化。二氧化钛可增大压花纤维网的不透明度。二氧化钛可按前体纤维网例如低密度聚乙烯的重量计至多约10%的量加入。
[0093] 任选地可在前体纤维网的一个或多个层中加入其它添加剂诸如颗粒材料例如颗粒状皮肤处理剂或防护剂,或者吸收气味活性添加剂例如沸石。在一些实施方案中,当用于皮肤接触应用时,包括颗粒物质的压花纤维网可允许活性物质以非常直接和有效的方式接触皮肤。具体地讲,在一些实施方案中,离散的延伸元件的形成可在或靠近它们的远端处暴露颗粒物质。因此,活性物质诸如皮肤护理剂可局限在或靠近离散的延伸元件的远端处,以允许当压花纤维网用于皮肤接触应用时皮肤直接接触到此类皮肤护理剂。
[0094] 如果用于前体纤维网的话,则颗粒材料的平均粒度通常将为约0.2微米至约200微米或约5微米至约100微米。通过使用某些颗粒材料诸如母颗粒,可显著地改善压花纤维网的视觉外观。
[0095] 前体纤维网也可任选地包括用来向材料赋予某种颜色着色剂诸如颜料、色淀、调色剂、染料、墨或其他试剂,以改善压花纤维网的视觉外观。
[0096] 本文合适的颜料包括无机颜料、珠光颜料、干涉颜料等。合适的颜料的非限制性实例包括滑石、云母、碳酸镁、碳酸硅酸镁类、硅酸铝镁盐、二氧化硅、二氧化钛、氧化锌、红氧化、黄氧化铁、黑氧化铁、炭黑、群青颜料、聚乙烯粉末、甲基丙烯酸酯粉末、聚苯乙烯粉末、丝粉、结晶纤维素、淀粉、钛酸云母、氧化铁钛酸云母、氯氧化铋等。
[0097] 合适的着色纤维网描述于2010年3月11日提交的题目为“COLORED WEB MATERIAL COMPRISING A PLURALITY OF DISCRETE EXTENDED ELEMENTS”的共同未决的美国专利申请序列号____/____,____(P&G案号11634)、和2010年3月11日提交的题目为“WEB MATERIAL EXHIBITING VIEWING-ANGLE DEPENDENT COLOR AND COMPRISING A PLURALITY OF DISCRETE EXTENDED ELEMENTS”的美国专利申请序列号____/____,____(P&G案号11635)中。
[0098] 前体纤维网也可任选地包括填料、增塑剂等。
[0099] 压花纤维网
[0100] 前体纤维网是根据本发明的方法进行加工以形成压花纤维网,所述压花纤维网可具有各种所期望的结构特征和特性,诸如所期望的柔软手感和审美上悦人的视觉外观。前体纤维网被设置于成形结构和柔顺基底之间,并且提供了压力来使前体纤维网适形于成形结构的离散的突出元件。因此,制备了具有某种结构的压花纤维网。
[0101] 在一个实施方案中,通过本文所述的方法得到的压花纤维网可具有类似于美国专利7,402,723或7,521,588所详述的结构。
[0102] 图6为三维压花纤维网18的一个实施方案的局部视图。所述三维的压花纤维网18是从前体纤维网生产出,所述前体纤维网可为单层的材料纤维网或多层的共挤出的或层压材料纤维网,如前文所述。如图6所示,前体纤维网是包括第一层20和第二层22的两层层压薄膜。层压薄膜材料可为共挤出的,如本领域已知的用于制造层压薄膜(包括具有表皮层的薄膜在内)的材料。
[0103] 图6显示包括多个离散的延伸元件24的压花纤维网18。离散的延伸元件24被成形为纤维网的突出延伸部,一般位于其第一表面上。压花纤维网18上的离散的延伸元件24的数目、尺寸和分配情况可基于所期望的柔软感、声音效应和视觉效应来预定。为在一次性吸收制品或包装中应用例如顶片、底片或纺粘纸包装材料,可期望离散的延伸元件24仅从压花纤维网18的一个表面突出。因此,当将压花纤维网18用作一次性吸收制品中的顶片时,可将压花纤维网18定向成使离散的延伸元件24接触皮肤以给予优良的柔软印象。此外,具有包括闭合远端26的离散的延伸元件24还可使回渗减小,即,减少流体在首次穿过了顶片的孔达到下面的吸收层之后被再引入到顶片的表面中的量(注意孔诸如宏观孔未示出于本文的各图中)。
