层叠陶瓷电容器以及层叠陶瓷电容器的制造方法

申请号 CN201280003104.7 申请日 2012-02-09 公开(公告)号 CN103124706B 公开(公告)日 2015-06-10
申请人 株式会社村田制作所; 发明人 松田真;
摘要 本 发明 提供高温负荷试验时的寿命特性优异的层叠陶瓷电容器。层叠陶瓷电容器的特征在于,具备具有多层 电介质 层和多个内部 电极 的层叠体、以及外部电极,其中,所述电介质层具备晶粒和 晶界 ;层叠体的组成以含有Ba、Ti并且任意地含有Ca的 钙 钛 矿型化合物作为主成分,还含有稀土类元素R以及Mn、Mg、V、Si,将Ti设为100摩尔份时,Ba与Ca的总含量(100×m)摩尔份为0.950≤m<1.000,R的含量a摩尔份为0.3≤a≤2.5,Mn的含量b摩尔份为0.05≤b≤0.5,Mg的含量c摩尔份为0.5≤c≤2.0,V的含量d摩尔份为0.05≤d≤0.25,Si的含量e摩尔份为0.5≤e≤3.0,进而,Ca/(Ba+Ca)的摩尔比x为0≤x≤0.10,进而,在距离晶粒的表面达4nm的内侧的 位置 的、稀土类元素R的存在概率为20%以上。
权利要求

1.一种层叠陶瓷电容器,其特征在于,
是具备层叠体和多个外部电极的层叠陶瓷电容器,
所述层叠体具有具备晶粒和晶界的层叠而成的多层电介质层、和沿着所述电介质层间的界面形成的多个内部电极,
所述外部电极形成于所述层叠体的外表面且与所述内部电极电连接,
所述层叠体的组成是以含有Ba、Ti并且任意地含有Ca的矿型化合物作为主成分,还含有稀土类元素R、和Mn、Mg、V、Si,
将所述Ti设为100摩尔份时,
所述Ba与所述Ca的以100×m表示的总含量摩尔份满足0.950≤m<1.000,所述R的含量a摩尔份为0.3≤a≤2.5,
所述Mn的含量b摩尔份为0.05≤b≤0.5,
所述Mg的含量c摩尔份为0.5≤c≤2.0,
所述V的含量d摩尔份为0.05≤d≤0.25,
所述Si的含量e摩尔份为0.5≤e≤3.0,
进而,Ca/(Ba+Ca)的摩尔比x为0≤x≤0.10,
进而,在距离所述晶粒的表面达4nm的内侧的位置的、所述稀土类元素R的存在概率为
20%以上。
2.一种层叠陶瓷电容器,其特征在于,
是具备层叠体和多个外部电极的层叠陶瓷电容器,
所述层叠体具有具备晶粒和晶界的层叠而成的多层电介质层、和沿着所述电介质层间的界面形成的多个内部电极,所述外部电极形成于所述层叠体的外表面且与所述内部电极电连接,
所述层叠体的组成是将含有Ba、Ti并且任意地含有Ca的钙钛矿型化合物作为主成分,还含有稀土类元素R、和Mn、Mg、V、Si,
将利用溶剂溶解所述层叠体时的所述Ti设为100摩尔份时,
所述Ba与所述Ca的以100×m表示的总含量摩尔份满足0.950≤m<1.000,所述R的含量a摩尔份为0.3≤a≤2.5,
所述Mn的含量b摩尔份为0.05≤b≤0.5,
所述Mg的含量c摩尔份为0.5≤c≤2.0,
所述V的含量d摩尔份为0.05≤d≤0.25,
所述Si的含量e摩尔份为0.5≤e≤3.0,
进而,Ca/(Ba+Ca)的摩尔比x为0≤x≤0.10,
进而,在距离所述晶粒的表面达到4nm的内侧的位置的、所述稀土类元素R的存在概率为20%以上。
3.一种层叠陶瓷电容器,其特征在于,
是具备层叠体和多个外部电极的层叠陶瓷电容器,
所述层叠体具有具备晶粒和晶界的层叠而成的多层电介质层、和沿着所述电介质层间的界面形成的多个内部电极,
