叠层型陶瓷电容器

申请号 CN200580008135.1 申请日 2005-02-23 公开(公告)号 CN1930102A 公开(公告)日 2007-03-14
申请人 TDK股份有限公司; 发明人 伊东和重; 原治也; 井口俊宏; 佐藤茂树; 佐藤阳; 小岛隆;
摘要 本 发明 提供一种叠层型陶瓷电容器,其电容 温度 特性满足EIA标准的X8R特性,而且,电容的时效变化小。因此,将 电介质 层的组成设定为:相对于作为主成分的 钛 酸钡100摩尔,选自MgO、CaO、BaO及SrO中的至少一种所组成的第一副成分:0.1~3摩尔,含有以 氧 化 硅 为主成分的第二副成分:2~10摩尔,选自V2O5、MoO3及WO3中的至少一种所组成的第三副成分:0.01~0.5摩尔,由R1的氧化物(其中R1为从Sc、Er、Tm、Yb及Lu中选择的至少一种)所组成的第四副成分:0.5~7摩尔(其中为R1单独的比率),由CaZrO3或CaO+ZrO2所组成的第五副成分:0<第五副成分≤5摩尔,由R2的氧化物(其中,R2为从Y、Dy、Ho、Tb、Gd及Eu中选择的至少一种)所组成的第六副成分:0<第六副成分≤9摩尔,构成上述电介质层结晶粒子的平均粒径设定为0.2μm~0.55μm。
权利要求

1、一种叠层型陶瓷电容器,该叠层型陶瓷电容器具有将电介质层与内 部电极层交互层叠而形成的层叠体,其中,电介质层由电介质陶瓷组成物的 结晶粒子所构成的烧结体形成,该电介质陶瓷组成物至少具有:含有酸钡 的主成分,选自化镁(MgO)、氧化(CaO)、氧化钡(BaO)及氧化锶 (SrO)中的至少一种所组成的第一副成分、含有以氧化为主成分的第二 副成分、选自氧化(V2O5)、氧化钼(MoO3)及氧化钨(WO3)中的至少 一种所组成的第三副成分、由R1的氧化物(其中R1为从Sc、Er、Tm、Yb及Lu中选择的至少一种)所组成的第四副成分,由CaZrO3或CaO+ZrO2所 组成的第五副成分、由R2的氧化物(其中,R2为从Y、Dy、Ho、Tb、Gd及Eu中选择的至少一种)所组成的第六副成分,所述各副成分相对于所述 钛酸钡100摩尔的比率分别为:第一副成分:0.1~3摩尔,第二副成分:2~ 10摩尔,第三副成分:0.01~0.5摩尔,第四副成分:0.5~7摩尔(但是, 第四副成分的摩尔数是R1单独计算时的比率),第五副成分:0<第五副成分 ≤5摩尔,第六副成分:0<第六副成分≤9摩尔,该叠层型陶瓷电容器的特征 在于,构成所述电介质层的所述结晶粒子的平均粒径为0.2μm~0.55μm。
2、如权利要求1所述的叠层型陶瓷电容器,其特征在于,该叠层型陶 瓷电容器还含有由氧化锰(MnO)或氧化铬(Cr2O3)所组成的第七副成分, 该第七副成分相对于所述钛酸钡100摩尔的比率为0.01~0.5摩尔。
3、如权利要求1或2所述的叠层型陶瓷电容器,其特征在于,构成所 述电介质层的所述结晶粒子的平均粒径为0.2μm~0.35μm。
4、如权利要求1~3中任一项所述的叠层型陶瓷电容器,其特征在于, 构成所述电介质层的所述结晶粒子的最大粒径(D100)与平均粒径(D50) 之差(D100-D50)为0.4μm以下。

说明书全文

技术领域

发明涉及一种叠层型陶瓷电容器,更详细地说,涉及一种电容的时效 性优良且满足X8R特性的叠层型陶瓷电容器。

背景技术

作为电子元件的叠层型陶瓷电容器作为小型、大电容、高可靠性的电子 元件被广泛利用。近年来,随着设备的小型化、高性能化,对叠层型陶瓷电 容器更加小型化、大电容化、廉价化、高可靠性的要求越来越严格。
叠层型陶瓷电容器通常是将内部电极层用膏和电介质层用膏通过基片 法或印刷法进行层叠,将层叠体中的内部电极层和电介质层同时烧结而制成 的。
作为内部电极层的导电材料,一般采用Pd或Pd合金,但是,由于Pd价格昂贵,所以也开始使用比较廉价的Ni或Ni合金等贱金属。在采用贱金 属作为内部电极层的导电材料的情况下,由于在大气中进行烧结时内部电极 层化,所以需要在还原性气体介质中进行电介质层和内部电极层的同时烧 结。但是,在还原性气体介质中烧结时,电介质层被还原,电阻率降低。因 此,非还原性的电介质材料正在开发。
但是有这样的问题,即,采用非还原性的电介质材料的叠层型陶瓷电容 器由于电场的施加而引起的IR(绝缘电阻)劣化显著(即IR寿命短),可靠 性降低。
另外,产生了这样的问题,即,当将电介质置于直流电场中时,介电常 数εr随着时间的延长而降低。另外,还有这样的问题,即,在电容器中,往 往叠加直流电压而使用,一般来说,在具有以强电介质为主成分的电介质的 电容器中施加直流电压时,介电常数随着施加的直流电压的变化而变化的特 性(称为DC偏置特性)或施加直流电压时的电容温度特性(称为Tc偏置 特性)降低。特别是随着近年来的要求,当为使片状电容器小型化及大电容 化而将电介质层做薄时,由于施加直流电压时的电介质层上的电场增强,所 以介电常数εr的时效变化即电容的时效变化显著增大,DC偏置特性或Tc 偏置特性降低,这些问题日益凸现出来。
而且,电容器也要求温度特性良好,特别是根据用途的需要,在苛刻的 条件下也要求温度特性是平坦的。近年来,汽车发动机室内装设的发动机电 子控制单元(ECU)、曲轴传感器、防抱死制动系统(ABS)组件等各 种电子装置上都开始使用叠层型陶瓷电容器。在这些电子装置中,为了稳定 地进行发动机控制、驱动控制及制动控制,因而要求电路的温度稳定性良好。