[0104] 图7是本发明的压花纤维网18的一个实施方案的一部分的剖面图。如图7所示,离散的延伸元件24可被描述成从压花纤维网18的第一表面28突出。同样,离散的延伸元件24可被描述成与前体纤维网30成一整体,并通过前体纤维网30的永久局部塑性变形而形成。离散的延伸元件24可被描述成具有限定开口的近侧部分34和闭合或开口远端26的侧壁32。离散的延伸元件24各具有从相邻的延伸元件之间的最小幅度Amin至在闭合或开口远端26处的最大幅度Amax测得的高度h。离散的延伸元件具有直径d,对于大致圆柱形结构而言,其为在横向横截面处的外径。“横向”是指大致平行于第一表面28的平面。就具有非均匀横向横截面的大致柱状离散的延伸元件和/或非圆柱形结构的离散的延伸元件而言,直径d被测量为离散的延伸元件的1/2高度h处的平均横向横截面尺寸,如图7所示。因此,对于每个离散的延伸元件24,可确定被定义为h/d的纵横比。离散的延伸元件24可具有至少约0.2、至少约0.3、至少约0.5、至少约0.75、至少约1、至少约1.5、至少约2、至少约2.5、或者至少约3的纵横比h/d。离散的延伸元件24通常将具有至少约30微米、至少约50微米、至少约65微米、至少约80微米、至少约100微米、至少约120微米、至少约1
50微米、或者至少约200微米的高度h。延伸元件所具有的高度通常与前体纤维网的厚度至少相同,或前体纤维网的厚度的至少2倍,或者前体纤维网的厚度的至少3倍。离散的延伸元件24通常将具有约50微米至约5,000微米、约50微米至约3,000微米、约50微米至约500微米、约65微米至约300微米、或者约75微米至约200微米的直径d。在某些实施方案中,离散的延伸元件24可具有至多约2.5厘米、至多约2厘米、至多约1.5厘米、至多约1cm、至多约0.5厘米、或者至多约0.1厘米的更大的直径d。
[0105] 就具有大致非柱状或不规则形状的离散的延伸元件而言,离散的延伸元件的直径可被限定为离散的延伸元件在1/2高度处的回转半径的两倍。
[0106] 就具有诸如脊等形状(所述形状在整个材料纤维网上纵向地延伸使得延伸元件具有开口的延伸元件的侧壁的一部分)的离散的延伸元件而言,离散的延伸元件的直径可被限定为延伸元件在1/2高度处的两个相对侧壁之间的平均最小宽度。
[0107] 一般来讲,由于任何单个离散的延伸元件24的实际高度h可能难以确定,并且由于实际高度可有变化,因此多个离散的延伸元件的平均高度havg可通过确定压花纤维网18的预定区域上的平均最小幅度Amin和平均最大幅度Amax来确定。此类平均高度hpavg通常将落在上述高度范围内。类似地,对于变横截面尺寸,可确定多个离散的延伸元件24的平均直径davg。此类平均直径davg通常将落在上述直径范围内。此类幅度和其他尺寸的测量可通过本领域已知的任何方法,诸如通过计算机辅助扫描显微镜法和数据处理来进行。因此,压花纤维网18的预定部分上的离散的延伸元件24的平均纵横比ARavg可被表示为havg//davg。
[0108] 如果前体纤维网30完全适形于成形结构,则可根据成形结构的已知尺寸来间接确定离散的延伸元件24的尺寸h和d。例如,对于根据凸突出的预定尺寸制成的成形结构8,例如在其上要成形离散的延伸元件24的图1所示的离散的突出元件10,可具有已知的尺寸。如果前体纤维网30在成形结构的离散的突出元件10上完全且永久地变形,则h和d可根据这些已知的尺寸进行计算,考虑前体纤维网30的厚度(t),包括预测的和/或观察到的纤维网减薄在内。如果前体纤维网30在成形结构8的离散的突出元件10上未完全变形,则压花纤维网18的离散的延伸元件24的高度h将小于离散的突出元件10的相应高度。
