用于增强能量吸收的结构化材料

申请号 CN201380074364.8 申请日 2013-06-26 公开(公告)号 CN105026137B 公开(公告)日 2017-07-28
申请人 HRL实验室有限责任公司; 发明人 J·M·哈德利; T·A·舍德勒; S·S·杨; A·J·雅各布森;
摘要 本 发明 公开了一种具有厚度层次的三维晶格架构,包括:第一表面和第二表面,该第一表面和第二表面彼此分离一定距离并在第一表面和第二表面之间限定该三维晶格架构的厚度;沿多个方向在第一表面和第二表面之间延伸的多个成 角 度的支柱;将多个成角度的支柱彼此连接以形成多个晶胞的多个 节点 。多个成角度的支柱中的至少一部分沿着晶格结构的厚度方向内部终止,并且朝向晶格架构的第一或第二表面提供多个内部 自由度 。
权利要求

1.一种具有厚度层次的三维晶格结构,包括:
第一表面和第二表面,所述第一表面和所述第二表面彼此分离一定距离并在所述第一表面与所述第二表面之间限定所述三维晶格结构的厚度;
多个成度的支柱,所述多个成角度的支柱沿着所述第一表面和所述第二表面之间的多个方向延伸;和
多个节点,所述多个节点将所述多个成角度的支柱彼此连接,从而形成多个晶胞,其中,所述多个成角度的支柱的至少一部分沿着所述晶格结构的厚度方向内部终止在短于所述晶格结构的所述第二表面处,并且所述内部终止的支柱的端部与所述第二表面之间的距离从0.05mm到25mm。
2.根据权利要求1所述的三维晶格结构,其中,所述第一表面和/或所述第二表面没有任何面板。
3.根据权利要求1所述的三维晶格结构,还包括:
面板,所述面板被结合到所述第一表面或所述第二表面。
4.根据权利要求3所述的三维晶格结构,其中,所述面板包括面板材料,所述面板材料从由金属材料、聚合物材料、陶瓷材料和复合材料构成的组中选择。
5.根据前述权利要求中任一项所述的三维晶格结构,其中,所述支柱中的每一个都包括从由实心金属材料、实心聚合物材料、实心陶瓷材料和实心复合材料构成的组中选择的材料。
6.根据权利要求1-4中任一项所述的三维晶格结构,其中,所述支柱中的每一个都包括从中空金属材料、中空聚合物材料、中空陶瓷材料和中空复合材料构成的组中选择的支柱材料。
7.一种具有厚度层次的三维晶格架构,包括:
第一表面和第二表面,所述第一表面和所述第二表面彼此分开一定距离并在所述第一表面和所述第二表面之间限定所述晶格架构的厚度和厚度方向;和
在厚度方向上彼此堆叠的多个晶格结构,从而在所述第一表面和所述第二表面之间形成分界面,
其中,相邻两个所述晶格结构的一组晶胞参数彼此不同。
8.根据权利要求7所述的三维晶格架构,还包括:
面板,所述面板位于两个相邻的晶格结构之间的分界面处。
9.根据权利要求7-8中任一项所述的三维晶格架构,其中,所述第一表面和/或所述第二表面没有任何面板。
10.根据权利要求7-8中任一项所述的三维晶格架构,还包括:
第一面板,所述第一面板被结合到所述第一表面和所述第二表面中的一个;和/或第二面板,所述第二面板被结合到所述第一表面和所述第二表面中的另一个。
11.根据权利要求10所述的三维晶格架构,其中,所述第一面板和所述第二面板中的每一个都包括从由金属材料、聚合物材料、陶瓷材料和复合材料构成的组中选择的面板材料。
12.根据权利要求7-8中任一项所述的三维晶格架构,其中,所述晶格结构中的每一个都包括从由实心金属材料、实心聚合物材料、实心陶瓷和实心复合材料构成的组中选择的晶格结构材料。
13.根据权利要求7-8中任一项所述的三维晶格架构,其中,所述晶格结构中的每一个都包括从由空心金属材料、空心聚合物材料、空心陶瓷材料和空心复合材料构成的组中选择的晶格结构材料。
14.一种制造具有厚度层次的三维晶格结构的方法,所述方法包括以下步骤:
在容器的顶部和底部中的至少一个处设置有图案的模板;
在所述容器中设置与所述有图案的模板相接触的大量光单体;和
通过掩模将所述光单体曝光在准直光下,所述准直光相对于所述掩模以非垂直角度穿过所述掩模的多个孔以在所述光单体内以所述非垂直角度形成多个成角度的聚合物支柱,从而形成所述三维晶格结构,
其中,所述多个成角度的聚合物支柱的至少一部分沿着所述晶格结构的厚度方向内部终止在短于所述大量光单体的上表面或下表面处。
15.一种制造具有厚度层次的三维晶格结构的方法,所述方法包括以下步骤:
通过掩模将大量光单体曝光在准直光下,所述准直光相对于所述掩模以非垂直角度穿过所述掩模的多个第一孔以在所述光单体中以所述非垂直角度形成多个成角度的聚合物支柱,从而形成具有顶面和底面的所述三维晶格结构;和