这些电子装置使用的环境设想为,在寒冷地区的冬季,温度下降至一 20℃以下,而且,发动机起动后,在夏季温度上升至+130°以上。最近,有 将电子装置及其控制对象设备连接起来的配线缩减的倾向,由于电子装置往 往设置在车外,所以,对电子装置而言的环境越来越苛刻。困此,这些电子 装置中使用的电容器需要在宽的温度范围内具有平坦的温度特性。
众所周知,作为温度特性优良的温度补偿用电容器材料,有 (Sr、Ca)(Ti、Zr)O3系、Ca(Ti、Zr)O3系,但是,这些组成物的介电常数非常 低(一般为100以下),所以,要制作大电容量的电容器实质上是不可能的。
众所周知,就介电常数高、具有平坦的电容温度特性的电介质陶瓷组成 物来说,主成分为BaTiO3,副成分为Nb2O5-Co3O4、MgO-Y、稀土类元 素(Dy、Ho等)、Bi2O3-TiO2等。但是,BaTiO3系的高介电常数材料只能 满足EIA标准的X7R特性(-55~125℃、ΔC/C=±15%以内),不能适应上述 苛刻的环境中使用的汽车用的电子装置。上述电子装置需要满足EIA标准的 X8R特性(-55~150℃、ΔC/C=±15%以内)的电介质陶瓷组成物。
申请人以介电常数高、满足X8R特性、能在还原性的气体介质中进 行烧结为目的,已经提案了如下所示的电介质陶瓷组成物(例如,参照专利 文献1、2)。
专利文献1中,公示了如下电介质陶瓷组成物:该组成物至少具有含有 酸钡的主成分、含有选自MgO,CaO,BaO,SrO及Cr2O3中的至少一种 的第一副成分、含有以氧化为主成分的第二副成分、含有选自V2O5、MoO3 及WO3中的至少一种的第三副成分、含有R1的氧化物(其中R1为从Sc、 Er、Tm、Yb及Lu中选择的至少一种)的第四副成分、含有CaZrO3或 CaO+ZrO2的第五副成分,各成分相对主成分100摩尔的比率分别为:第一 副成分为0.1~3摩尔,第二副成分为2~10摩尔,第三副成分为0.01~0.5 摩尔,第四副成分为0.5~7摩尔(但是,第四副成分的摩尔数是R1单独计 算时的比率),第五副成分为0<第五副成分≤5摩尔。
专利文献2中公示了如下电介质陶瓷组成物:该组成物具有含有钛酸钡 的主成分、含有AE的氧化物(其中,AE为从Mg、Ca、Ba及Sr中选择的 至少一种)的第一副成分和含有R的氧化物(其中,R为从Y、Dy、Ho及 Er中选择的至少一种)的第二副成分,各副成分相对主成分100摩尔的比率 分别为,第一副成分:0摩尔<第一副成分<0.1摩尔,第二副成分:1摩尔< 第二副成分<7摩尔。
专利文献1:特许第3348081号
专利文献2:特许第3341003号
根据上述特许文献1、2中所述的电介质陶瓷组成物,由于介电常数高、 电容温度特性满足EIA标准的X8R特性(-55~150℃、ΔC/C=±15%以内), 并且,不含有Pb、Bi、Zn等,所以可在还原性的气体介质中进行烧结。但 是,在上述文献1、2中所述的电介质陶瓷组成物中,为了使叠层型陶瓷电 容器更加小型化、大电容化,而将电介质层更加薄层化、多层化和提高额定 电压,在该情况下,往往会产生Tc偏置特性和电容的时效劣化显著恶化这 一问题。

发明内容

本发明是为解决上述问题而开发的,其目的在于,提供一种叠层型陶瓷 电容器,该电容器以小型化、大电容化为目的,即使在将电介质层制作的更 加薄层化、多层化及提高额定电压的情况下,也可使电容温度特性满足EIA 标准的X8R特性,并且,电容的时效变化也小。
为了实现上述目的,本发明的叠层型陶瓷电容器,其具有电介质层与内 部电极层交互层叠而形成的层叠体,其中,电介质层由电介质陶瓷组成物的 结晶粒子构成的烧结体形成,该电介质陶瓷组成物至少具有:含有钛酸钡的 主成分、选自氧化镁(MgO)、氧化(CaO)、氧化钡(BaO)及氧化锶(SrO) 中的至少一种所组成的第一副成分;含有以氧化硅为主成分的第二副成分; 选自氧化(V2O5)、氧化钼(MoO3)及氧化钨(WO3)中的至少一种所组 成的第三副成分;由R1的氧化物(其中R1为从Sc、Er、Tm、Yb及Lu中 选择的至少一种)所组成的第四副成分;由CaZrO3或CaO+ZrO2所组成的 第五副成分及由R2的氧化物(其中,R2为从Y、Dy、Ho、Tb、Gd及Eu中选择的至少一种)所组成的第六副成分,所述各副成分相对于所述钛酸钡 100摩尔的比率分别为,第一副成分:0.1~3摩尔,第二副成分:2~10摩 尔,第三副成分:0.01~0.5摩尔,第四副成分:0.5~7摩尔(但是,第四副 成分的摩尔数是R1单独计算时的比率),第五副成分:0<第五副成分≤5摩 尔,第六副成分:0<第六副成分≤9摩尔,该叠层型陶瓷电容器的特征在于, 构成所述电介质层的所述结晶粒子的平均粒径为0.2μm~0.55μm。
根据由该平均粒径范围的结晶粒子构成电介质层的叠层型陶瓷电容器, 其电容温度特性满足EIA标准的X8R特性(-55~150℃、ΔC/C=±15%以内), 并且,其电容的时效变化减小。
本发明的叠层型陶瓷电容器在上述本发明的叠层型陶瓷电容器的基础 上,再添加由氧化锰(MnO)或氧化铬(Cr2O3)所组成的第七副成分,优 选该第七副成分相对于所述钛酸钡100摩尔的比率为0.01~0.5摩尔。
本发明的叠层型陶瓷电容器在上述本发明的叠层型陶瓷电容器的基础 上,更优选构成所述电介质层的结晶粒子的平均粒径为0.2μm~0.35μm。
根据由该平均粒径范围的结晶粒子构成电介质层的叠层型陶瓷电容器, 在上述特性的基础上,Tc偏置特性优良。
本发明的叠层型陶瓷电容器在上述本发明的叠层型陶瓷电容器的基础 上,其特征在于,构成所述电介质层的结晶粒子的最大粒径(D100)和平均 粒径(D50)之差(以下有时称D100-D50值)为0.4μm以下。