[0109] 在一个实施方案中,离散的延伸元件24的直径为恒定的或随着幅度的增加而减小(幅度在闭合远端或开口远端26处增加至最大值)。如图7所示,例如,离散的延伸元件24的直径或平均横向横截面尺寸可在近侧部分34处最大,并且横向横截面尺寸稳定地减小至远端26。据信,这种结构对帮助确保压花纤维网18可从成形结构8容易地移除是所期望的。
[0110] 如图7所示,由于形成高纵横比的离散延伸元件24所需的拉延较深,会出现前体纤维网30的减薄。例如,在或靠近闭合或开口远端26处可观察到减薄。所谓“观察到”是指当在放大的横截面上观察时减薄是明显的。此类减薄可为有益的,因为当触摸时,减薄部分对压缩或剪切提供极小的阻力。例如,当一个人在具有离散的延伸元件24的侧面上触摸压花纤维网18时,人的指尖首先接触离散的延伸元件24的闭合或开口远端26。由于离散的延伸元件24的高纵横比以及在或靠近远端26处前体纤维网30的壁减薄的缘故,离散的延伸元件24对由人的手指施加在压花纤维网上的压缩或剪切提供很小阻力。这种阻力不足表现为柔软感,非常类似于丝绒织物的触感。
[0111] 前体纤维网在或靠近闭合或开口远端26处的减薄可相对于前体纤维网的厚度或相对于完全围绕压花纤维网的离散的延伸元件的平面区域的厚度进行测量。前体纤维网通常将相对于前体纤维网的厚度表现出至少约25%、至少约50%、或至少约75%的减薄。前体纤维网通常将相对于围绕压花纤维网的离散的延伸元件的平面区域的厚度表现出至少约25%、至少约50%、或至少约75%的减薄。
[0112] 应当指出的是,仅具有如本文所公开的离散的延伸元件且不具有宏观孔或包括开口远端的离散的延伸元件的流体不可渗透的纤维网可为其中不要求具有流体渗透性的任何应用提供柔软性。因此,在本发明的一个实施方案中,本发明可被描述为压花纤维网,所述压花纤维网在其至少一个表面上表现出柔软且丝般触觉印象,压花纤维网的丝感表面表现出离散的延伸元件的图案,每一离散的延伸元件均为纤维网表面的突出延伸部并且具有限定开口近侧部分和闭合远端或开口远端的侧壁,离散的延伸元件在或靠近开口近侧部分处具有最大横向横截面尺寸。
[0113] 本发明的压花纤维网也可表现出改善的声音效应。例如,当被抓持或手动操纵时,压花纤维网与前体纤维网相比产生较小的声音。任选地,当触摸或摩擦时,某些压花图案可产生与众不同的所期望的声音。
[0114] 可最优化离散的延伸元件的“面密度”,所述面密度为第一表面的每单位面积上的离散的延伸元件的数目,并且压花纤维网通常将包括4至约10,000、约95至约10,000、约240至约10,000、约350至约10,000、约500至约5,000、或约700至约3,000个离散的延伸元件/平方厘米。一般来讲,可优化中心至中心间距以便获得适当的触觉印象,而同时最小化离散的延伸元件之间材料例如流体的捕集。相邻离散的延伸元件之间的中心至中心间距可为约100微米至约1,020微米、约30至约800、约100微米至约640微米、约1 50微米至约500微米、或者约1 80微米至约430微米。
[0115] 图8为本发明压花纤维网18的一个实施方案的顶视图的显微照片,压花纤维网18包括被平面区域36完全围绕的多个离散的延伸元件24。
[0116] 图9为本发明压花纤维网的一个实施方案的剖面图的显微照片,其包括压花纤维网的离散的延伸元件的剖面图。
[0117] 图10示出了本发明的包括多个离散的延伸元件24的压花纤维网18的一个实施方案,其中离散的延伸元件24具有开口远端26和开口近侧部分34。
[0118] 当压花纤维网用作一次性吸收制品的顶片时,压花纤维网还可包括允许流体流过压花纤维网的宏观孔。
[0119] 用于制造压花纤维网的方法
[0120] 本发明的方法涉及提供如本文所述的成形结构、提供如本文所述的柔顺基底、和在成形结构和柔顺基底之间产生压力。所述方法还涉及在成形结构和柔顺基底之间提供如本文所述的前体纤维网。成形结构和柔顺基底之间的压力足以使前体纤维网适形于成形结构以生产出压花纤维网。取决于所产生的压力和成形结构的外形,前体纤维网对成形结构的适形可为局部适形、基本适形、或完全适形。不受理论的约束,据信开口远端可按如下方式通过本发明的方法来形成:在使前体纤维网适形于成形结构的突出元件的同时局部地破裂前体纤维网。
