陶瓷电容器组件的制造方法

申请号 CN201610444714.0 申请日 2012-02-23 公开(公告)号 CN106158367A 公开(公告)日 2016-11-23
申请人 株式会社村田制作所; 发明人 大国聪巳;
摘要 本 发明 提供一种陶瓷电容器组件的制造方法。该陶瓷电容器组件的制造方法包括如下步骤:准备包括第一到第三印制 电路 基板 的层叠体;将印刷 导电性 糊料之前的第一印制电路基板层叠;将施加有导电性糊料的第二印制电路基板层叠到第一印制电路基板上;将印刷导电性糊料之前的第三印制电路基板层叠到第二印制电路基板上;准备由仅不含V2O5的原料形成的第四印制电路基板;提供由仅不含V2O5的原料形成的第四印制电路基板到层叠体的除去层叠体的端面的四个面上,以形成主体;烧制所述主体;并且在主体的四个面上和主体的端面上涂覆和烧制Cu糊料。由此,即使在 电介质 层中添加V也能够抑制陶瓷的变质。
权利要求

1.一种陶瓷电容器组件的制造方法,包括如下步骤:
准备包括第一到第三印制电路基板的层叠体;
将印刷导电性糊料之前的第一印制电路基板层叠;
将施加有导电性糊料的第二印制电路基板层叠到第一印制电路基板上;
将印刷导电性糊料之前的第三印制电路基板层叠到第二印制电路基板上;
准备由仅不含V2O5的原料成形出的第四印制电路基板;
将由仅不含V2O5的原料成形出的第四印制电路基板提供到层叠体的除去端面的四个面上,以形成主体;
烧制所述主体;并且
在主体的四个面上和主体的端面上涂覆和烧制Cu糊料。
2.根据权利要求1所述的陶瓷电容器组件的制造方法,其中,
由仅不含V2O5的原料形成的第四印制电路基板压接在层叠体的除去端面的四个面上。
3.根据权利要求1所述的陶瓷电容器组件的制造方法,其中,
层叠体中的第四印制电路基板相对于100摩尔份的Ti而含有0.01摩尔份的V。

说明书全文

陶瓷电容器组件的制造方法

[0001] 本申请国际申请号PCT/JP2012/054466、进入中国国家阶段国家申请号201280010879.7、国际申请日2012年2月23日、进入中国国家阶段日期2013年8月28日、发明名称为“层叠陶瓷电容器”的PCT国际申请的分案申请。

技术领域

[0002] 本发明涉及一种层叠陶瓷电容器组件的制造方法,尤其涉及一种电介质层以酸钡(BaTiO3)等钛矿类化合物为主成分的层叠陶瓷电容器。

背景技术

[0003] 以往,层叠陶瓷电容器为了实现小型大容量化,不断推进以钛酸钡(BaTiO3)等为主成分的电介质层的薄层化。
[0004] 但是,通过使电介质层薄层化,有可能使施加于电介质层的电场强度增高而导致相对于耐电压、高温·高电场的负荷试验的可靠性降低。
[0005] 在电介质中的电阻分布较大的情况下,在电阻较高处电场集中,作为元件的绝缘电阻在短时间内降低。为了避免上述情况,在将作为电介质层的主成分的钛酸钡或钛酸钡的一部分置换为Ca而成的物质中添加V,由此获得相对于高温·高电场的负荷可靠性优异的电介质陶瓷(例如,参照专利文献1)。
[0006] 在先技术文献
[0007] 专利文献
[0008] 专利文献1:日本特开2000-311828号公报
[0009] 作为使用层叠陶瓷电容器的环境也愈加恶劣,最近,有在超过125℃的温度的环境中进行使用的情况。该情况下,在现今通用的、利用焊基板安装中,存在接合强度以及连接电阻随着时间流逝而发生劣化这样的问题。
[0010] 为了解决该问题,在超过125℃的高温下使用层叠陶瓷电容器时,使用以Ag作为填料的导电性粘合剂进行基板安装的情况逐渐增多。另外,作为层叠陶瓷电容器,也通过将外部电极的表面从敷转变为包含Ag的烧结金属来确保与导电性粘合剂的接合强度。
[0011] 但是,在外部电极、导电性粘合剂中含有的Ag变化为(Ag2O)、氯化银(AgCl)、硫化银(Ag2S)等银化合物。该银化合物与在将作为主成分的钛酸钡或钛酸钡的一部分置换为Ca而成的物质中添加有V的电介质层的陶瓷接触,在高温环境下且在施加电场的情况下,银浸入于电介质层,产生陶瓷的变质。