根据电介质层由0.4μm以下的D100-D50值所构成的叠层型陶瓷电容 器,Tc偏置特性优良。
如上述说明,根据本发明的叠层型陶瓷电容器,由于在构成电介质层的 结晶粒子的平均粒径等的范围内是特定的,所以具有由那样的结晶粒子所构 成的电介质层的叠层型陶瓷电容器,其电容温度特性满足EIA标准的X8R 特性(-55~150℃、ΔC/C=±15%以内),并且电容的时效变化减小,Tc偏置 特性优良。因此,在以小型化、大电容化为目的、将电介质层进一步薄层化 或使额定电压提高的情况下,其有用性显著,在特别苛刻的使用环境下使用 的汽车应用中是很有效的。另外,本发明的叠层型陶瓷电容器还有如下效果: 由于使用的电介质陶瓷组成物不含Pb、Bi、Zn等,所以可以在还原性的气 体介质中进行烧结,在直流电场中的电容的时效变化小。
附图说明
图1是概略地表示本发明的叠层型陶瓷电容器的一例的局部切开的立体 图;
图2是概略地表示本发明的叠层型陶瓷电容器的基本构造的剖面图;
图3是表示构成电介质层的电介质粒子(烧结后的电介质粒子)的平均 粒径和电容温度特性(静电电容的变化率)的关系的图表;
图4是表示构成电介质层的电介质粒子(烧结后的电介质粒子)的平均 粒径和电容的实效变化特性(静电电容的变化率)的关系的图表;
图5是表示构成电介质层的电介质粒子(烧结后的电介质粒子)的平均 粒径和Tc偏置特性(静电电容的变化率)的关系的图表;
图6是表示构成电介质层的电介质粒子(烧结后的电介质粒子)的D100 -D50值和Tc偏置特性(静电电容的变化率)的关系的图表;
图7是表示构成电介质层的电介质粒子(烧结后的电介质粒子)的平均 粒径和平均寿命(平均寿命时间)的关系的图表。
附图标记
1  叠层型陶瓷电容器
2  电介质层
3  内部电极层
4  外部电极
10 叠层电介质元件主体

具体实施方式

下面,参照附图对本发明的叠层型陶瓷电容器进行说明。另外,本发明 的范围并非局限于以下说明的实施方式。
(叠层型陶瓷电容器)
图1是概略地表示本发明的叠层型陶瓷电容器的一例的局部切开立体 图。另外,图2是概略地表示本发明的叠层型陶瓷电容器的基本构造的剖面 图。
本发明的叠层型陶瓷电容器如图1及图2所示,具有电介质层2和内部 电极层3交互层叠而成的层叠体(以下称层叠电介质元件主体10或元件主 体10)。在层叠电介质元件主体10的两端部形成有一对外部电极4,该外部 电极4与在元件主体10内部交互配置的内部电极层3分别导通。层叠电介 质元件主体10的形状通常呈长方体形,但没有特别限制。另外,其尺寸也 无特别限制,通常,长边为0.6~5.6mm左右,短边为0.3~5.0mm左右, 高度为0.3~1.9mm左右。
电介质层2由电介质陶瓷组成物的结晶粒子所构成的烧结体组成,其中, 电介质陶瓷组成物至少具有:含有钛酸钡的主成分、选自氧化镁(MgO)、 氧化钙(CaO)、氧化钡(BaO)及氧化锶(SrO)中的至少一种所组成的第 一副成分、含有以氧化硅为主成分的第二副成分、选自氧化钒(V2O5)、氧 化钼(MoO3)及氧化钨(WO3)中的至少一种所组成的第三副成分、由R1 的氧化物(其中R1为从Sc,Er,Tm,Yb及Lu中选择的至少一种)所组 成的第四副成分、由CaZrO3或CaO+ZrO2所组成的第五副成分及由R2的氧 化物(其中,R2为从Y、Dy、Ho、Tb、Gd及Eu中选择的至少一种)所组 成的第六副成分。
上述各副成分相对于钛酸钡(BaTiO3)的比率为:相对于BaTiO3100摩 尔,第一副成分:0.1~3摩尔,第二副成分:2~10摩尔,第三副成分:0.01~ 0.5摩尔,第四副成分:0.5~7摩尔,第五副成分:0<第五副成分≤5摩尔; 优选为,第一副成分:0.5~2.5摩尔,第二副成分:2.0~5.0摩尔,第三副 成分:0.1~0.4摩尔,第四副成分:0.5~5.0摩尔,第五副成分:0.5~3摩 尔;第六副成分:0<第六副成分≤9摩尔。
另外,第四副成分的上述比率不是R1的氧化物的摩尔比,而是R1单 独的摩尔比。即,例如使用Yb的氧化物作为第四副成分时,第四副成分的 比率为1摩尔,这就意味着并非Yb2O3的比率是1摩尔,而是Yb的比率是 1摩尔。
在本说明书中,用化学计量学组成来表示构成钛酸钡及各副成分的各氧 化物,但各氧化物的氧化状态也可以脱离化学计量学组成。但是,各副成分 的上述比率是从构成各副成分的氧化物所含有的金属量换算为上述的化学 计量学组成的氧化物来求得的。
上述各副成分含量的限定理由如下。
第一副成分是选自氧化镁(MgO)、氧化钙(CaO)、氧化钡(BaO)及 氧化锶(SrO)中的至少一种所组成的。该第一副成分的含量为0.1摩尔以 下时,电容温度变化率增大。另外、当第一副成分的含量超过3摩尔时,烧 结性就恶化。再有,第一副成分中的各氧化物的构成比率是任意的。