从所述顶面和所述底面中的一个移除所述晶格结构的一部分以产生所述厚度层次,其中,所述多个成角度的聚合物支柱的至少一部分沿着所述晶格结构的厚度方向内部终止在短于所述大量光单体的上表面或下表面处。
16.一种制造具有厚度层次的三维晶格架构的方法,所述方法包括以下步骤:
在第一容器中设置第一体积的光单体;
通过第一掩模将所述第一体积的光单体曝光在准直光下,所述准直光相对于所述掩模以第一非垂直角度穿过所述第一掩模的多个第一孔以在所述光单体中以所述非垂直角度形成多个第一成角度的聚合物支柱,从而形成具有第一组晶胞参数、第一顶面和第一底面的第一三维晶格结构;
在第二容器中设置第二体积的光单体;
通过第二掩模将所述第二体积的光单体曝光在准直光下,所述准直光相对于所述掩模以第二非垂直角度穿过所述第二掩模的多个第二孔以在所述光单体中以所述非垂直角度形成多个第二成角度的聚合物支柱,从而形成具有第二组晶胞参数、第二顶面和第二底面的第二三维晶格结构;和
连接所述第一顶面和所述第二底面;
其中,所述第一组晶胞参数与所述第二组晶胞参数不同。

说明书全文

用于增强能量吸收的结构化材料

[0001] 相关申请的交叉引用
[0002] 本申请主张于2013年3月8日申请的名称为ARCHITECTED MATERIALS WITH THICKNESS HIERARCHY的美国临时申请第61/775,330号以及于2013年6月25日申请的名称为ARCHITECTED MATERIALS FOR ENHANCED ENERGY ABSORPTION的美国非临时申请第13/
927,064号的优先权及权益,上述申请的内容在此整体并入本文作为参考。
[0003] 将金属晶格(桁架)用于能量吸收的应用已经在以下专利中讨论:美国专利第7,382,959号(“Optically oriented three-dimensional polymer microstructures”)和于
2007年05月10日申请的美国专利申请第11/801,908号;于2008年1月11日申请的美国专利申请第12/008,479号;于2008年3月5日申请的美国专利申请第12/074,727号;于2008年3月
6日申请的美国专利申请第12/075,033号;于2009年6月1日申请的美国专利申请第12/455,
449号;以及于2010年12月22日申请的美国专利申请第12/928,947号。多种微型桁架结构和制造微型桁架结构的方法已经在以下专利中做了描述:美国专利申请第12/455,449号,该申请公开了一种制造具有固定面积的微型桁架结构的方法;美国专利申请第12/835,276号,该申请公开了一种根据连续的过程连续制造微型桁架结构(例如,任意长度的长条)的方法;以及美国专利申请第12/928,947号,该申请公开了一种用于能量吸收的由可压缩流体填充的微型桁架。上述交叉引用的专利和申请中的每一个由本申请的受让人所共同拥有,并且通过引用整体并入本申请。

技术领域

[0004] 以下说明涉及能量吸收材料,更具体地,涉及具有增强能量吸收能的结构化晶格材料。

背景技术

[0005] 能量吸收材料已经广泛用于防止人员和货物受到破坏性的冲击和力。能量吸收材料可以分为两类:不具有桁架结构的材料和具有桁架结构的材料。前一类包括蜂窝材料,例如封闭或开口的金属或聚合物单元泡沫、压纹蜂窝结构(crushed honeycomb)或者其它商业材料,例如SkydexTM。后一类包括由实心或空心构件(支柱、桁架或晶格)与在该结构的厚度方向上的恒定结构化参数(例如,晶胞尺寸、半径、长度或每一个构件的度)组成的微型桁架结构。对于前一类,蜂窝材料通过弹性和/或非弹性变形来消散与冲击相关联的动能。泡沫和预压蜂窝材料的压缩响应接近于理想响应(如图1所示,该内容将在下文中做更详细的描述),但是这些材料的性能受到泡沫的低密实化应变或预压蜂窝材料的低承载能力的限制。在任一种情况下,尽管响应特性是理想的,但这些材料的性能仍受到不理想的微观结构的空间布置的影响。
[0006] 先前的具有桁架或晶格结构的材料具有厚度方向(即,该桁架或晶格结构的能量吸收方向)上的恒定结构化参数。如图2所示,高结构对称性和缺少分离的内部构件导致同时屈曲和载荷传递能力的急剧损失。这将使材料的能量吸收能力随着与压实相关联的应力平台下降到大大低于峰值。