所述外部电极形成于所述层叠体的外表面且与所述内部电极电连接,
所述电介质层的组成是将含有Ba、Ti并且任意地含有Ca的钙钛矿型化合物作为主成分,还含有稀土类元素R、和Mn、Mg、V、Si,
将所述Ti设为100摩尔份时,
所述Ba与所述Ca的以100×m表示的总含量摩尔份满足0.950≤m<1.000,所述R的含量a摩尔份为0.3≤a≤2.5,
所述Mn的含量b摩尔份为0.05≤b≤0.5,
所述Mg的含量c摩尔份为0.5≤c≤2.0,
所述V的含量d摩尔份为0.05≤d≤0.25,
所述Si的含量e摩尔份为0.5≤e≤3.0,
进而,Ca/(Ba+Ca)的摩尔比x为0≤x≤0.10,
进而,在距离所述晶粒的表面达4nm的内侧的位置的、所述稀土类元素R的存在概率为
20%以上。
4.根据权利要求1~3中任一项所述的层叠陶瓷电容器,其中,
所述电介质层的厚度为0.4μm以上1.5μm以下。
5.一种层叠陶瓷电容器的制造方法,其特征在于,具有:
准备将含有Ba、Ti并且任意地含有Ca的钙钛矿型化合物作为主成分的主成分粉末的工序,
准备稀土类元素R的化合物、和Mn化合物、Mg化合物、V化合物、Si化合物的工序,对所述主成分粉末、所述稀土类元素R的化合物和所述Mn化合物、所述Mg化合物、所述V化合物、所述Si化合物进行混合,然后得到陶瓷浆料的工序,
由所述陶瓷浆料获得陶瓷生片的工序,
叠置所述陶瓷生片和内部电极层而得到烧成前的层叠体的工序,以及
对所述烧成前的层叠体进行烧成,得到在电介质层间形成有内部电极的层叠体的工序;
其中,
将所述Ti设为100摩尔份时,
所述Ba与所述Ca的以100×m表示的总含量摩尔份满足0.950≤m<1.000、所述R的含量a摩尔份为0.3≤a≤2.5、
所述Mn的含量b摩尔份为0.05≤b≤0.5、
所述Mg的含量c摩尔份为0.5≤c≤2.0、
所述V的含量d摩尔份为0.05≤d≤0.25、
所述Si的含量e摩尔份为0.5≤e≤3.0,
进而,Ca/(Ba+Ca)的摩尔比x为0≤x≤0.10,
进而,所述电介质层具备晶粒和晶界,在距离所述晶粒的表面达4nm的内侧的位置的、所述稀土类元素R的存在概率为20%以上,
所述烧成工序中,以升温速度100℃/分钟升温,在最高温度1200℃下保持1分钟,然后按照进行降温的轮廓对未加工的层叠体进行烧成。

说明书全文

层叠陶瓷电容器以及层叠陶瓷电容器的制造方法

技术领域

[0001] 本发明涉及层叠陶瓷电容器。另外,涉及层叠陶瓷电容器的制造方法。

背景技术

[0002] 伴随着近年来的电子技术的进展,层叠陶瓷电容器被要求小型化且大容量化。为了满足这些要求,而推进了层叠陶瓷电容器的电介质层的薄层化。但是,若将电介质层薄层化,则对每1层所施加的电场强度相对地变高。由此,对于电介质层所使用的电介质陶瓷而言,需要施加电压时的可靠性、尤其是高温负荷试验时的寿命特性的提高。
[0003] 作为这样的层叠陶瓷电容器,例如已知专利文献1所记载的层叠陶瓷电容器。专利文献1中记载了一种层叠陶瓷电容器,其特征在于,具备将由主晶粒和粒界相构成的电介质层、与内部电极层交替地层叠而成的电容器主体,其中,主晶粒以Ba和Ti为主成分,且由Ca成分浓度为0.4原子%以上且Zr成分浓度为0.2原子%以下的BCT晶粒、和Ca成分浓度为0.4原子%以上且Zr成分浓度为0.4原子%以上的BCTZ晶粒构成,将电介质层的Ba与Ca的总量设为A摩尔而将Ti或者Ti与Zr的总量设为B摩尔时,满足A/B≥1.003的关系。根据该构成,抑制BCTZ晶粒与BCT晶粒的晶粒生长,得到了可提高高温负荷试验特性的层叠陶瓷电容器。