第二副成分是以氧化硅为主成分而含有的。该第二副成分的含量为2摩 尔以下时,电容温度特性恶化,另外,IR(绝缘电阻)降低。另一方面,当 第二副成分的含量超过10摩尔时,不仅IR寿命缩短,而且会产生介电常数 急剧下降。这样的第二副成分优选以氧化硅(SiO2)为主成分,并含有选自 MO(其中,M是从Ba、Ca、Sr及Mg中选择的至少一种元素)、氧化锂(Li2O) 及氧化(B2O3)中的至少一种。第二副成分主要是用作烧结辅助剂,具有 改善薄层化时初期绝缘电阻的不合格率的效果。更优选第二副成分用 (Ba、Ca)xSiO2+x(其中,x=0.7~1.2)来表示。作为第二副成分的更优方案的 [(Ba、Ca)xSiO2+x]中的氧化钡(BaO)及氧化钙(CaO)在第一副成分中也含有, 但由于作为复合氧化物的(Ba、Ca)xSiO2+x熔点低,所以相对于钛酸钡的 反应性良好,因此,在本发明中,优选也添加BaO及/或CaO作为上述复合 氧化物。在第二副成分的更优方案的[(Ba、Ca)xSiO2+x]中的x优选0.7~ 1.2,进一步优选0.8~1.1。当x过小时,即SiO2过多时,与主成分BaTiO3 进行反应,使介质特性恶化。另一方面,当x过大时,熔点提高,使烧结性 恶化,所以不优选。另外,Ba与Ca的比率是任意的,也可以只含有其中一 个。
第三副成分是由选自氧化钒(V2O5)、氧化钼(MoO3)及氧化钨(WO3) 中的至少一种所组成的。该第三副成分具有使居里温度以上的电容温度特性 平坦化的效果和使IR寿命提高的效果。第三副成分的含量在0.01摩尔以下 时,上述效果不明显。另一方面,当第三副成分的含量超过0.5摩尔时,IR 显著降低。另外,第三副成分中的各氧化物的构成比率是任意的。
第四副成分是由R1的氧化物(其中R1为从Sc、Er、Tm、Yb及Lu中 选择的至少一种)所组成的。该第四副成分具有使居里温度向高温侧偏移的 效果和使电容温度特性平坦化的效果。在第四副成分的含量为0.5摩尔以下 时,上述效果不明显,电容温度特性恶化。另一方面,当第四副成分的含量 超过7摩尔时,有烧结性恶化的倾向。在第四副成分中,从特性改善效果好、 而且价格低廉方面考虑,优选Yb氧化物。
第五副成分是由CaZrO3或CaO+ZrO2所组成的。该第五副成分具有使 居里温度向高温侧偏移的效果和使电容温度特性平坦化的效果。另外还有改 善CR层叠、直流绝缘破坏强度的效果。当第五副成分的含量超过5摩尔时, 往往使IR加速寿命恶化,或电容温度特性(X8R特性)恶化。作为第五副 成分的CaZrO3的添加方式并无特别限定,可以列举CaO等由Ca组成的氧 化物、CaCO3等酸盐、有机化合物、CaZrO3等。Ca和Zr的比率并无特别 限定,只要根据不在钛酸钡中固溶的程度来确定即可,但就Ca对Zr的摩尔 比(Ca/Zr)来说,优选0.5~1.5,进一步优选0.8~1.5,最优选0.9~1.1。
通过调整第四副成分(R1氧化物)及第五副成分(CaZrO3或CaO+ZrO2) 的含量,可以使电容温度特性(X8R特性)平坦化,提高高温加速寿命等。 特别是在上述的数值范围内,可以抑制异相的析出,追求组织的均匀化。
第六副成分是由R2的氧化物(其中,R2为从Y、Dy、Ho、Tb、Gd及 Eu中选择的至少一种)所组成的。该第六副成分具有改善IR及IR寿命的 效果,对电容温度特性的不良影响也小。但是,当R2的含量相对于钛酸钡 100摩尔超过9摩尔时,就具有烧结性恶化的倾向。R2的含量相对于钛酸钡 100摩尔的含量优选9摩尔以下,进一步优选0.5~9摩尔。在第六副成分中, 从特性改善效果好,而且价格低廉方面考虑,优选Y氧化物。
第四副成分及第六副成分的合计含量相对于钛酸钡100摩尔,优选13 摩尔以下,进一步优选10摩尔以下(其中,第四副成分及第六副成分的摩 尔数是R1及R2单独的比率),可以很好地保持烧结性。
另外,在电介质陶瓷组成物中,也可以添加氧化锰(MnO)或氧化铬 (Cr2O3)作为第七副成分。该第七副成分具有促进烧结的效果、提高IR的 效果和提高IR寿命的效果。为了收到明显的上述效果,第七副成分相对于 钛酸钡100摩尔的比率优选0.01摩尔以上。但是,当第七副成分的含量过多 时,会给电容温度特性带来不良影响,所以,优选为0.5摩尔以下。另外, 第七副成分的摩尔数是Mn或Cr单独的比率。
再有,在电介质陶瓷组成物中,除上述各氧化物外,也可以添加氧化 (Al2O3)。Al2O3对电容温度特性无明显影响,而显示改善烧结性、IR及IR 寿命的效果。但是,由于当Al2O3的含量过多时会使烧结性恶化,IR降低, 所以,Al2O3的含量相对于钛酸钡100摩尔优选为1摩尔以下,进一步优选 为相对于整个电介质陶瓷组成物的1摩尔以下。
上述电介质陶瓷组成物的居里温度(由强电介质向普通电介质转变的相 变温度)通过选择电介质陶瓷组成物的组成可以进行变更,但为了满足X8R 特性,优选120℃以上,进一步优选为123℃以上。居里温度可通过DSC (示差扫描热量测定)等进行测定。另外,在Sr、Zr及Sn中的至少一种置 换形成钙钛矿构造的钛酸钡中的Ba或Ti时,由于居里温度转变为低温侧, 所以,125℃以上时的电容温度特性恶化。因此,优选含有这些元素的钛酸 钡系的复合氧化物[例如(Ba,Sr)TiO3]不用作主成分。但是,如果Sr、Zr及Sn中的至少一种是作为杂质而含有的平(例如整个电介质陶瓷组成物 的0.1摩尔%左右以下)时,则没有特别问题。
下面,就构成电介质层2的结晶粒子(以下称为“电介质粒子”)进行 说明。
电介质粒子是构成上述的电介质层2的粒子,在本发明中,其特征在于, 该电介质粒子的平均粒径为0.2μm~0.55μm。由于电介质粒子的平均粒径在 该范围内,从而制造的叠层型陶瓷电容器收到了如下效果:其电容温度特性 满足EIA标准的X8R特性(-55~150℃、ΔC/C=±15%以内),并且,电容的 时效变化也小。
在电介质粒子的平均粒径为0.2μm以下时,在使电介质层2薄层化时(例 如将层间的厚度作成3.5μm以下时)、或将叠层电介质元件本体10多层化时 (例如使电介质层2的层数为100以上时),往往不能满足X8R特性。另外, 当电介质粒子的平均粒径超过0.55μm时,电容的时效变化增大,往往不能 作为稳定的电容器使用。