[0121] 为了永久地变形前体纤维网以形成本发明的压花纤维网,通常通过本发明的方法将前体纤维网拉伸超过前体纤维网的屈服点。
[0122] 本发明的方法可为批量方法或连续方法。批量方法可涉及提供放置在成形结构和柔顺基底之间的单个前体纤维网材料片,所述成形结构和柔顺基底通常各自呈平板形式。在一个实施方案中,成形结构和柔顺基底各自呈平板形式,它们被放置在液压机或平压裁断机中。液压机的一个实例是得自Carver,Inc.的型号C。这样一种液压机显示于图11中。将前体纤维网放置在成形结构板和柔顺基底板之间,并且用液压机施加压力以使前体纤维网适形于成形结构来生产本发明的压花纤维网。
[0123] 连续方法可涉及提供前体纤维网材料辊,将所述辊退绕并喂入成形结构和柔顺基底之间,所述成形结构和柔顺基底各自可呈辊的形式。图12示出了本发明的连续方法的一个实施方案,其中将前体纤维网30喂入成形结构辊8和柔顺基底辊38之间。柔顺基底辊38包括刚性辊40例如钢辊,其覆盖有柔顺材料42。柔顺材料42具有约3mm的厚度T。随着前体纤维网从成形结构辊8和柔顺基底辊38之间穿过,压花纤维网18形成。
[0124] 本发明的方法可涉及较短的保压时间。如本文所用的术语“保压时间”是指将压力施加到前体纤维网的给定部分的时间量,通常前体纤维网的给定部分放置在成形结构和柔顺基底之间花费的时间量。就本发明的方法而言,通常将压力施加到前体纤维网上并持续小于约5秒、小于约1秒、小于约0.01秒、小于约0.005秒、或小于约0.002秒的保压时间。例如,保压时间可为约0.5毫秒至约50毫秒。
[0125] 即使用这么比较短的保压时间,也可生产出具有本文所述的所期望的结构特征的压花纤维网。因此,本发明的方法使得能够高速地生产压花纤维网。
[0126] 就本发明的方法尤其是连续方法而言,可以至少约0.01米/秒、至少约1米/秒、至少约5米/秒、至少约7米/秒、或至少约10米/秒的速率将前体纤维网喂入成形结构和柔顺基底之间。其它合适的速率包括例如至少约0.01、0.05、0.1、0.5、1、2、3、4、5、6、7、8、9或10米/秒。
[0127] 取决于诸如成形结构上的突出的形状和所施加的压力之类的因素,通过本发明的方法生产出的压花纤维网的延伸元件的远端可为闭合的或开口的。
[0128] 本发明的所述方法可在环境温度下执行,这意味着并不有意地施加热量到成形结构、柔顺基底和/或前体纤维网。然而,应当认识到,由于成形结构和柔顺基底之间的压力的缘故,可生成热量,尤其是在连续方法中。因此,可冷却成形结构和/或柔顺基底,以便将工艺条件保持在所期望的温度诸如环境温度并且改善柔顺基底的耐久性。
[0129] 该方法也可用具有高温的前体纤维网34来进行。例如,前体纤维网34的温度可小于前体纤维网34的熔点。例如,前体纤维网34的温度可为在前体纤维网34的熔点之下至少约10℃。前体纤维网34特别是包括聚乙烯类的前体纤维网34在该方法中可具有约10℃至约120℃、约20℃至约110℃、约10℃至约80℃、或者约10℃至约40℃的温度。前体纤维网34在该方法中可通过加热前体纤维网34、柔顺基底36、和/或成形结构10来加热。
[0130] 在一个实施方案中,在成形结构和柔顺基底之间提供前体纤维网之前,不加热所述前体纤维网。在另一个实施方案中,在成形结构和柔顺基底之间提供前体纤维网之前,不加热前体纤维网、成形结构和柔顺基底。