[0007] 现在回到给定能量吸收材料在冲击或压缩下的表现,将由桁架或类似梁的元件构成的结构化材料在破坏机构中试验,其中入射能量或外功分为三个阶段被吸收:初始屈曲、在恒定或接近恒定应力平下压实和最终完全密实化。图1是显示能量吸收材料的理想性能的示意图。材料的初始响应是压缩应变,该压缩应变随着与屈曲或塑性变形开始前的材料响应相对应的压缩应力线性变化。在到达峰值应力101之后,该理想材料响应从线弹性阶段转换到恒定应力平台阶段102,在该阶段,通过材料传送的力保持均匀和恒定,直到该材料达到密实化阶段为止,在密实化阶段,应变再次随着应力迅速地、线性或非线性地增加。与从平台应力到密实化阶段的转变点相对应的应变被视为密实化应变103。给定材料的最大可能体积能量吸收被计算为峰值应力101与100%应变的乘积。然而,实际的结构化材料与理想的响应具有偏差并且导致吸收效率的损失。图2示出了具有高结构对称性和内部连通性的晶格或桁架结构的典型性能。在此,达到屈曲开始的峰值应力201而非停留在该峰值应力水平之后,压缩应力下降到较低的平台应变202。这被认为是由于具有高结构对称性和内部连通性的结构中的单个点处的屈曲的开始将会触发整个所述结构的屈曲,从而导致瞬间的负载承载能力损失和降低的能量吸收效率。这种情况下,密实化应变203被限定为与峰值应力值与应力-应变曲线的水平线相交处相对应的应变水平。实际吸收的体积能量被计算为应力-应变曲线下在0%应变与密实化应变之间的面积。这样的材料的能量吸收效率被计算为实际体积能量吸收与最大可能的体积能量吸收的比值。
[0008] 因此,仍然需要具有固有结构的和低质量效益的晶格架构,但也具有改进的能量吸收响应。发明内容
[0009] 本发明的实施例方面涉及当加载压缩时具有较佳能量吸收性能的结构化材料。该材料具有在材料的厚度方向(即,主要的能量吸收方向)上具有层次的桁架或者晶格结构,在保持固有结构和规模效益的同时,该结构可以相对于现有技术中的晶格结构提供增强的能量吸收功能。架构控制的附加维度可以被引入到两个不同实施例中的标准晶格结构中。
[0010] 在本发明的一个实施例中,具有厚度层次的三维晶格架构包括第一表面和第二表面,第一表面和第二表面彼此分开(沿着第一和第二表面中的至少一个的法线方向)一定距离并在第一表面和第二表面之间限定三维晶格架构的厚度;沿着第一表面和第二表面之间的多个方向延伸的多个成角度的支柱;将多个成角度的支柱彼此连接以形成多个晶胞的多个节点。多个成角度的支柱中的至少一部分沿着晶格结构的厚度方向在内部终止并且朝向晶格架构的第一或第二表面提供多个内部自由度
[0011] 在本发明的另一个实施例中,具有厚度层次的三维晶格架构包括第一表面和第二表面,该第一表面和第二表面彼此分开(沿着第一和第二表面中的至少一个的法线方向)一定距离并在第一表面和第二表面之间限定该晶格架构的厚度和厚度方向;和在厚度方向上彼此堆叠的多个晶格结构,从而在多个晶格结构之间形成分界面,每个晶格结构具有一组唯一的晶胞参数。相邻两个晶格结构的一组晶胞参数彼此不同。
[0012] 在本发明的一个实施例中,一种制造具有厚度层次的三维晶格架构的方法包括以下步骤:在容器的顶部和底部中的至少一个处设置有图案的模板;在容器中设置与有图案的模板相接触的大量光单体;通过掩模将光单体曝光在准直光束下,该准直光束相对于掩模以非垂直角度穿过该掩模的多个孔以在该光单体中以所述非垂直角度形成多个成角度的聚合物支柱,从而形成三维晶格结构。
[0013] 在本发明的一个实施例中,有图案的模板设置在容器的底部。
[0014] 在本发明的另一个实施例中,有图案的模板设置在容器的顶部。
[0015] 在本发明的又一个实施例中,有图案的模板设置在容器的顶部和底部。
[0016] 在本发明的一个实施例中,将第二材料沉积在三维晶格结构上以形成复合晶格结构;其中,所述第二材料不同于成角度的聚合物支柱中的聚合物。
[0017] 在本发明的一个实施例中,从复合晶格结构中移除所述聚合物。
[0018] 在本发明的一个实施例中,用第三材料填充该三维晶格结构,并且移除所述聚合物以形成三维晶格结构模具。
[0019] 在本发明的另一个实施例中,一种制造具有厚度层次的三维晶格构架的方法包括以下步骤:通过掩模将大量光单体曝光在准直光束下,该准直光束相对于掩模以非垂直角度穿过该掩模的多个第一孔以在该光单体中以所述非垂直角度形成多个成角度的聚合物支柱,从而形成具有顶面和底面的三维晶格结构;和从顶面和底面中的一个中移除所述晶格结构的一部分。