另外,在本发明中,该电介质粒子的平均粒径优选为0.2μ~0.35μm。由 于电介质粒子的平均粒径在该范围内,从而制造的叠层型陶瓷电容器收到了 如下效果:其电容温度特性满足EIA标准的X8R特性,同时电容的时效变 化小,不仅有上述特性,而且Tc的偏置特性优良。特别是在该方案中,由 于电介质粒子的平均粒径为0.35μm以下,由此可以得到Tc偏置特性优良的 叠层型陶瓷电容器。
另外,在本发明中,该电介质粒子的最大粒径(D100)和平均粒径(D50) 之差(D100-D50值)优选为0.4μm以下。由于电介质粒子的D100-D50值 为0.4μm以下从而制造的叠层型陶瓷电容器收到如下效果:其电容温度特性 满足EIA标准的X8R特性,同时电容的时效变化小,不仅有上述特性,而 且Tc的偏置特性优良。
另外,在本发明中,电介质粒子的平均粒径由编码法确定。另外, D100-D50值表示电介质粒子的最大粒径(D100)和平均粒径(D50)之差, 该最大粒径和平均粒径,通过预先求得构成电介质层2的电介质粒子的粒度 分布,利用根据该粒度分布得到的最大粒径和平均粒径算出。D100-D50值 小意味着构成电介质层2的电介质粒子的大小的偏差小。
另外,所谓电容温度特性满足EIA标准的X8R特性,是表示制造的叠 层型陶瓷电容器可优选用于80℃以上尤其是125~150℃环境下使用的设备 用电子元件。而且,意味着在这样的温度范围内,电容温度特性满足EIAJ 标准的R特性,进而还满足X8R特性(-55~150℃、ΔC/C=±15%以内)。并 且,还能同时满足JIS标准的B特性[在-25~85℃时,电容变化率为±10% 以内(标准温度20℃)]、EIA标准的X7R特性(-55~125℃、ΔC=±15%以 内)。
另外,电容的时效性优良意味着对制造的叠层型陶瓷电容器在例如85℃ 的环境下施加例如7V/μm的直流电压时等,1000小时后的电容变化率为10 %以内。
再有,Tc偏置特性优良意味着即使对制造的叠层型陶瓷电容器施加通常 为0.02V/μm以上,优选为0.2V/μm以上,进一步优选为0.5V/μm以上,一 般情况下为5V/μm以下的交流电场和与其叠加5V/μm以下的直流电场的情 况下,其电容温度特性也是稳定的,Tc偏置时的电容变化率为例如40%以 内。
电介质层2的层叠数和厚度等诸条件只要根据目的和用途适当确定即 可,但就电介质层2的厚度来说,通常为30μm以下,从小型化、大电容化 的观点来说,优选将电介质层2的厚度设为10μm以下。具有如此薄层化的 电介质层2的叠层型陶瓷电容器可实现小型化、大电容化,同时,通过特定 构成该电介质层2的电介质粒子的平均粒径等,对改善电容温度特性等是有 效的。另外,电介质层2的厚度下限并无特别限制,非要提出的话是0.5μm 的程度。并且,电介质层2的层叠数通常是50~1000的左右。
内部电极层3与上述的电介质层2交互设置而层叠,以使各端面在电介 质元件本体10的相对的两个端部表面交互露出。另外,一对外部电极4形 成于叠层电介质元件本体10的两端部,与交互配置的镍内部电极层3的露 出端面相连接,构成叠层型陶瓷电容器。
内部电极层3由实质上作为电极起作用的贱金属导电材料所构成。具体 来说,优选Ni或Ni合金。作为Ni合金,优选Mn、Cr、Co、Al、W等1 种或2种以上的与Ni的合金,合金中的Ni含量优选为95重量%以上。另 外,在Ni或Ni合金中,也可以添加P、C、Nb、Fe、Cl、B、Li、Na、K、 F、S等各种微量成分0.1重量%以下。内部电极层3的叠层数和厚度等诸条 件只要根据目的和用途来适当确定即可,就厚度来说,通常优选0.1μm~ 3.0μm,进一步优选为0.2μm~2.0μm。
外部电极4是与在叠层电介质元件本体10内部交互配置的内部电极层3 分别导通的电极,在叠层电介质元件本体10的两端部形成一对。作为外部 电极4,通常可用Ni、Pd、Ag、Au、Cu、Pt、Rh、Ru、Ir等至少一种或它 们的合金。通常使用Cu、Cu合金、Ni或Ni合金等及Ag、Ag-Pd合金、 In-Ga合金等。外部电极层4的厚度只要根据用途等来适当确定即可,通常 优选为10μm~200μm。
(叠层型陶瓷电容器的制造方法)
本发明的叠层型陶瓷电容器与以往的叠层型陶瓷电容器相同,是通过使 使用有膏的通常的印刷法和基片法制作未烧结片,在将其烧结后,将外部电 极印刷或复制而烧结制成。下面,就制造方法进行具体的说明。
电介质层用的膏即可以是将电介质原料与有机载色剂混合而成的有机 涂料,也可以是水性涂料。
电介质原料可以使用上述的氧化物及其混合物、复合氧合物,除此之外, 还可以从通过烧结而形成上述的氧化物及复合氧化物的各种化合物例如碳 酸盐、草酸盐、硝酸盐、氢氧化物、有机金属化合物等中适当选择而混合使 用。只要确定电介质原料中各化合物的含量,使其在烧结后构成上述的电介 质陶瓷组成物的组成即可。该电介质原料通常使用平均粒径0.1μm~3μm左 右的粉末。所希望的平均粒径可通过适当调整原料的混合时间来得到。
所谓有机载色剂就是将粘合剂溶解于有机溶剂中而形成的。有机载色剂 中使用的粘合剂并无特别限定,可从乙基纤维素、聚乙烯醇缩丁等普通的 各种粘合剂中适当选择。另外,使用的有机溶剂也无特别限定,只要根据印 刷法和基片法等利用的方法从松油醇、丁醚(ブチルカルビト一ル)、丙甲苯等各种有机溶剂中适当选择即可。