[0131] 一般来讲,本发明的方法可在约10℃至约200℃、约10℃至约120℃、约10℃至约80℃、或者约10℃至约40℃的温度下来执行。执行本发明的方法时所处的所述温度可通过例如非接触式温度计例如红外线温度计或者激光温度计来测量,测量柔顺基底和成形结构之间的辊隙处的温度。所述温度也可采用温度敏感材料例如得自Paper Thermometer Company的Thermolabel来确定。在一个实施方案中,该方法是在小于前体纤维网的熔点的温度下进行。在一个实施方案中,该方法是在大于前体纤维网的玻璃化转变温度的温度下进行。
[0132] 在本发明的方法中,在柔顺基底和成形结构之间提供平均压力。平均压力足以使设置在成形结构和柔顺基底之间的前体纤维网适形于成形结构的离散的突出元件,以形成本发明的压花纤维网。一般来讲,在成形结构和柔顺基底间所提供的平均压力将为约50至约10,000磅/平方英寸(“psi”)(即,约0.3至约68.9MPa),约100至约5,000psi(即,约0.7至约34.5MPa),约100至约3,500psi(即,约0.7至约24.1MPa),或者约200至约2,500psi(即,约1.4至约17.2MPa)。
[0133] 在成形结构和柔顺基底之间提供的平均压力可被确定为每单位面积上的力。将力施加到成形结构和/或柔顺基底上以使成形结构和柔顺基底相接合到所期望的啮合深度,如下文所述。所述单位面积是在成形结构和柔顺基底之间的“接触面”的面积。根据这些值,可计算成形结构和柔顺基底之间的平均压力。
[0134] 如果成形结构和柔顺基底两者均为平板,则成形结构和柔顺基底之间的接触面的面积通常容易地根据平板的尺寸来确定。
[0135] 如果成形结构和柔顺基底两者均为辊,则成形结构和柔顺基底之间的接触面的面积可通过将所述辊静态加载上设置于所述辊之间的一片压敏薄膜来确定。一种合适的压敏薄膜为得自FUJIFILM NDT Systems的Fuji Prescale Film,在向所述薄膜上施加压力时其会经历某些颜色变化。释放辊上的静态载荷并且从辊上除去压敏薄膜。压敏薄膜将具有变色区域,所述变色区域代表成形结构和柔顺基底之间的接触面。利用这种接触面区域以及施加到成形结构辊和/或柔顺结构辊的力,可计算成形结构辊和柔顺结构辊之间的平均压力。
[0136] 通过给成形结构和/或柔顺基底施加力,成形结构和柔顺基底相接合到所期望的啮合深度。“啮合深度”是通过测量成形结构被压入柔顺基底中的距离而确定。该距离可通过使成形结构和柔顺基底进行初始接触并接着迫使成形结构和柔顺基底紧靠在一起而进行测量。成形结构和柔顺基底在初始接触之后相对于彼此移动的距离被称为“啮合深度”。如果成形结构和柔顺基底两者均为辊,则啮合深度可被测量为成形结构的旋转轴线和柔顺基底的旋转轴线之间的由于在初始接触之后所施加的力而引起的距离变化。
[0137] 对于本发明的方法而言,成形结构和柔顺基底间的啮合深度通常将为约0.1mm至约5mm,约0.2mm至约4mm,或者约0.3mm至约3mm。
[0138] 本发明的成形结构和柔顺基底可用于低应变速率方法,例如美国专利申请2008/0224351 A1中所描述的方法,以生产本发明的压花纤维网。这样一种方法被本发明所包含。
[0139] 在成形结构和柔顺基底间提供前体纤维网之前,本发明的方法任选还可包括将增滑剂施用到前体纤维网、成形结构和/或柔顺基底的步骤。这可为有益的,尤其是在连续方法中,以降低前体纤维网、成形结构和/或柔顺基底间的摩擦。适用增滑剂的非限制性实例包括硅氧烷、滑石、润滑油等。
[0140] 本发明的方法可任选地与其他方法相组合以进一步处理压花纤维网。在一个实施方案中,此类附加方法可在相同工艺制造线上与本发明的方法相组合以生产出例如吸收制品。在一个实施方案中,将本发明的方法与可在压花纤维网中赋予宏观孔的方法诸如US2006/0087053 A1或US 2005/0064136A1中所述的方法相组合。这种方法的组合可生产出可适于用作吸收制品中的顶片的宏孔的压花纤维网。这种宏孔的压花纤维网可通过将其与其他吸收制品组件诸如吸收芯、底片等相组合而被后续地转换成吸收制品,优选地在相同工艺制造线上进行转换。