[0020] 根据本发明的一个实施例,所述移除晶格结构的一部分的步骤是通过去除加工、化学蚀刻、激光蚀刻或其组合来执行。
[0021] 在本发明的又一个实施例中,一种制造具有厚度层次的三维晶格架构的方法包括以下步骤:在第一容器中设置第一体积的光单体;通过第一掩模将该第一体积的光单体曝光在准直光束下,该准直光束相对于该掩模以第一非垂直角度穿过第一掩模的多个第一孔从而以该非垂直角度在该光单体中形成多个第一成角度的聚合物支柱,从而形成具有第一组晶胞参数、第一顶面和第一底面的第一三维晶格结构;在第二容器中设置第二体积的光单体;通过第二掩模将该第二体积的光单体曝光在准直光束下,该准直光束相对于该掩模以第二非垂直角度穿过第二掩模的多个第二孔从而以该非垂直角度在该光单体中形成多个第二成角度的聚合物支柱,从而形成具有第二组晶胞参数、第二顶面和第二底面的第二三维晶格结构;和连接第一顶面和第二底面。第一组晶胞参数与第二组晶胞参数不同。
[0022] 在本发明的一个实施例中,第一容器和第二容器为相同容器,第一顶面和第二底面之间的连接通过曝光强度控制。
[0023] 在本发明的一个实施例中,第一容器和第二容器为不同容器,第一顶面与第二底面通过粘结剂、紫外线闪光焊接、升温下的压力焊接、热后固化、热粘合和/或溶剂粘合连接。
[0024] 在本发明的一个实施例中,第二容器包括第一容器,第一顶面与第二底面的连接通过曝光强度控制。附图说明
[0025] 图1是具有或不具有晶格架构的能量吸收材料的理想压缩应力-应变表现的示意图;
[0026] 图2是具有高结构对称性和内部联通性的晶格或桁架结构的典型压缩应力-应变表现的示意图;
[0027] 图3a和3b是显示通过使用结构化模板说明具有架构厚度层次的晶格架构的示意图;
[0028] 图4是具有堆叠在一起的两个不同晶格结构的晶格架构的示意图;
[0029] 图5a是显示使用架构模板制作晶格架构的过程的一个实施例的示意图;
[0030] 图5b是显示使用架构模板制作晶格架构的过程的另一个实施例的示意图;
[0031] 图6a显示了引入中断内部构件之前的一个示例性晶格架构的仰视图;
[0032] 图6b显示了具有叠加在晶格架构上的构架模板的图6a中所示的示例性晶格架构的仰视图;
[0033] 图6c示出了图6a中所示的示例性晶格架构引入使用图6b中所示架构模板形成的中断内部构件后的仰视图;
[0034] 图6d示出了图6c中所示的晶格架构的沿a-a′的横截面图;
[0035] 图7显示了具有中断内部构件的另一个示例性晶格架构;
[0036] 图8显示了具有连接到该结构的顶面和底面的结构面板的中断内部构件的一个示例性晶格架构;
[0037] 图9显示了图7中所示示例性晶格架构与不具有中断构件的相似晶格结构的模拟压缩应力-应变响应的对比;
[0038] 图10显示了图8中所示的示例性晶格架构与不具有中断构件的相似晶格结构的模拟压缩应力-应变响应的对比;
[0039] 图11是显示具有堆叠在一起的多个晶格结构的晶格架构的制作过程的一个实施例的示意图;
[0040] 图12是具有两个堆叠在一起的不同晶格结构的真实晶格架构的照片;
[0041] 图13是具有三个堆叠在一起的不同晶格结构、在具有不同架构的晶格之间的分界面处包括面板材料的晶格架构的示意图;
[0042] 图14显示了图12中所示材料在压缩下的压缩应力-应变响应;以及
[0043] 图15显示了由堆叠在一起的两个不同晶格结构层构成的图12的晶格架构压缩下的照片。

具体实施方式

[0044] 在以下的详细说明中,通过说明的方式仅对本发明的某些示例性实施例做了显示和说明。本领域技术人员应当理解,本发明可以实现为多种不同形式而不应该限制于这里所说明的实施例。同样地,在本申请中,当一个元件被称为在另一个元件“上”时,所述一个元件可以直接地设置在该另一个元件上,或者在它们之间插入一个或多个介入元件而使该一个元件间接地设置在该另一个元件上。相同的附图标记在本说明书中标记相同元件。
[0045] 贯穿本发明,术语“内部自由度”、“中断内部构件”、“中断构件”和“内部终端支柱”可以互换使用。术语“构件”、“支柱”和“波导”可以互换使用。术语“晶格”和“桁架”可以互换使用。术语厚度层次表示晶格结构横跨该结构的厚度方向具有至少两个不同架构。
[0046] 本发明的第一个实施例