另外,在将电介质层用膏作为水性涂料的情况下,只要将水溶性的粘合 剂和分散剂等溶解于水所形成的水性载色剂与电介质原料进行混合即可。水 性载色剂所使用的水溶性粘合剂并无特别限定,例如,只要使用聚乙烯醇、 纤维素及水溶性的丙烯树脂等即可。
内部电极层用膏由上述的各种导电金属和合金等所组成的导电材料、或 者烧结后形成上述导电材料的各种氧化物、有机金属化合物及树脂(レジネ 一ト)等与上述的有机载色剂进行混合调制。外部电极用膏只要用与上述的 内部电极层用膏相同的方法进行调制即可。
上述的各膏中的有机载色剂的含量并无特别限制,通常的含量例如粘合 剂只要设定为1~5重量%,溶剂10~50重量%即可。另外,各膏中根据需 要也可含有从各种分散剂、可塑剂、电介质、绝缘体等中选择的添加物。这 些添加物的总含量最好为10重量%以下。
在采用印刷法的情况下,将电介质层用膏及内部电极层用膏在PET等基 板上叠层印刷,在按规定形状切断后,从基板上剥离,制成未烧结片。另外, 在采用基片法的情况下,使用电介质层用膏,形成未烧结生片,在上面印刷 内部电极层用膏后,将其层叠,制成未烧结片。
在烧结前,对未烧结片先进行脱粘合剂处理。脱粘合剂处理只要在通常 的条件进行即可,但在内部电极层导电材料使用Ni及Ni合金等贱金属的情 况下,在空气气体介质中,将升温速度优选为5~300℃/小时,进一步优选 为10~100℃/小时,将保持温度优选为180~400℃,进一步优选为200~ 300℃;将温度保持时间优选为0.5~24小时,进一步优选为5~20小时。
未烧结片烧结时的气体介质只要根据内部电极层用膏中的导电材料的 种类进行适当确定即可,但在将Ni及Ni合金等贱金属用作导电材料的情况 下,烧结气体介质中的氧分压优选设定为10-8~10-12大气压。当氧分压低于 上述范围时,往往发生内部电极层导电材料异常烧结而中断。另外,当氧分 压超过上述范围时,产生内部电极层氧化的倾向。
另外,烧结时的保持温度优选1100~1400℃,进一步优选1200~1360℃, 再进一步优选为1200~1340℃。当保持温度低于上述范围时,致密性不足, 当超过上述范围时,容易产生由内部电极层异常烧结引起的电极中断、由内 部电极层组成材料的扩散所引起的电容温度特性的恶化及电介质陶瓷组成 物的还原。
就除此以外的烧结条件来说,升温速度优选50~500℃/小时,进一步优 选200~300℃/小时,温度保持时间优选0.5~8小时,进一步优选1~3小时, 冷却速度优选为50~500℃/小时,进一步优选为200~300℃/小时。另外, 烧结气体介质优选还原性气体介质,作为气体介质气体而言,优选将例如 N2和H2的混合气体加湿后使用。
在还原性气体介质中烧结的情况下,优选对叠层电介质元件主体进行退 火处理。退火是用于使电介质层再氧化的处理,由此,由于可以显著延长IR 寿命,所以可靠性提高。
退火气体介质中的氧分压优选为10-10大气压或其以上,特别优选为 10-7~10-6大气压,当氧分压低于上述范围时,电介质层的再氧化是很困难的, 当超过上述范围时,则有内部电极层氧化的倾向。
退火时的保持温度优选为1100℃以下,特别优选为500~1100℃。当保 持温度低于上述范围时,电介质层的氧化不充分,所以IR低,并且,IR寿 命也容易缩短。另一方面,当保持温度超过上述范围时,不仅内部电极层氧 化,电容量降低,而且,内部电极层与电介质坯料进行反应,容易产生电容 温度特性恶化、IR降低、IR寿命降低。另外,退火也可以仅由升温过程及 降温过程构成。即,也可以将温度保持时间设定为零。在这种情况下,保持 温度和最高温度是同义语。
就除此以外的退火条件来说,温度保持时间优选为0~20小时,进一步 优选为6~10小时,冷却速度优选为50~500℃/小时,进一步优选为100~ 300℃/小时。另外,就退火的气体介质气体来说,例如,优选使用加湿后的 N2气体等。
在上述的脱粘合剂处理、烧结及退火中,为了加湿N2气体或混合气体 等,例如,只要使用增湿剂等即可,在这种情况下,水温优选5~75℃。
脱粘合剂处理、烧结及退火可以连续进行,也可以独立进行。在连续进 行这些操作的时候,最好是在脱粘合剂处理后,不进行冷却而改变气体介质, 然后,升温至烧结时的保持温度进行烧结,接着进行冷却,在达到退火的保 持温度时,改变气体介质进行退火。另一方面,在独立进行这些操作的时候, 优选在进行烧结时,在N2气体或加湿后的N2气体气体介质中升温至脱粘合 剂处理时的保持温度后,改变气体介质,再继续升温,在冷却至退火时的保 持温度后,优选再次变更为N2气体或加湿后的N2气体气体介质,继续进行 冷却。另外,在进行退火时,可以在N2气体气体介质中升温至保持温度后 改变气体介质,也可以在退火的全过程中使用加湿后的N2气体气体介质。
对上述操作得到的叠层电介质元件主体,通过例如滚磨和喷砂等进行端 面抛光,将外部电极用膏印刷或复制而烧结,形成外部电极4。外部电极用 膏的烧结条件,例如在加湿后的N2和H2的混合气体中,在600~800℃时, 优选为10分钟~1小时左右。而且,根据需要,在外部电极4的表面通过电 等方法形成覆盖层。这样制造的本发明的叠层型陶瓷电容器通过软钎焊等 方法安装在印刷电路板等上面,使用于各种电子设备等。
上面,就本发明的叠层型陶瓷电容器及其制造方法进行了说明,但本发 明在具体实施方式上并无任何限定,不言而喻,在不脱离本发明的要旨的范 围内可以各种方式进行实施。
实施例
通过下面的实验例对本发明做详细说明。但是,本发明并非局限于下面 所述内容。
(实验1)