[0141] 除了前文所述的方法以外,还设想到用于制造压花纤维网的可供选择的方法。该方法还可包括从第二压力源例如除了第一柔顺基底以外的压力源来施加压力。第二压力源可选自由下列组成的组:静态液体压力充气室、静态气体压力充气室、速度气体压力源诸如气刀、速度液体压力源诸如常规的液压成形法中所用的压力源、和柔顺基底。2010年3月11日提交的题目为“PROCESS FOR MAKING AN EMBOSSED WEB”的共同未决的美国专利申请____/____,____(P&G案号11636)公开了一种用于本公开的方法的合适的静压充气室。用于本公开的方法的其它适用的静压充气室包括描述于2010年3月11日提交的题目为“APPARATUS FOR EMBOSSING A WEB”的美国临时专利申请序列号____/____,____(P&G Case
11639P)以及描述于美国专利5,972,280中的那些静压充气室。由第二压力源施加在前体纤维网上的压力通常将类似于由前文所述的柔顺基底施加在前体纤维网上的那些压力。第二压力源可在柔顺基底之前或之后顶靠前体纤维网施加压力。在一个实施方案中,提供至少两个柔顺基底,并且在成形结构和第一柔顺基底之间将压力施加在前体纤维网的第一部分上。然后,可在成形结构和第二柔顺基底之间将压力施加在前体纤维网的第一部分上。这可进一步使所记录的前体纤维网的部分适形于成形结构的同一离散的突出元件。这可允许增强通过该方法所形成的离散的延伸元件。
[0142] 用于制造压花纤维网的可供选择的方法
[0143] 除了前文所述的方法以外,还设想到用于制造压花纤维网的可供选择的方法。例如,本文所述的柔顺基底可通过赋予力或压力以使前体纤维网适形于成形结构的其它方式来替换。
[0144] 在一个可供选择的实施方案中,柔顺基底可被替换成流体压力,诸如空气压力或水压力。由流体诸如空气或水施加在前体纤维网上的压力通常将类似于由前文所述的柔顺基底施加在前体纤维网上的那些压力。
[0145] 适用于提供空气压力以使前体纤维网适形于本发明的成形结构的装置的一个实例为高压气刀。高压气刀可从例如Canadian Air Systems商购获得。
[0146] 适用于提供水压以使前体纤维网适形于本发明的成形结构的装置的一个实例为水充气室,诸如美国专利7,364,687所述的水充气室。
[0147] 本发明的方法还可用来一起压花两个或更多个单独的前体纤维网。就这一点而言,本发明的方法可导致前体纤维网在被一起压花之后通过前体纤维网之间的摩擦被机械地粘合起来。此类机械粘结件可牢固得足以用于要求将两个或更多个前体纤维网密封到一起的很多应用场合。同样,对于要求具有可释放密封的应用场合而言,与其它种类的粘结件例如热粘结相比,这样一种机械粘合件在通过撕开压花纤维网而被释放时往往产生较小的噪音或声音。
[0148] 压花纤维网的用途
[0149] 本发明的压花纤维网可以许多不同的方式使用,包括用作吸收制品的组件材料(诸如顶片、底片或防粘纸包裹物)、包装材料(诸如流动包裹、收缩包装膜或塑料袋)、垃圾袋,食品包裹物、牙线、擦拭物、电子元件、壁纸、衣服、围裙、窗口覆盖物、餐具垫、书籍封面等。实施例
[0150] 下面的非限制性实施例展示几种变量对本发明压花纤维网的离散的延伸元件的平均高度的影响。
[0151] 实施例1-15:温度和压力的影响
[0152] 在各种压力和温度下生产十五个压花纤维网-利用相同的成形结构、柔顺基底和前体纤维网-来确定压力和温度对压花纤维网的离散的延伸元件的平均高度的影响。
[0153] 所利用的成形结构是通过激光雕刻一个3.2mm(1/8″)厚的聚缩醛片以在所述聚缩醛片上形成多个离散的突出元件而制成。离散的突出元件沿着聚缩醛片的表面均匀地间隔开。离散的突出元件具有带圆形尖端的锥形侧壁(具有约50微米(即,2mil)的半径)并具有约270微米的平均高度,约100微米的平均直径(在半高处)和约254微米(10mil)的相邻离散的突出元件的中心至中心间距。成形结构的尺寸为5cm×5cm(2″×2″)。