[0047] 参照图3b,本发明的第一实施例包括具有厚度层次的三维晶格架构,所述三维晶格架构包括:第一表面311和第二表面312,第一表面311和第二表面312彼此分开(沿着正交于第一和第二表面中的至少一个的方向,例如,第一表面311平行于第二表面312)一定距离并在所述第一表面与所述第二表面之间限定三维晶格架构的厚度;沿第一表面和第二表面之间的多个方向延伸的多个成角度的支柱(也可以称为成角度的“桁架元件”、“桁架构件”或“聚合物波导件”)321、322;多个节点330,所述多个节点将多个成角度的支柱彼此连接,从而形成多个晶胞。成角度的支柱中的每一个都具有第一端部341和第二端部342。除了具有内部终端支柱的情况(下文中将做详细说明)之外,第一端部和第二端部中的每一个与第一表面、第二表面或环绕晶格架构的侧面中的一个相接触。例如,在具有矩形横截面的晶格结构中,支柱的第一端部可以在第一表面、第二表面或环绕该晶格架构的四个侧面中的一个中的一个上。该支柱的第二端部将在其余表面的其中一个面上,该表面由从第一端部以一组或预定角度延伸的支柱与所述表面或侧面中的其余面中的一个的相交来确定。在本发明的这个实施例中,该结构的第二表面具有一个或多个空腔350,多个成角度的支柱323的一部分沿着晶格结构的厚度方向在内部终止,即,终止在空腔内。在此,术语“内部终止”指的是具有第一或第二端部中的一个的支柱在到达第一表面、第二表面或侧面中的一个之前终止,即,该支柱具有位于由第一和第二表面以及侧面限定的晶格架构的内部的两个端部中的一个。术语“沿着晶格结构的厚度方向内部终止”指的是已经到达第一表面或者第二表面的内部终止的支柱如果允许的话可以在晶格结构边界内不中断地延伸。在这种情况下,第一表面的俯视图显示均匀图案化的二维晶格结构,而第二表面的俯视图显示具有缺少晶格元件(支柱的端部)的区域的中断的二维晶格结构。图3a显示了使用有图案的模板301形成内部终止支柱,所述模板具有凸起的台阶从而产生了晶格结构中的空腔。
[0048] 每个内部终止支柱向晶格结构提供内部自由度,使得该内部终止支柱在受到压缩时不会在第一表面和第二表面之间传递载荷。因此,除非该结构被足以使内部终止支柱与第一或第二表面接触的量压缩,否则所述内部终止支柱对材料的初始屈曲响应没有任何贡献。由于引入内部终止支柱,这种交错屈曲响应减弱了峰值应力之后载荷的急剧下降,如图2所示(可比较的不具有内部终止支柱的晶格或桁架结构的典型性能),产生与图1所示的理想响应更相近的响应。能量吸收效率可以通过定制的空间布置(即,分配)和这些内部自由度的几何参数来提高。几何参数包括尺寸、在晶胞结构中的位置、中断区域的几何结构、中断的厚度或高度(即,空腔的深度)或者内部终止支柱的端部与该端部因被中断而没有到达的表面之间的距离。该内部终止支柱可以均匀分隔开和/或不规则地分隔开。缺少的晶格元件的表面积可以覆盖一个表面的表面积的约50%。在本发明的一个实施例中,中断的高度,即空腔的深度,不高于周期性的晶胞的高度。在本发明的另一个实施例中,中断的高度在
0.05mm至大约25mm之间。在本发明的又一个实施例中,中断的高度在正值到晶格架构的厚度的大约15%之间。中断的高度可以在表面上有所变化。每个中断区域的长度和宽度可以等于周期性重复的晶胞的相应长度和宽度。在本发明的一个实施例中,每个中断区域的长度和宽度在约0.1mm到约25mm之间。在本发明的一个实施例中,能量吸收效率可以通过引入这些内部自由度提高218%。
[0049] 在本发明的一个实施例中,第一表面或第二表面上都没有粘结面板。在本发明的另一个实施例中,面板粘合到第一表面或第二表面。在本发明的另一个实施例中,如图8所示,面板810粘合到第一表面和第二表面中的每一个上。在这种情况下,粘合到面板的支柱可以被称为具有受约束的自由度,而那些在内部终止并因此没有粘合到任何面板的支柱可以称为具有内部自由度。面板材料可以由金属、聚合物、陶瓷或复合材料制成。该面板可以使用粘合剂、热粘结、溶剂粘结、扩散粘结、焊接、硬焊、UV闪光焊接或者其它任何适当的方法被粘合到晶格结构。
[0050] 晶格结构可以由光聚合物波导形成,当液态光单体曝光在穿过包含有顺序排列的孔的掩模的准直紫外光下时产生。美国专利第7,653,279号和美国专利第7,382,959号对这种过程做了详细描述,这里将它们整体引入作为参考。参照图5,生成具有厚度层次的晶格架构的一个示例性过程包括首先在容器550的顶部或底部处设置有图案的模板510。在一个实施例中,有图案的模板510由非反射材料制成,例如阳极化处理、磨损砂磨或者喷漆的模具。模板510可以具有高出平坦表面520的多个凸起的台阶530a、530b和530c。每个凸出的台阶530a、530b和530c都可以具有不同于其它凸出台阶的高度、宽度和长度。因为模板510中的凸起特征的大小、高度和空间分布影响晶格架构的形状和压缩响应,因此凸起特征在晶格架构的设计和结构优化方面提供了附加的可控制的架构参数。每个凸出的台阶