[0004] 专利文献
[0005] 专利文献1:日本特开2006-179774号公报

发明内容

[0006] 发明所要解决的课题
[0007] 但是,由于专利文献1所记载的电介质层的A/B比为1.003以上,因此,Ba与Ca的总量比Ti与Zr的总量多,因而虽然可抑制异常晶粒生长,但是存在高温负荷试验时容易发生绝缘劣化这样的问题。
[0008] 本发明是鉴于所述的课题而完成的发明,其目的在于,提供进一步将电介质层薄层化、即使施加高电场强度的电压也具有良好的介质特性(dielectric property)、高温负荷试验时的寿命特性优异的层叠陶瓷电容器。
[0009] 用于解决课题的手段
[0010] 本发明涉及的层叠陶瓷电容器的特征在于,是具备层叠体和多个外部电极的层叠陶瓷电容器,所述层叠体具有具备晶粒和晶界的层叠而成的多层电介质层、和沿着所述电介质层间的界面形成的多个内部电极,所述外部电极形成于层叠体的外表面且与内部电极电连接;层叠体的组成是以含有Ba、Ti并且任意地含有Ca的矿型化合物作为主成分,还含有稀土类元素R、和Mn、Mg、V、Si,将Ti设为100摩尔份时,Ba与Ca的总含量(100×m)摩尔份为0.950≤m<1.000,R的含量a摩尔份为0.3≤a≤2.5,Mn的含量b摩尔份为0.05≤b≤0.5,Mg的含量c摩尔份为0.5≤c≤2.0,V的含量d摩尔份为0.05≤d≤0.25,Si的含量e摩尔份为0.5≤e≤3.0,进而,Ca/(Ba+Ca)的摩尔比x为0≤x≤0.10,进而,在距离晶粒的表面达4nm的内侧的位置的、稀土类元素R的存在概率为20%以上。
[0011] 另外,本发明涉及的其他层叠陶瓷电容器的特征在于,是具备层叠体和多个外部电极的层叠陶瓷电容器,所述层叠体具有具备晶粒和晶界的层叠而成的多层电介质层、和沿着所述电介质层间的界面形成的多个内部电极,所述外部电极形成于层叠体的外表面且与内部电极电连接;层叠体的组成是以含有Ba、Ti并且任意地含有Ca的钙钛矿型化合物作为主成分,还含有稀土类元素R、和Mn、Mg、V、Si,将用溶剂溶解层叠体时的Ti设为100摩尔份时,Ba与Ca的总含量(100×m)摩尔份为0.950≤m<1.000,R的含量a摩尔份为0.3≤a≤2.5,Mn的含量b摩尔份为0.05≤b≤0.5,Mg的含量c摩尔份为0.5≤c≤2.0,V的含量d摩尔份为0.05≤d≤0.25,Si的含量e摩尔份为0.5≤e≤3.0,进而,Ca/(Ba+Ca)的摩尔比x为0≤x≤0.10,进而,在距离晶粒的表面达4nm的内侧的位置的、稀土类元素R的存在概率为20%以上。
[0012] 另外,本发明涉及的另外的层叠陶瓷电容器的特征在于,是具备层叠体和多个外部电极的层叠陶瓷电容器,所述层叠体具有具备晶粒和晶界的层叠而成的多层电介质层、和沿着所述电介质层间的界面形成的多个内部电极,所述外部电极形成于层叠体的外表面且与内部电极电连接;电介质层的组成以含有Ba、Ti并且任意地含有Ca的钙钛矿型化合物作为主成分,还含有稀土类元素R、和Mn、Mg、V、Si,将Ti设为100摩尔份时,Ba与Ca的总含量(100×m)摩尔份为0.950≤m<1.000,R的含量a摩尔份为0.3≤a≤2.5,Mn的含量b摩尔份为0.05≤b≤0.5,Mg的含量c摩尔份为0.5≤c≤2.0,V的含量d摩尔份为0.05≤d≤0.25,Si的含量e摩尔份为0.5≤e≤3.0,进而,Ca/(Ba+Ca)的摩尔比x为