[0154] 所利用的柔顺基底是EPDM橡胶片,其为6.4mm(1/4″)厚并具有40硬度计的肖氏A级硬度,从McMaster Carr Company获得。橡胶硬度用得自加利福尼亚州Los Angeles的PTC Instruments的型号306 A型古典式硬度计确认。柔顺基底的尺寸为5cm×5cm(2″×2″)。
[0155] 所利用的前体纤维网是从RKW Company得到的聚乙烯薄膜,其为1.0mil厚并具有24.2克/平方米(“gsm”)的基重。
[0156] 采用液压机(购自Carver,Inc.的Carver Model C)来对前体纤维网进行压花。将柔顺基底放置在液压机中并加热到如用激光温度计(TELTRU型号QTL1 05986)所测量的规定温度。在5秒内,将前体纤维网放置在柔顺基底上,将成形结构放置在前体纤维网上,然后通过液压机的压臂施加压力约3-5秒(保压时间)。从液压机上的测压表读取压力。
将压力控制在约±0.5MPa(±75psi)范围内,并将保压时间控制在约±2秒范围内。对于涉及高温的实施例,将温度控制在约±15℃范围内。
[0157] 采用不同的温度和压力组合生产十五个压花纤维网。每个压花纤维网的离散的延伸元件的平均高度是采用得自位于德国Berlin的GFMesstechnik GmbH的MikroCAD小型微光3D测量装置(ODSCAD 4.0手动)进行手动测量。对于每个压花纤维网,测量约100-125个离散的延伸元件的平均高度并计算标准偏差。
[0158] 将每个压花纤维网的离散的延伸元件的平均高度绘制成如图13所示的曲线图。这个数据显示,压力比温度对延伸元件高度具有大得多的影响。就是说,甚至在25℃,可制造高度类似于在135℃所生产的高度的延伸元件。
[0159] 实施例16-20:薄膜种类和基重的影响
[0160] 在各种压力下生产五个压花纤维网,以确定压力对压花纤维网的离散的延伸元件的平均高度的影响。
[0161] 所利用的成形结构和柔顺基底与以上实施例1-15中所用的那些相同。
[0162] 所利用的前体纤维网是聚乙烯/聚丙烯薄膜,具有约14gsm的基重和约15微米的厚度(得自RKW)。
[0163] 除了在制造每个压花纤维网时所述方法是在25C的温度下执行以外,采用实施例1的液压机和方法制造压花纤维网。
[0164] 在各种压力下生产五个压花纤维网。将用于生产每个纤维网的压力控制在约±0.5MPa(±75psi)的范围内。如在以上实施例1-15中一样测量每个压花纤维网的离散的延伸元件的平均高度。
[0165] 将每个压花纤维网的离散的延伸元件的平均高度绘制成如图14所示的曲线图。该数据显示,与基重较高的仅有聚乙烯的薄膜相比,在相同的压力下,基重较低的包含聚丙烯的薄膜往往具有较短的延伸元件。
[0166] 实施例21-48:柔顺基底硬度的影响
[0167] 在各种压力下且采用具有不同肖氏A级硬度值的柔顺基底生产二十八个压花纤维网,以确定对压花纤维网的离散的延伸元件的平均高度的影响。
[0168] 成形结构与用于以上实施例1-15中的成形结构相同。
[0169] 所用的柔顺基底是EPDM橡胶片,其为6.4mm(1/4″)厚,所述柔顺基底具有不同的肖氏A级硬度值。
[0170] 所利用的前体纤维网与用于以上实施例1-15中的前体纤维网相同。
[0171] 除了在制造每个压花纤维网时所述方法是在25C的温度下执行以外,采用实施例1的液压机和方法制造压花纤维网。
[0172] 在各种压力下生产二十八个压花纤维网。将用于生产每个纤维网的压力控制在约±0.5MPa(±75psi)范围内。如以上实施例1-15中一样测量每个压花纤维网的离散的延伸元件的平均高度。
[0173] 将每个压花纤维网的离散的延伸元件的平均高度绘制成如图15所示的曲线图。该数据显示,较软的柔顺基底往往产生较高的压花纤维网的延伸元件,尤其是在较高的压力下。