530a、530b和530c都可以具有从正值到将要形成的晶格结构560的厚度的大约15%的高度。
凸起台阶530a、530b和530c的总表面积可以达到晶格结构(或者晶格架构)560的面向模板
510的一侧的侧面面积的约50%(例如,所述侧面面积被称为所形成的晶格结构560的长度和宽度的乘积)。
[0051] 接下来,光单体570可以被加入到容器550中。光单体570与有图案的模板510和容器550的侧面相接触。然后,通过具有多个孔的掩模580,光单体570可以被曝光在准直光束590下,准直光束590以非垂直于掩模的角度入射,从而形成由光聚合波导形成的晶格架构。
准直光束可以来源于多个光源,从而具有不同角度的多条光束入射到掩模。或者可以多次使用单个光源,每次以不同的角度入射到掩模,从而形成晶格架构。准直光束590可以是UV光。可以控制曝光量,使得每个波导件从一个表面连接到另一个表面或一个侧面。这里,有图案的模板510中断波导件到达上面放置有图案的模板510的下表面的形成,从而产生内部终止支柱的子集,即没有完全从顶部延伸到底面的支柱。这将导致在晶格架构中形成厚度层次,并且向晶格架构提供内部自由度。掩模580和没有使用的光单体可以接着被移除,留下固态光聚合物波导件在容器550内作为形成的晶格结构560。然后,可以将作为形成的晶格结构560的固态聚合物波导件从容器550中移出并与有图案的模板510分离。在本发明的一个实施例中,在容器的顶面和底面中的每一个处都设置有图案的模板。
[0052] 在本发明的一个实施例中,具有使用上文中所描述的过程形成的厚度层次的固态聚合物波导件可以用作用于形成另一种材料的具有厚度层次的晶格架构的模板。在这种情况下,上述过程进一步包括步骤:另一种材料被沉积在现有结构上或者环绕现有结构形成。可选地,该光聚合物结构可被用于形成用于反向铸造操作的模具,其中模具成形材料首先填充在光聚合物波导件的周围和其中间。随后该聚合物在铸造之前被移除。诸如电沉积、气相沉积、砂型铸造、喷涂浸涂的过程可以全部用于使用原始光聚合物之外的材料来生成本发明中概述的结构。这种方法可以用来对该晶格结构提供各种改进和增强,例如增强化学或生物相容性、扩展可操作服务温度范围、调整压缩刚度的大小和平稳应力、提高美观性、增加疏水或亲水性以及提高机械耐久性(例如,疲惫阻力)。
[0053] 从上述过程中,支柱可以转换为实心的金属、聚合物、陶瓷或复合材料。该支柱还可以被转换为中空的金属、聚合物、陶瓷或复合材料。适当的金属材料的示例包括镁、铝、、铬、、钴、鎳、、锌或合金。适宜的聚合物材料的示例包括聚酸酯、芳族聚酰胺、耐冲击聚苯乙烯、尼龙、超高分子量聚乙烯、聚对二甲苯及其组合物。
[0054] 在本发明的另一个实施例中,如图5b所示,首先,晶格架构560'的生成没有使用任何有图案的模板。随后,晶格结构的一组或预定的部分501a'、501b'和501c'从顶面和底面中的一个中移除,从而提供具有内部自由度的晶格架构560”。晶格结构可以通过去除加工、化学蚀刻或激光蚀刻移除。
[0055] 在本发明的另一个实施例中,如图8所示,晶格结构可以在一个表面或两个面上粘合面板材料。该面板材料限制了节点和该表面上聚合物波导件的端部,但是不能向在内部终止的聚合物波导件的节点和端部提供限制。在本发明的另一个实施例中,晶格架构在所述一个或两个表面上没有设置面板。这种情况下,没有面板的表面具有节点或间隔开并且中间没有填充的支柱的端部的横截面图。
[0056] 参照图6a-6d,具有厚度层次的示例性三维晶格架构具有八面体晶格结构,在该结构的长度和宽度上具有6个周期排列的晶胞,在该结构的厚度方向上有两个周期排列的晶胞(6x6x2)。图6a示出了没有引入内部终止支柱的八面体晶格结构的仰视图。该晶格结构的底面侧具有结构化的钻石形状的空腔,深度朝着该空腔的中心不断增加。图6b示出了结构化的模板和叠加在晶格架构上的凸起台阶以晶胞高度的3%、晶胞高度的7%以及晶胞高度的11%三个不同高度进行的分布。该凸起台阶以高度增加的三种钻石形状从内部钻石到外部钻石依次分布。图6c示出了结构化晶格结构的仰视图,该结构化晶格结构具有使用结构化模板形成的内部终止支柱。图6d示出了图6c中沿a-a'线的横截面图。箭头601到603指向具有内部终止支柱的位置,其中两个外侧箭头601指向从底面开始终止于晶胞高度3%位置的支柱(即,越过空腔的部分的深度是晶胞高度的3%),两个内部箭头603指向从底面开始终止于晶胞高度11%位置的支柱以及剩下的两个箭头602指向从底面开始终止于晶胞高度7%位置的支柱。这里,这些百分数描述本发明的特定实施例,但是本发明不受这些百分数的限制。