首先,分别准备含有平均粒径0.1μm~1μm的主成分原料(BaTiO3)及 第一~第七副成分原料,作为制作电介质材料的初始原料。特别是对于 BaTiO3来说,原料粉末的平均粒径大约为0.1μm~0.33μm,并且,使用由 N2吸附法测定的表面系数为3~8.5范围的粉末,具体而言,是使用由固相 法合成的表面系数为2.7、3.5、3.8、4.1、4.4、4.8、5.0、5.4、6.0、7.0、7.7、 8.5等十二种BaTiO3粉末。另外,表面系数形成为上述范围的BaTiO3不局 限于用固相法,通过普通的液相合成也可以得到。
MgO及MnO的原料使用碳酸盐(第一副成分:MgCO3、第七副成分: MnCO3)、其他原料使用氧化物(第二副成分:(Ba0.6Ca0.4)SiO3、第三副成 分:V2O5、第四副成分:Yb2O3、第五副成分:CaZrO3、第六副成分:Y2O3)。 另外,第二副成分即(Ba0.6Ca0.4)SiO3是将BaCO3、CaCO3及SiO2由球磨 机湿式混合16小时,干燥后,在1150℃空气中烧结,然后,再通过球磨机 进行湿式粉碎100小时而制成。另外,第五副成分即CaZrO3是将CaCO3及 ZrO2通过球磨机湿式混合16小时,干燥后,在1150℃空气中烧结,然后, 再通过球磨机进行湿式粉碎24小时而制成。
将这些原料烧结后的组成配比为:相对于主成分即BaTiO3100摩尔,第 一副成分MgCO3为1.1摩尔,第二副成分(Ba0.6Ca0.4)SiO3为2.5摩尔,第 三副成分V2O5为0.06摩尔,第四副成分Yb2O3为2.00摩尔,第五副成分 CaZrO3为2.00摩尔,第六副成分Y2O3为3.00摩尔,第七副成分MnCO3为 0.3摩尔,通过球磨机湿式混合16小时,将其干燥制成电介质材料。
将上述操作得到的干燥后的电介质原料100重量份、丙烯树脂4.8重量 份、二氯甲烷40重量份、乙酸乙酯20重量份、矿油精6重量份、丙酮4重 量份用球磨机进行混合、膏化,得到电介质层用膏。
接着,将平均粒径0.4μm的Ni粒子100重量份、有机载色剂(将乙基 纤维素8重量份溶解于丁醚92重量份中形成的)40重量份、丁醚10重量份 通过三个滚筒进行混匀、膏化,得到内部电极层用膏。
接着,将平均粒径0.5μm的Cu粒子100重量份、有机载色剂(将乙基 纤维素8重量份溶解于丁醚92重量份中形成的)35重量份、丁醚7重量份 进行混匀、膏化,得到外部电极用膏。
接着,使用上述电介质层用膏,在PET薄膜上形成厚度4.5μm的未烧 结片,在其上面印刷内部电极层用膏后,将未烧结片从PET薄膜上剥离下来。 紧接着,将这些未烧结片和保护用未烧结片(不印刷内部电极层用膏的片) 进行层叠、压焊,得到未烧结片。具有内部电极的片叠层数规定为四层。
接着,按规定尺寸切断未烧结片,进行脱粘合剂处理、烧结及退火,得 到叠层陶瓷烧结体。脱粘合剂处理在升温时间15℃/小时、保持温度280℃、 保持时间8小时、空气气体介质的条件下进行。另外,烧结是在升温速度 200℃/小时、保持温度1270~1320℃、保持时间2小时、冷却速度300℃/ 小时、加湿的N2+H2混合气体气体介质(氧分压10-11大气压)的条件下进 行的。退火是在保持温度900℃、温度保持时间9小时、冷却速度300℃/小 时、加湿的N2气体气体介质(氧分压10-7大气压)的条件下进行的。另外, 烧结时的气体介质气体的加湿使用将水温设定为20℃的增湿剂。退火时的 气体介质气体的加湿使用将水温设定为30℃的增湿剂。
接着,将叠层陶瓷烧结体的端面通过喷砂抛光后,在端面上复制外部电 极用膏,在加湿的N2+H2气体介质中,在800℃下烧结10分钟,形成外部 电极,得到叠层型陶瓷电容器的样品。
这样,制作构成电介质层的电介质粒子的平均粒径如表1所记录的叠层 型陶瓷电容器的样品。关于此时的电介质粒子的平均粒径,在本申请中将通 过编码法求得的编码长的1.5倍定义为粒径,用测定的相当数量(例如300 个)的粒径数据的平均值来表示。另外,关于电介质粒子的D100-D50值, 是将叠层陶瓷烧结体抛光,取厚度方向的剖面,对此剖面进行化学蚀刻或热 腐蚀,以便能够观察结晶粒子,之后,拍摄SEM(扫描式电子显微镜)照 片,对此照片进行图像处理,算出300个结晶粒子的圆当量直径,根据这些 圆当量直径的累积频率分布求得的最大粒径(D100)和平均粒径(D50)之 差来表示。另外,在该实验例中,虽然是从300个结晶粒子的粒径数据求得 平均粒径和电介质粒子的D100-D50值,但求得的粒径数据的数量不一定需 要300个,其他的数也没关系。
得到的各样品的尺寸是3.2mm×1.6mm×0.6mm,内部电极层夹着的电介 质层数是4,电介质层每1层的厚度为3.5μm,内部电极层每1层厚度为 1.0μm。另外,得到的叠层型陶瓷电容器的样品即使在还原性的气体介质中 烧结也不会还原,并且,作为内部电极用的镍也未发现产生IR不良的氧化。
(各特性的评价方法和结果)
关于制作的叠层型陶瓷电容器的样品,对其电容温度特性、电容的时效 变化特性、Tc偏置特性及平均寿命进行评价。
(i)对于得到的电容器样品来说,电容温度特性通过在-55~150℃的 温度范围内测定电容温度特性最差时的150℃温度环境下的静电电容的变 化率(%)来评价。静电电容的测定使用LCR仪表,在频率1kHz、输入信 号电平1Vrms的条件下测定。对测定结果来说,评价其是否满足X8R特性 (-55~150℃、ΔC=±15%以内),满足的标○,不满足的标×。其结果如表 1和图3所示。