0≤x≤0.10,进而,在距离晶粒的表面达4nm的内侧的位置的、稀土类元素R的存在概率为20%以上。
[0013] 需说明的是,上述的本发明涉及的层叠陶瓷电容器,电介质层的厚度优选为0.4μm以上1.5μm以下。
[0014] 另外,本发明涉及的层叠陶瓷电容器的制造方法的特征在于,
[0015] 具备:
[0016] 准备以含有Ba、Ti且任意地含有Ca的钙钛矿型化合物作为主成分的主成分粉末的工序,
[0017] 准备稀土类元素R的化合物、以及Mn化合物、Mg化合物、V化合物、Si化合物的工序,
[0018] 将主成分粉末、稀土类元素R的化合物以及Mn化合物、Mg化合物、V化合物、Si化合物混合,然后得到陶瓷浆料的工序,
[0019] 由陶瓷浆料制得陶瓷生片的工序,
[0020] 将陶瓷生片和内部电极层叠置而得到烧成前的层叠体的工序,以及[0021] 将烧成前的层叠体烧成而得到在电介质层间形成有内部电极的层叠体的工序;
[0022] 将Ti设为100摩尔份时,Ba与Ca的总含量(100×m)摩尔份为0.950≤m<1.000,R的含量a摩尔份为0.3≤a≤2.5,Mn的含量b摩尔份为0.05≤b≤0.5,Mg的含量c摩尔份为0.5≤c≤2.0,V的含量d摩尔份为0.05≤d≤0.25,Si的含量e摩尔份为0.5≤e≤3.0,进而,Ca/(Ba+Ca)的摩尔比x为0≤x≤0.10,进而,电介质层具备晶粒和晶界,在距离晶粒的表面达4nm的内侧的位置的、稀土类元素R的存在概率为20%以上。
[0023] 发明效果
[0024] 根据本发明涉及的电介质陶瓷,通过具有上述那样的组成,在距离晶粒的表面达4nm的内侧的位置以20摩尔%以上的比例含有稀土类元素,从而可提供将电介质层进一步薄层化、即使施加高电场强度的电压而高温负荷试验时的寿命特性也优异的层叠陶瓷电容器。
附图说明
[0025] 图1是表示本发明涉及的层叠陶瓷电容器的剖面图。
[0026] 图2是表示在实验例1中测定电介质层的厚度所在的位置的说明图。

具体实施方式

[0027] 以下,对用于实施本发明的方式进行说明。
[0028] 图1是本发明涉及的层叠陶瓷电容器的剖面图。
[0029] 层叠陶瓷电容器1具备层叠体5。层叠体5具备层叠的多层电介质层2、沿着多层电介质层2间的界面形成的多个内部电极3和4。作为内部电极3和4的材质,例如可举出以Ni作为主成分的材质。
[0030] 在层叠体5的外表面上的相互不同的位置,形成有外部电极6和7。作为外部电极6和7的材质,例如可举出以Ag或Cu作为主成分的材质。就图1示出的层叠陶瓷电容器而言,外部电极6和7形成于层叠体5的相互对置的各端面上。内部电极3和4分别与外部电极6和7电连接。而且,内部电极3和4在层叠体5的内部隔着电介质层2而交替的层叠。
[0031] 需说明的是,层叠陶瓷电容器1可以是具备2个外部电极6和7的二端子型电容器,也可以是具备多个外部电极的多端子型电容器。