[0057] 图7示出了具有相同6x6x2周期排列晶胞和不同厚度层次图案的三维八面体晶格架构的另一个实施例的仰视图。在这种情况下,具有以方形形状分布、不同高度的凸起台阶的结构化模板用于为晶格结构生成内部终止支柱。晶格的中心具有在内部在晶胞高度的17%处终止的支柱,环绕中央点的最小方形的四个拐角每一个都具有在晶胞高度的12%处终止的支柱,环绕该最小方形的下一个方形具有均匀分布在四个侧面中的每一个侧面上的三个支柱,所述三个支柱在内部在晶胞高度的6%处终止。接下来的从中心向外移动的两个方形每一个都具有四个和五个内部终止支柱,这些支柱分别沿着该方形的每个侧面均匀地分布。两个方形都具有终止在晶胞高度4%处的支柱。
[0058] 在图6和图7所述的情况中,晶格中的中断构件的周期性排列作为该材料架构中的附加对称度,并且可以重复或沿平面方向平铺以形成具有相同理想能量吸收响应的更大的结构。
[0059] 两种示例性晶格架构的能量吸收效率已经通过模拟光聚合物晶格结构计算,分别在图9和10中示出结果。在两个情况中,尽管由于顶面和底面之间的连接损失使得峰值应力(分别为910和1010)和压缩刚度(初始直线区域的斜度(分别为930和1030))均略微降低(分别与910'、1010'、930'和1030'相比较),但是两个示例性晶格架构与不具有厚度层次的相同晶格结构(920'和1020')相比显示出更近似于理想响应的接近约束应力水平(分别为920和1020)。每种情况的能量吸收效率从不具有厚度层次的晶格结构的25.3%增长到55%,并且具有厚度层次的结构更高,高于不具有厚度层次的晶格结构的效率的两倍。峰值应力和压缩刚性的降低可以通过增加构件半径、改变基料或者相对于水平面的角度或方向、从而提供具有提高的能量吸收效率的结构化晶格结构来补偿。
[0060] 本发明的第二实施例
[0061] 参考图4,具有厚度层次和提高的能量吸收效率的本发明的第二实施例使用具有顶面411和底面412的三维晶格架构,底面412与顶面411分开(沿着到第一和第二表面中的至少一个的法线方向)从而限定了该晶格架构的厚度和厚度方向;至少两个晶格结构451和452在厚度方向上彼此堆叠以在所述晶格结构之间形成分界面460,晶格结构451和452中的每一个具有一组唯一的晶胞参数,并且两个相邻晶格结构的一组晶胞参数彼此不同,使得顶面和底面处的晶格参数截然不同。在所述分界面上,因为上述不同的晶胞参数,来自一个晶格结构451的节点或端部421与来自另一个晶格结构452的节点或端部422的至少一部分彼此不接触,从而在这些点处产生内部自由度423。这种具有相连接的不同结构的结构化分界面至少从两方面影响了该结构的压缩响应。首先,如果相邻晶格结构之间的节点-节点连接没有完全匹配,如图4所示,则内部自由端以类似于本发明的第一实施例中所讨论的内部终止支柱的方式提高能量吸收效率。其次,相邻晶格结构在所述分界面的节点的子集处的连接产生了空间变化的构件长度、半径和方向,每一个参数都改变结构的特征屈曲响应并消除当所有构件具有相同构件长度、半径和方向时观察到的负载急剧下降。
[0062] 图11所示的该实施例包括具有不同架构参数的两个或更多个晶格结构1160a、1160b,所述晶格结构在结构1160的厚度上为堆叠方式。第一晶格结构1160a通过美国专利第7,653,279号和美国专利第7,382,959号公开的方法形成,通过在第一容器1150a中提供第一体积的光单体1170a、将该第一体积的光单体1170a通过第一掩模1180曝光在准直光
1190a下、准直光1190a以相对于第一掩模1180的第一非垂直角度穿过多个第一孔、以及在光单体内以该非垂直角度形成多个第一成角度的聚合物支柱以形成具有第一顶面和第一底面的三维第一晶格结构1160a来形成所述第一晶格结构。然后,第二晶格结构1160b可以通过以下过程来形成:通过附加容器壁1155增加相同的容器1150a的高度以形成更高的容器1150b(在另一个实施例中,具有更高容器的高度的所述相同容器(例如,容器1150b)可以用于形成第一和第二晶格结构),从而在容器1150b中提供第二体积的光单体1170b;将第二体积的光单体1170b通过第二掩模1185曝光在准直光1190b下,该准直光1190b相对于掩模