发明内容

[0012] 本发明鉴于上述实际情况,提供一种即使在电介质层中添加V也能够抑制陶瓷的变质的层叠陶瓷电容器。
[0013] 本发明为了解决上述课题,提供以如下方式构成的层叠陶瓷电容器。
[0014] 层叠陶瓷电容器具备:(a)电介质层,其相互层叠而形成层叠体;(b)内部电极,其配置在所述层叠体的所述电介质层之间;(c)外部电极,其沿着所述层叠体的表面形成,与所述内部电极连接,包含至少以Ag为主成分的银含有层;以及(d)覆盖层,其覆盖所述外部电极的边缘所沿着的所述层叠体的表面中的、被所述外部电极覆盖的部分的至少一部分。所述电介质层以及所述覆盖层在将Ba、Sr、Ca中的至少一者用“A”表示、将Ti、Zr、Hf中的至少一者用“B”表示、将氧用“O”表示时,将通过化学式“ABO3”表示的钙钛矿系化合物作为主成分。仅在所述电介质层以及所述覆盖层中的所述电介质层添加有V。
[0015] 需要注意的是,主成分ABO3存在并非化学计量组成的情况。具体来说,优选的是,A与B的mol比A/B处于0.98~1.05的范围。
[0016] 此外,所述电介质层以及所述覆盖层的V以外的组成可以相同,也可以不同。
[0017] 在上述结构中,由于在电介质层中添加有V,因此即便电介质层薄层化也能够确保对于耐电压、高温、高电场的负荷试验的可靠性。
[0018] 根据上述结构,层叠陶瓷电容器的层叠体被覆盖层覆盖,在覆盖层没有添加V,因此即便在与外部电极的银含有层所包含的银变化而成的银化合物接触的环境下处于高温、电场下,银也难以浸入到覆盖层。因此,层叠陶瓷电容器即使在与银化合物接触的环境下处于高温、电场下,也不会使银浸入到层叠体的陶瓷,相对于高温、高电场的负荷不易变质。
[0019] 优选的是,所述银含有层是包含Ag金属颗粒的导电性树脂
[0020] 在这种情况下,能够将电子零件的外部电极容易地安装到电路基板等上。
[0021] 优选的是,所述电介质层与所述覆盖层的材料的组成差异仅在于,在所述电介质层中添加有V,在所述覆盖层中没有添加V。
[0022] 在这种情况下,电介质层以及覆盖层各自的材料的制作变得容易。
[0023] 优选的是,所述层叠体是长方体形状。所述内部电极在所述层叠体的彼此对置的一对端面上露出。所述覆盖层覆盖所述层叠体的所述端面以外的四个面。
[0024] 在这种情况下,使层叠体被覆盖层覆盖的操作变得简单。
[0025] 本发明还提供一种陶瓷电容器组件的制造方法,包括如下步骤:
[0026] 准备包括第一到第三印制电路基板的层叠体;
[0027] 将印刷导电性糊料之前的第一印制电路基板层叠;
[0028] 将施加有导电性糊料的第二印制电路基板层叠到第一印制电路基板上;
[0029] 将印刷导电性糊料之前的第三印制电路基板层叠到第二印制电路基板上;
[0030] 准备由仅不含V2O5的原料成形出的第四印制电路基板;
[0031] 将由仅不含V2O5的原料成形出的第四印制电路基板提供到层叠体的除去端面的四个面上,以形成主体;
[0032] 烧制所述主体;并且
[0033] 在主体的四个面上和主体的端面上涂覆和烧制Cu糊料。
[0034] 优选的是,由仅不含V2O5的原料形成的第四印制电路基板压接在层叠体的除去端面的四个面上。
[0035] 优选的是,层叠体中的第四印制电路基板相对于100摩尔份的Ti而含有0.01摩尔份的V。
[0036] 发明效果
[0037] 根据本发明,即使在电介质层添加V也能够抑制陶瓷的变质。附图说明
[0038] 图1是层叠陶瓷电容器的剖视图。(实验例)
[0039] 图2是层叠陶瓷电容器的主体的分解立体图。(实验例)
[0040] 附图标记说明:
[0041] 10   层叠陶瓷电容器
[0042] 12   主体
[0043] 14   内部电极
[0044] 16a、16b   外部电极
[0045] 16p、16q   边缘
[0046] 20   层叠体
[0047] 20a、20b、20s、20t、20u、20v  表面
[0048] 22、24、26、28   电介质层
[0049] 30   覆盖层