[0032] 构成电介质层2的电介质陶瓷以含有Ba、Ti并且任意地含有Ca的钙钛矿型化合物作为主成分,还含有稀土类元素R、和Mn、Mg、V、Si,将Ti设为100摩尔份时,含有如下的组成:Ba与Ca的总含量(100×m)摩尔份为0.950≤m<1.000,R的含量a摩尔份为0.3≤a≤2.5,Mn的含量b摩尔份为0.05≤b≤0.5,Mg的含量c摩尔份为0.5≤c≤2.0,V的含量d摩尔份为0.05≤d≤0.25,Si的含量e摩尔份为0.5≤e≤3.0,进而,Ca/(Ba+Ca)的摩尔比x以0≤x≤0.10表示,其具备晶粒和晶界。而且,其特征在于,在距离晶粒的表面达4nm的内侧的位置,上述稀土类元素的存在概率为20%以上。存在概率是按照以下的步骤算出的。首先,进行100处在距离晶粒的表面达4nm的内侧的位置的组成分析。而且,在各个位置处测定是否存在稀土类元素,将存在稀土类元素的位置的数量的比例作为稀土类元素的存在概率。
[0033] 就本发明而言,Ba与Ca的总量相对于Ti的摩尔之比为0.950≤m<1.000,小于化学计量的组成。另外,通过使在晶粒的表面附近的位置的稀土类元素的存在概率达到一定比例以上,从而可得到高温负荷试验时的寿命特性优异的电介质陶瓷。
[0034] 需说明的是,R(稀土类)、Mn、Mg、V、Si不限制存在形态。可以在粒界以化物的形式存在,也可以固溶于主成分粒子中。
[0035] 另外,就本发明涉及的层叠陶瓷电容器而言,电介质层2的厚度优选为0.4μm以上1.5μm以下。本发明涉及的层叠陶瓷电容器在该厚度的范围内显著地体现出基于本发明的效果。
[0036] 电介质陶瓷的原料粉末例如可利用固相合成法来制作。具体而言,首先,将含有主成分的构成元素的氧化物、酸物等的化合物粉末以规定的比例混合,进行煅烧。需说明的是,除了固相合成法以外,还可应用热法等。需说明的是,在本发明涉及的电介质陶瓷中,可以在不妨碍本发明的效果的量的范围内含有金属、过渡金属、Cl、S、P、Hf等。
[0037] 层叠陶瓷电容器例如如下地制成。使用如上所述所得的电介质陶瓷的原料粉末来制成陶瓷浆料。然后,利用片材成形法等成形为陶瓷生片。而且,在多张陶瓷生片中规定的陶瓷生片上将应作为内部电极的导电性糊料通过印刷等加以涂布。而且,将多张陶瓷生片层叠后进行压接而得到未加工的层叠体。而且,对未加工的层叠体进行烧成。在该烧成的工序中,可得到由电介质陶瓷构成的电介质层。然后,在层叠体的端面利用烘烤(bake)等形成外部电极。
[0038] 接着,基于本发明,对所实施的实验例进行说明。
[0039] [实验例1]
[0040] (A)电介质陶瓷的原料粉末的制作
[0041] 首先,准备作为主成分的钛酸钡(以下BT)粉末和钛酸钡钙(以下BCT)粉末。具体而言,以Ba与Ca的总含量相对于Ti的摩尔之比达到m、Ba与Ca的含量的摩尔之比达到Ba:Ca=1-x:x的方式,称量BaCO3粉末、CaCO3粉末和TiO2粉末。利用球磨机将所秤量的粉末混合24小时后,进行热处理,得到主成分的BT粉末和BCT粉末。通过控制BaCO3、CaCO3和TiO2的粒径以及热处理温度,从而将BT粉末和BCT粉末的平均粒径控制为约100nm。
[0042] 接着,准备作为副成分的Dy2O3、MnO、MgO、V2O3、SiO2各粉末。然后,以相对于主成分的BT粉末、BCT粉末中的100摩尔份的Ti而言Dy的含量达到a摩尔份、Mn的含量达到b摩尔份、Mg的含量达到c摩尔份、V的含量达到d摩尔份、Si的含量达到e摩尔份的方式称量上述粉末,并与主成分的BT粉末、BCT粉末配合,利用球磨机混合5小时,然后进行干燥,干式粉碎。由此,得到了各实验条件的电介质陶瓷的原料粉末。表1中示出各实验条件的试样中的m、x、a、b、c、d、e的值。