根据表1及图3的结果可以明确确定,电介质粒子(烧结后的电介质粒 子)的平均粒径在0.20μm~0.582μm范围内,静电电容的变化率为15%以 内,满足X8R特性。
(ii)对于得到的电容器样品来说,电容的时效变化特性可通过测定85℃ 温度环境下施加7.0V/μm的直流电压时的、经过1000小时左右的静电电容 的变化率(%)来评价。静电电容的测定使用LCR仪表,在频率1kHz、输 入信号电平1Vrms的条件下测定1000小时前后的样品,其结果在表1及图 4中表示。对于测定结果来说,以1000小时左右的静电电容的变化率是否在 10%以内来评价。
根据表1及图4的结果可明确确定,电介质粒子(烧结后的电介质粒子) 的平均粒径在0.18μm~0.55μm范围内,电容变化率(1000小时左右)为10 %以内。
(iii)对于得到的电容器样品来说,Tc偏置特性可通过在-55~+150℃ 的温度条件下、测定施加7.0V/μm直流电压时的静电电容的变化率(%)来 评价。静电电容的测定使用LCR仪表,在频率1kHz、输入信号电平1Vrms 的条件下测定。对于测定结果来说,以静电电容的变化率是否在40%以内来 评价。
根据表1及图5的结果可明确确定,电介质粒子(烧结后的电介质粒子) 的平均粒径在0.18μm~0.38μm范围内,电容变化率为40%以内。另外,就 该Tc偏置特性来说,对其与D100-D50值的关系进行考察的结果表示于图6 中。根据图6的结果可以明确确定,D100-D50值在0.4μm以下时,电容变 化率为40%以内。
另外,这一结果表明,电介质粒子越小且越均匀,则Tc偏置特性越优 良,其理由可认为是,由粒子直径一致的小的电介质粒子构成电介质层导致 强导电性降低。
(iv)对于得到的总计12个电容器样品来说,平均寿命是根据在200℃ 温度条件下施加15.0V/μm直流电压时、进行用电阻变化一位数的时间来评 价的加速试验,并以其平均值(平均寿命时间)为基准来评价。电阻值根据 电容器的漏电电流来计算求得。另外,就该加速试验的结果来说,如果得到 的平均寿命时间是1.5小时以上,就可以评价为:作为叠层型陶瓷电容器具 有足够的可靠性。
由表1及图7的结果明确显示,该实验中得到的样品都显示1.5小时以 上的平均寿命,作为叠层型陶瓷电容器具有足够的可靠性。
表1   No.   BaTiO3粒   子的表面   系数   烧结温度   (℃)   电介质粒   子的平均   粒径(μm)   D100-D   50值   (μm)   电容温度特性   时效变   化变化   率(%)   Tc偏置特   性变化率   (%)   平均寿   命(小   时)   变化率(%)   X8R   1   2.7   1320   0.582   0.880   -4.0   ○   -11.1   -51.7   8   2   3.5   1300   0.550   0.720   -4.5   ○   -10.0   -49.0   10   3   3.8   1300   0.490   0.680   -4.7   ○   -9.0   -47.0   11   4   4.1   1300   0.424   0.640   -5.0   ○   -7.5   -46.0   14   5   4.4   1300   0.392   0.520   -6.7   ○   -7.0   -44.0   18   6   4.8   1300   0.350   0.440   -6.9   ○   -6.9   -40.0   19   7   5.0   1300   0.312   0.400   -7.2   ○   -6.7   -37.9   20   8   5.4   1300   0.287   0.260   -8.9   ○   -6.0   -35.0   25   9   6.0   1300   0.276   0.180   -10.0   ○   -5.8   -33.0   30   10   7.0   1280   0.250   0.156   -13.5   ○   -5.6   -32.0   36   11   7.7   1280   0.200   0.124   -15.0   ○   -5.4   -30.5   42   12   8.5   1270   0.180   0.120   -16.0   ×   -5.3   -30.0   45
(注)BCG是作为烧结辅助剂起作用的第二副成分即(Ba0.6Ca0.4)SiO3的简 称。
(v)上述结果明确显示了,以构成电介质层的电介质粒子的平均粒径不 同的样品评价其各种特性,其结果是:电介质粒子(烧结后的电介质粒子) 的平均粒径在0.20μm~0.55μm的范围内满足X8R特性,同时,电容的时效 变化在10%以内。另外,电介质粒子(烧结后的电介质粒子)的平均粒径在 0.20μm~0.35μm的范围内满足X8R特性,同时,电容的时效变化在10%以 内,Tc偏置时的电容变化率在40%以内。另外,构成电介质层的电介质粒 子(烧结后的电介质粒子)的D100-D50值为0.4μm以下,Tc偏置时的电容 变化率在40%以内。
工业上的可利用性
本发明的叠层型陶瓷电容器由于电容温度特性满足EIA标准的X8R特 性(-55~150℃、ΔC/C=±15%以内),同时,电容的时效变化减小,Tc偏置 特性优良,因此,除一般的电子设备外,在特别苛刻的使用环境下使用的汽 车装设用的各种电子装置中首选使用。
QQ群二维码
意见反馈