具体实施方式

[0050] 以下,作为本发明的实施方式,说明实验例。
[0051] 〈实验例〉
[0052] 参照图1以及图2说明本发明的实验例的层叠陶瓷电容器10。
[0053] 图1的(a)是层叠陶瓷电容器10的剖视图。图1的(b)是沿着图1的(a)的线A-A剖切而成的剖视图。如图1的(a)以及图1的(b)所示,层叠陶瓷电容器10在主体12的一对端面12a、12b上形成有外部电极16a、16b。在主体12的内部形成有内部电极14。内部电极14在端面12a、12b上交替露出,与外部电极16a、16b连接。主体12具备在端面12a、12b以外的四个面
12s、12t、12u、12v处露出的覆盖层30。即,覆盖层30覆盖层叠体20的表面20a、20b、20s、20t、
20u、20v中的、外部电极16a、16b的边缘16p、16q所沿着的表面20s、20t、20u、20v的各面整体。
[0054] 外部电极16a、16b包含至少以Ag为主成分的银含有层。例如,银含有层是包含Ag金属颗粒的导电性树脂,通过涂敷、干燥包含Ag金属颗粒的导电性树脂而形成。
[0055] 图2是示意性表示主体12的结构的分解立体图。如图2所示,主体12包含层叠有电介质层22、24、26、28的层叠体20以及覆盖层叠体20的四个面的覆盖层30。在层叠体20的一部分的电介质层24、26的主表面上形成有内部电极14。
[0056] 层叠体20的电介质层22、24、26、28是以钛酸钡(BaTiO3)等钙钛矿类化合物为主成分的电介质陶瓷层。
[0057] 钙钛矿类化合物在将Ba、Sr、Ca中的至少一者以“A”表示、将Ti、Zr、Hf中的至少一者以“B”表示、将氧以“O”表示时,通过化学式“ABO3”进行表示。
[0058] 在层叠体20的电介质层22、24、26、28中添加有V。
[0059] 覆盖层30除了没有添加V这点以外,具有与层叠体20的电介质层22、24、26、28相同的组成。即,覆盖层30是不存在V的电介质陶瓷层。在此,在覆盖层30的陶瓷成分中,在相对于B成分100摩尔份而V为0.01摩尔份以下的情况,看作“没有添加V”。
[0060] 层叠陶瓷电容器10通过具备层叠体20被覆盖层30覆盖的主体12,即使在层叠陶瓷电容器10的主体12的覆盖层30与银化合物接触的环境下处于高温、电场下,银也不会浸入到主体12的层叠体20的陶瓷中,相对于高温·高电场的负荷而不易变质。由此,电气特性不易变化,因此能够确保层叠陶瓷电容器10的可靠性。
[0061] 接下来,对试制的层叠陶瓷电容器进行说明。
[0062] 为了制作电介质原料,准备BaCO3、TiO2粉末,在以Ba相对于Ti的摩尔比为1的方式进行规定量称量之后,添加纯、分散剂,使用强制循环型的湿式粉碎机(使用PSZ介质)进行粉碎、破碎处理。将处理后的浆料通过干燥机进行干燥之后,以950℃以上进行热处理,获得平均粒径为0.15~0.25μm的第一粉末。
[0063] 接着,在上述第一粉末之外,准备BaCO3、Dy2O3、MgCO3、MnCO3、SiO2、V2O5粉末,以相对于上述第一粉末中的Ti100摩尔份而使Ba、Dy、Mg、Mn、Si、V的追加的添加量成为后述表1的摩尔份的方式进行规定量称量之后,添加纯水、分散剂,使用强制循环型的湿式粉碎机(使用PSZ介质)进行粉碎、破碎处理。将处理后的浆料通过干燥机进行干燥而获得电介质原料。
[0064] 需要说明的是,在对获得的原料粉末进行ICP发光分光分析的情况下,确认了与下述表1所示的调合组成大体相同的情况。
[0065] 表1
[0066]