[0043] 需说明的是,对所得的原料粉末进行ICP发光光谱分析,结果确认到与表1示出的制备组成基本上相同。
[0044] (B)层叠陶瓷电容器的制作
[0045] 首先,形成应作为电介质层的陶瓷生片。具体而言,在上述的原料粉末中加入聚乙烯醇缩丁系粘结剂和乙醇有机溶剂,利用球磨机进行湿式混合而制备出陶瓷浆料。然后,利用模涂机使该陶瓷浆料成形为片状以使烧成后的电介质层的厚度达到规定的厚度,从而得到陶瓷生片。
[0046] 然后,在规定的陶瓷生片上印刷以Ni为主成分的导电糊料,形成应作为内部电极的导电糊料层。制作导电糊料层以使内部电极的厚度在烧成后成为0.4μm。
[0047] 然后,以拉出导电糊料层的一侧相互不同的方式来层叠陶瓷生片,形成未加工的层叠体。将陶瓷生片的层叠数设为100层。
[0048] 然后,在N2气氛中在300℃下加热后,上升到700℃而使粘结剂燃烧。然后,以升温速度100℃/分钟升温,在最高温度1200℃下保持1分钟,然后按照进行降温的轮廓对未-10加工的层叠体进行烧成。需说明的是,烧成是在由氧分压为10 MPa的H2-N2-H2O气体构成的还原气氛中进行。
[0049] 使该烧成后的层叠体融化,进行ICP发光光谱分析,结果确认到除了内部电极成分的Ni以外,与表1示出的制备组成基本相同。
[0050] 然后,在烧成后的层叠体的两端面涂布含有B2O3-Li2O-SiO2-BaO玻璃料的糊料。然后,在N2气氛中、800℃下进行烘烤,形成与内部电极电连接的外部电极。
[0051] 如上所述制作出的层叠陶瓷电容器的外形尺寸为1.0mm×0.5mm×0.5mm,每1层2
中的对置电极面积为0.3mm。另外,构成层叠陶瓷电容器的电介质层中的晶粒的平均粒径为100nm~200nm。需说明的是,平均粒径的测定方法是:使层叠陶瓷电容器断裂,为了明确晶界而进行加热处理,使用扫描型显微镜来观察断裂面。在本实验例1中,将上述加热处理时的温度设为1000℃。然后,对该观察图像进行图像解析,将晶粒的圆当量直径作为粒径,测定出晶粒的粒径。然后,对于各试样,测定100个晶粒的粒径,将其平均值作为平均粒径而算出。
[0052] (C)特性评价
[0053] 首先,算出在距离晶粒的表面达4nm的内侧的位置的Dy的存在概率。
[0054] 首先,利用离子研磨(ion milling)法将层叠陶瓷电容器薄层化。
[0055] 然后,利用TEM来观察露出的剖面,探究与剖面成为近似垂直的晶界。具体而言,利用TEM观察在晶界的两侧出现的线即菲涅边缘,从而探究在使焦距变化时菲涅耳边缘的对比度在两侧基本上对称地发生变化的晶界、即向菲涅耳边缘的明线或暗线的变化在两侧基本上对称地发生变化的晶界,并且上述晶界作为与剖面成为近似垂直的晶界。
[0056] 然后,从不同的粒子中找到20处与剖面成为近似垂直的晶界,将从上述的各晶界起向晶粒的内侧各间隔4nm的位置分别作为“距离晶粒的表面达4nm的内侧的位置”,使用STEM-EDX(探针径2nm)来进行组成分析。对于20处与剖面成为近似垂直的晶界,分别在所述晶界的两侧进行组成分析,因此,进行总计40个位置的组成分析。
[0057] 然后,判断在各个分析位置是否存在Dy,将存在Dy的位置的数量的比例作为Dy的存在概率。