[0174] 实施例49-68:柔顺基底厚度和种类的影响
[0175] 在各种压力下并且采用不同橡胶种类和厚度的柔顺材料生产二十个压花纤维网(其每个具有相同的肖氏A级硬度值),以确定压花纤维网的离散的延伸元件的平均高度的影响。
[0176] 成形结构与在以上实施例1-15中所用的成形结构相同。
[0177] 柔顺基底是各种厚度的EPDM橡胶片或生橡胶片,柔顺基底各具有40硬度计的肖氏A级硬度值。
[0178] 所利用的前体纤维网与在以上实施例1-15中所用的前体纤维网相同。
[0179] 除了在制造每个压花纤维网时所述方法是在25C的温度下执行以外,采用实施例1的液压机和方法制造压花纤维网。
[0180] 在各种压力下生产二十个压花纤维网。将用于生产每个纤维网的压力控制在约±0.5MPa(±75psi)范围内。如在以上实施例1-15中一样测量每个压花纤维网的离散的延伸元件的平均高度。
[0181] 将每个压花纤维网的离散的延伸元件的平均高度绘制成如图16A和16B所示的曲线图。该数据显示,对于给定压力,较薄的柔顺基底往往产生较高的延伸元件。该数据还显示,对于硬度和厚度相同的两种不同的橡胶种类而言,驼峰高度具有较小的差别。
[0182] 实施例69-87:工艺速度和啮合深度的模拟效果
[0183] 采用高速研究压机生产十九个压花纤维网来模拟在不同的工艺速度以及成形结构和柔顺基底间的啮合深度下生产压花纤维网的效果。
[0184] 成形结构与用于以上实施例1-15的成形结构相同。
[0185] 柔顺基底是具有0.25英寸(6.4mm)的厚度和40硬度计的肖氏A级硬度的生橡胶片。
[0186] 所利用的前体纤维网与用于以上实施例16-20的前体纤维网相同。
[0187] 采用高速研究压机来对前体纤维网进行压花。所利用的高速研究压机详细描述于2007年11月8日提交的题目为“Research Press”的美国专利申请序列号11/937,034(P&G案号10949)中。高速研究压机被设计用来模拟关于使前体纤维网变形的连续生产线。
[0188] 采用高度研究压机以2.74m/s或7m/s的压缩速率以及0.2mm至1.25mm范围的各种啮合深度生产十五个压花纤维网。工艺温度或是150℃或是25℃,并且对于较高的温度实验控制在约±20℃范围内。
[0189] 将每个压花纤维网的离散的延伸元件的平均高度绘制成如图17A和17B所示的曲线图。该数据显示,延伸元件的高度随着啮合深度的增加而增加,并且成形速度对延伸元件高度具有较小的影响。同样,甚至在25℃和7m/s的速率下,仍可形成处在所期望的100微米范围内的延伸元件。
[0190] 不应将本文所公开的量纲和值理解为对所引用精确值的严格限制。相反,除非另外指明,每个这样的量纲旨在表示所引用的值和围绕该值功能上等同的范围。例如,所公开的量纲“40mm”旨在表示“约40mm”。
[0191] 除非另行指出,当本文结合一个实施方案公开某个技术特征时,该特征可与其他实施方案或权利要求中所公开的任何其他特征相结合。
[0192] 除非明确排除或换句话讲有所限制,本文中引用的每一个文献,包括任何交叉引用或相关专利或专利申请,均据此以引用方式全文并入本文。对任何文献的引用均不是承认其为本文公开的或受权利要求书保护的任何发明的现有技术、或承认其独立地或以与任何其它一个或多个参考文献的任何组合的方式提出、建议或公开任何此类发明。此外,如果此文献中术语的任何含义或定义与任何以引用方式并入本文的文献中相同术语的任何含义或定义相冲突,将以此文献中赋予那个术语的含义或定义为准。
[0193] 尽管举例说明和描述了本发明的特定实施方案来,但是对那些本领域的技术人员显而易见的是,在不背离本发明的实质和范围的情况下可作出许多其它的改变和变型。因此,所附权利要求旨在涵盖属于本发明范围内的所有这些改变和变型。
QQ群二维码
意见反馈