[0067] 在准备的电介质原料粉末中,添加聚乙烯醇缩丁类粘合剂以及乙醇有机溶剂,通过球磨机进行湿式混合,制作出陶瓷浆料。利用刮板法等对该陶瓷浆料进行片成形,以使烧制后的电介质层的厚度为7.0μm,获得矩形的印制电路基板。接下来,在上述印制电路基板上,丝网印刷含有Ni的导电性糊料,形成成为内部电极的导电层。
[0068] 为了形成层叠体,首先,将印刷导电性糊料之前的上述印制电路基板层叠10片,在其之上将印刷有导电性糊料的印制电路基板以导电糊料的拉出侧彼此不同的方式层叠100片。之后,再次将印刷导电性糊料之前的上述印制电路基板层叠10片,进行裁切而实现单片化,获得层叠体。上述情况是后述表2中的实验编号1、5、10、15的试样。
[0069] 另一方面,通过与上述相同的方法准备与上述电介质原料相比仅不含V2O5的原料,添加聚乙烯醇缩丁醛类粘合剂以及乙醇等有机溶剂,利用球磨机进行湿式混合,制作出陶瓷浆料。利用刮板法等对该陶瓷浆料进行片成形,获得厚度15μm的矩形的印制电路基板。
[0070] 将由该仅不含V2O5的原料成形出的印制电路基板以期望的片数压接在上述层叠体的除去端面的四个面上,获得在端面以外的表面不存在V的主体。上述情况是后述的表2中的实验编号2~4、6~8、11~13、16~18的试样。
[0071] 另外,利用上述电介质原料,通过与上述相同的方法准备将相对于上述第一粉末中的Ti100摩尔份而使V的追加的添加量为0.01摩尔份的原料,添加聚乙烯醇缩丁醛类粘合剂以及乙醇等有机溶剂,利用球磨机进行湿式混合,制作出陶瓷浆料。利用刮板法等对该陶瓷浆料进行片成形,获得厚度15μm的矩形的印制电路基板。
[0072] 将由该含有0.01摩尔份V的原料成形的印制电路基板以期望的片数压接在上述层叠体的除去端面的四个面上,获得在端面以外的表面上不存在V的主体。上述情况是后述的表2中的实验编号9、14、19的试样。
[0073] 将压接有由仅不含有V2O5的原料成形的印制电路基板的层叠体与用于比较的、未压接由仅不含有V2O5的原料成形的印制电路基板的层叠体(即,层叠体自身)各自在N2环境中加热到250℃,进行脱粘合剂处理,在由H2-N2-H2O气体构成的还原性环境中,通过最高温度1200~1300℃、氧分压10-9~10-10MPa进行烧制,获得烧结完成的陶瓷层叠体。
[0074] 在获得的烧结结束的陶瓷层叠体的两端面,涂敷含有B2O3-Li2O3-SiO2-BaO系玻璃粉的Cu糊料,在N2环境中以850℃的温度进行烘烤,形成与内部电极电连接的外部电极,获得实验例、比较例的层叠陶瓷电容器。
[0075] 以上述方式获得的层叠陶瓷电容器的外形尺寸的宽度为大约1.2mm,长度为2.0mm,厚度为大约1.1mm,电容器的内部电极所夹持的电介质陶瓷层的厚度为7.0μm。
[0076] 需要说明的是,若是产品的层叠陶瓷电容器,外部电极形成为含有至少以Ag为主成分的银含有层,但试制的实验例、比较例的层叠陶瓷电容器如后所述,应用于模拟使外部电极的银含有层渗出而附着于层叠陶瓷电容器的状态的试验,因此在外部电极未形成银含有层。
[0077] 使用试制的实验例、比较例的层叠陶瓷电容器的试验以如下方式进行。
[0078] 将Ag2O、AgCl、Ag2S的银化合物粉末或者Ag的金属银粉末混合于40vol%环氧树脂而成的物质以与陶瓷材料和Cu外部电极这两者接触的方式涂敷在一方的外部电极侧,但要使端面的Cu外部电极中的与连接端子连接的部分没有被覆盖以能够确保电连接,在175℃的温度下固化,获得试验试样。