[0058] 然后,测定各实验条件下的试样的电介质层的厚度。
[0059] 首先,将各试样以达到垂直的方式立起,用树脂使各试样的周围凝固。此时,使各试样的LT侧面(长-高侧面:进行研磨时包含与外部电极的连接部分的内部电极露出的侧面)露出。通过研磨机对LT侧面进行研磨,结束研磨直至层叠体的W方向(宽方向)的1/2的深度,露出LT剖面。对该研磨面进行离子研磨,将因研磨产生的垂挂除去。由此,得到观察用的剖面。
[0060] 如图2所示,在LT剖面的L方向(长方向)1/2处,引出与内部电极正交的垂线。然后,将试样的层叠有内部电极的区域沿T方向(高方向)3等分地加以分割,分成上侧部U、中间部M、下侧部D这3个区域。然后,从各区域的各自的高度方向的中央部选定25层电介质层(在图2中将包含该25层电介质层的区域表示为测定区域R1),测定上述电介质层的上述垂线上的厚度。但是,除去由于在上述垂线上内部电极发生缺损、夹住该内部电极的陶瓷层连接等导致无法测定的电介质层。
[0061] 综上,对于各试样,在75个位置测定电介质层的厚度,求出它们的平均值。
[0062] 电介质层的厚度使用扫描型电子显微镜进行测定。
[0063] 然后,求出各实验条件下的层叠陶瓷电容器的介电常数。具体而言,在温度25℃、1kHz,0.5Vrms的条件下,利用安捷伦(Agilent)制HP4268来测定50个试样的静电电容。
然后,利用其平均值和电介质层的厚度、层数、对置电极面积来算出介电常数。
[0064] 然后,在温度85℃、电场强度10kV/mm的条件下实施高温负荷试验。然后,将经过2000小时时绝缘电阻值达到100kΩ以下的试样判断为不合格品。高温负荷试验利用100个试样加以实施。
[0065] 表1示出各实验条件下的试样的各种特性评价的结果。需说明的是,在表1中,对试样编号施用了*的试样是本发明的范围外的试样。
[0066] [表1]
[0067]
[0068] 就试样编号11~14而言,主成分为BT且电介质层的厚度为1.5μm。就试样编号11、12而言,Ba的相对于Ti的摩尔之比m小于1。在这种情况下,距离晶粒的表面达4nm的内侧的Dy的存在概率分别为28%、36%,即使在高温负荷试验中也显示出良好的寿命特性。另一方面,试样编号13、14的m为1以上,在高温负荷试验中发生了不良状况。另外,介电常数与试样编号11、12相比也降低。
[0069] 就试样编号21~24而言,主成分为BCT且电介质层的厚度为1.5μm。就试样编号21、22而言,Ba与Ca的总量相对于Ti的摩尔之比m小于1。在这种情况下,距离晶粒的表面达4nm的内侧的Dy的存在概率分别为20%、27%,即使在高温负荷试验中也显示出良好的寿命特性。另一方面,试样编号23、24的m为1以上,在高温负荷试验中发生了不良状况。
[0070] 就试样编号31~34而言,主成分为BT且电介质层的厚度为0.4μm。就试样编号31、32而言,Ba的相对于Ti的摩尔之比m小于1。在这种情况下,距离晶粒的表面达4nm的内侧的Dy的存在概率分别为35%、52%,即使在高温负荷试验中也显示出良好的寿命特性。另一方面,试样编号33、34的m为1以上,在高温负荷试验中发生了不良状况。
[0071] 符号说明
[0072] 1层叠陶瓷电容器
[0073] 2电介质层
[0074] 3、4内部电极
[0075] 5层叠体
[0076] 6、7外部电极
QQ群二维码
意见反馈