1185以第二非垂直角度穿过第二掩模1185的多个第二孔;并且以所述非垂直角度在光单体中形成多个第二成角度的聚合物支柱,从而形成具有第二顶面和第二底面的三维第二晶格结构1160b。在准直光下的曝光量或光单体1170b的体积可以调节,使得第二晶格支柱的端部终止于第一三维晶格结构1160a的第一顶面,但是不会延伸到第一三维晶格结构1160a内。该增加模具增加高度、添加单体、施加掩模和将该单体曝光在准直光下的过程可以重复直到形成期望数量的叠加架构为止。此外,该过程可以在该结构的底面使用准直的UV光曝光来执行,在该结构内以“自下而上”形成具有厚度层次的晶格,与图11中所示的“自上而下”的方法相反。图12示出了具有叠加在一起的两个不同晶格结构的架构的光学图像。图12的结构是由实心光聚合物波导件使用图11所示的过程形成,以产生由在厚度中平面处连结的两个10mm厚晶格架构构成的20mm厚的结构。每个独立的晶格结构可以形成从大约2mm到大约25mm厚,如图12中所示形成的两个10mm厚结构。该架构的能量吸收效率已经使用ASTM测试方法C365测试过,该两个样本获得的能量吸收效率达到35.1%和38.3%。图14示出了每个样本的实验曲线。可以观察到,每个样本表现出与图1所示理想响应相似的响应。这是相邻结构之间不同分界面和内部自由度的产物,所述分界面和内部自由度是由于相邻结构之间的周期性晶胞参数改变导致节点没有完美对齐而产生。进一步在密实化应变以及因此带来的整体能量吸收效率的改进可以通过相对密度的降低实现,即支柱的半径更小。
[0063] 在本发明的另一个实施例中,在将第二体积的光单体曝光于准直光之前将第一晶格结构放置在第二体积的光单体的表面上,以将两个晶格结构的端部都排列在分界面处而不会延伸至对方晶格结构中。
[0064] 在本发明的另一个实施例中,每个晶格结构都单独制成并且使用粘合剂、UV闪光焊接、高温压力焊接、热后固化、热粘合、溶剂粘合或其它适当的方法连结在一起。
[0065] 在本发明的另一个实施例中,面板可以接着被结合到该晶格结构的顶面或底面。该面板可以由聚合物、金属、陶瓷或复合材料制成。在本发明的另一个实施例中,该晶格结构没有任何面板。在本发明的另一个实施例中,界面薄板材料被放置在任意两个晶格结构之间。图13示出了这样的实施例,其中晶格结构1、2和3以晶格结构2夹在晶格结构1和3之间的方式堆叠。在两个相邻晶格结构中的每一个之间,薄板材料1301被结合在晶格表面的两侧。该结构进一步包括顶部面板1302和底部面板1303。每个薄板或面板可以使用适当的结合方式被结合到晶格结构,或者在通过将薄板或面板放置在分界面或表面处进行的光聚合期间在原地被结合。优选地,当该薄板被放置在准直光源和液态单体之间时具有UV透明板材,例如聚酯薄膜或适当的丙烯酸
[0066] 用于形成每个晶格结构的材料可以是实心或空心的聚合物、金属、陶瓷或上文所描述的复合材料。
[0067] 图15示出了在压缩测试中图12所示的叠加晶格结构变形的不同阶段的照片。具有较小晶胞尺寸的顶部晶格结构可以观察到在荷载下屈曲,没有支撑的节点被推向下部结构的孔中。在此种情况下,具有最低耐压曲性(较小的晶胞晶格)的结构被放置在最接近初始碰撞的位置(即,离被保护的结构最远)。在ASTM C365的准静态压缩情况下,该结构对于单个晶格的堆叠顺序是不敏感的。然而,在高倍率动态条件下,由于惯性稳定效应,晶格结构在厚度上的顺序将会影响该结构的能量吸收响应。在这些情况下,优选地将具有最低耐压曲性的该结构放置在离要保护的结构最远的位置,如图15所示,使得所合成的结构从外部(被冲击的)表面向内部(被保护的)表面经历交错的屈曲响应。
[0068] 本发明一个或多个实施例中按顺序排列的三维结构化材料为从毫米到厘米规模(例如,从0.1mm到10cm)按顺序排列的三维结构。然而,在某些实施例中,按顺序排列的三维结构可以降低到微米规模。
[0069] 尽管这里已经对增强能量吸收的结构化材料(架构)的有限实施例做了具体的说明和显示,但是对本领域技术人员来说很多修改和变化都是显而易见的。因此,应当理解,根据本发明原理构建的材料(架构)可以具体表现为其它不同于这里的描述的形式。本发明还限定在下面的权利要求及其等效形式中。
QQ群二维码
意见反馈