[0079] 将涂敷有混合了银化合物粉末或者金属银粉末的环氧一侧的外部电极设为阳极,在175℃环境下施加DC100V的电压,保持150小时。在该试验中,为了不使环氧树脂所含有的银化合物以及银粉末受到环境气体的影响,在与电源连接后,在利用树脂覆盖试样以及连接端子的状态下,进行试验。
[0080] 在试验结束后,与混合有银化合物粉末或银粉末的环氧树脂接触,将距离Cu外部电极50μm的部分沿层叠方向切断,使陶瓷材料(主体)的垂直剖面(WT剖面)露出,对于该露出剖面,通过使用了激光烧蚀法的ICP分析进行Ag以及V的检测。将距材料表层(主体的表面)10μm以上的内部中检测有Ag的部位存在于露出剖面的某处的情况判断为具有Ag的浸入。此外,在相对于Ti100摩尔份而检测到多于0.01摩尔份V的部位,将距材料表层距离最短处的距离设为不存在V的厚度。
[0081] 将试验结果表示在下述表2中。
[0082] [表2]
[0083]
[0084] ※标记是本发明的范围外
[0085] 在表2中,“混合银化合物种类”是与陶瓷材料和Cu外部电极这两者接触的环氧中含有的银化合物粉末或者金属银粉末的种类。“无V片材”是压接在层叠体的四个面上、由仅不含有V2O5的原料成形的印制电路基板或者由相对于Ti100摩尔份而含有0.01摩尔份V的原料成形的印制电路基板。“无V层厚度”与压接在层叠体的四个面上、由仅不含有V2O5的原料成形的印制电路基板或者由相对于Ti100摩尔份而含有0.01摩尔份V的原料成形的印制电路基板的烧制后的厚度(覆盖层的厚度)大致相同。※标记的实验编号1、5、10、15表示比较例。
[0086] 由表2可知如下情况。
[0087] 由实验编号1、2、3、4可知,在混合有金属银粉末的情况下,无论有没有无V层(覆盖层),都不会产生Ag的浸入。这是Ag不被腐蚀的情况下的模拟实验,可知没有发生迁移。
[0088] 由实验编号5、10、15可知,在混合有银化合物粉末的情况下,与混合的银化合物种类无关,不具有无V层(覆盖层)的结构全部发生Ag的浸入。
[0089] 由实验编号6、7、8、9、11、12、13、14、16、17、18、19可知,在混合了银化合物粉末的情况下,与混合的银化合物种类无关,具有无V层(覆盖层)的结构全部不发生Ag的浸入。
[0090] 即,在层叠陶瓷电容器的主体的表面上接触有银化合物的情况下,当层叠陶瓷电容器的主体的表层存在V时,在高温、高电场环境下Ag浸入到主体的陶瓷内部,当层叠陶瓷电容器的主体的表层不存在V时,即使在高温、高电场环境下Ag也不会浸入到主体的陶瓷内部。
[0091] 因而,当构成为在主体的表层不存在V时,即使在与银化合物接触的环境下处于高温、电场下,也不会使银浸入到主体的陶瓷,获得相对于高温、高电场的负荷不易变质的层叠陶瓷电容器。
[0092] 〈总结〉
[0093] 像以上说明的那样,通过利用未添加V的覆盖层来覆盖层叠有电介质的层叠体,即使在电介质层中添加V,也能够抑制陶瓷的变质。
[0094] 需要说明的是,本发明并不限定于上述实施方式,也能够施加各种变更进行实施。
[0095] 例如,如图1所示,在覆盖层30覆盖外部电极16a、16b的边缘16p、16q所沿着的层叠体20的表面20s、20t、20u、20v中的、被外部电极16a、16b覆盖的整个部分的情况下,效果更为理想,但并不限于此。覆盖层30覆盖外部电极16a、16b的边缘16p、16q所沿着的层叠体20的表面20s、20t、20u、20v中的、被外部电极16a、16b覆盖的部分的至少一部分即可,也可以仅形成在外部电极16a、16b的边缘16p、16q所沿着的层叠体20的表面20s、20t、20u、20v中的一部分的面上。
QQ群二维码
意见反馈