陶瓷蜂窝体及其制造方法

申请号 CN200480004268.7 申请日 2004-01-29 公开(公告)号 CN1750924A 公开(公告)日 2006-03-22
申请人 康宁股份有限公司; 发明人 T·W·布鲁; M·L·汉弗莱; 缪卫国; D·R·小特里斯;
摘要 提供的陶瓷蜂窝体中包括由相交内壁形成的许多平行通道,在蜂窝体相背两端之间以 水 平和垂直方式排列,有外壁围绕这些通道,并进一步与内壁相连,这些通道被分成第一区域和第二区域,第一区域中包括与外壁靠近的一部分通道,第二区域中包括其余通道,第一区域中的通道壁厚度沿着朝向外壁的轴线连续增加,至少在第一区域通道内壁之间的相交处形成圆 角 。
权利要求

1.蜂窝体,包括:由相交内壁形成的许多平行通道,在蜂窝体相背的两端之间以平行和垂直方式排列,围绕通道的外壁,它还与内壁相连,通道被分成第一区域和第二区域,第一区域中包括与外壁靠近的一部分通道,第二区域中包括其余通道,第一区域中的通道壁厚度沿着朝向外壁的轴线连续增加,至少在第一区域通道壁之间的交叉处形成圆,圆角有个半径,圆角半径沿着朝向外壁的轴线连续增加。
2.如权利要求1所述的蜂窝体,其特征在于第一区域通道中至少包括靠近外壁相邻的4到20排通道。
3.如权利要求1所述的蜂窝体,其特征在于第二区域的通道壁厚度小于等于0.10-0.15毫米。
4.如权利要求3所述的蜂窝体,其特征在于第一区域的通道壁厚度是第二区域通道壁厚度的1.01-4倍。
5.如权利要求1所述的蜂窝体,其特征在于圆角半径为0.025-0.400毫米。
6.如权利要求1所述的蜂窝体,其特征在于第一区域通道圆角的种类选自凹陷的,凸出的及其组合形状。
7.制造如权利要求1所述的蜂窝体的挤压模具,该模具包括:进口面;与进口面相背的出口面;从进口面延伸至模具体中的许多给料孔;从出口面延伸至模具体中的出料狭缝交叉阵列,连接模具内给料孔/狭缝交叉处的给料孔,狭缝由许多销针形成;靠近模具外围的许多出料狭缝的宽度沿着朝向模具外围的轴线连续增加;靠近模具外围的许多销针具有圆角。
8.制造如权利要求7所述的蜂窝体挤压模具的方法,包括:提供模具,该模具包括进口面,与进口面相背的出口面,从进口面延伸至模具体中的许多给料孔以及从出口面延伸至模具体中的出料狭缝交叉阵列,从而连接模具内给料孔交叉处的给料孔,出料狭缝交叉阵列由销针阵列的侧面形成;提供具有许多开口的放电电极,它由交叉带材网络形成,交叉带材的宽度沿着朝向电极外围的轴线连续增加,交叉带材在其交叉处具有圆角;使放电电极在模具出口面上与销针阵列接触;缩小靠近模具外围区域中的许多销针,这种缩小在销针所有侧面上都是对称的,同时采用凹陷式放电机械加工方法使销针边角圆化,所形成模具中包括销针阵列,其中许多销针具有圆角,并形成出料狭,其宽度沿着朝向模具外围的轴线连续增加。

说明书全文

陶瓷蜂窝体及其制造方法

发明背景本发明涉及陶瓷蜂窝体及其制造方法,具体是具有的内壁和大表面积的陶瓷蜂窝体,比如汽车催化转化器中所用的蜂窝体。

陶瓷蜂窝体在净化汽车尾气方面的应用是汽车工业中众所周知的。这种结构是催化转化器系统的基础,用作催化剂载体。

现在有越来越多的汽车制造厂家要求提高转化效率并加快点火,以适应新的引擎结构和更严格的规定。近来这些要求转换成对内壁非常薄(≤0.10毫米)而且几何表面积特别大(600-900个孔/平方英寸)的蜂窝结构的要求。虽然这些结构特征在尾气排放性能方面是有利的,但是也牺牲了其他性能。

具体地说,薄壁/大表面积蜂窝结构均衡强度很低。所以在装配方法(这是用于催化转化系统之前的必需步骤)中,很容易破裂和和剥裂,最终导致灾难性故障。

尝试了一些方法来解决这个问题。但是,这些方法产生了其他问题,比如降低了耐热冲击性,增加压降,这两个问题都不利于产品性能。

因此,仍然需要这样一种陶瓷蜂窝体,它能在用于汽车尾气净化时提供高均衡强度,高耐热冲击性和小压力降的最佳组合。

发明概述本发明涉及结构改进的蜂窝体,这种蜂窝体能显著增加均衡强度,防止运送和封装过程中发生破裂和剥裂。同时,本发明的蜂窝体能保留有利的耐热冲击性,对压力降增加的承受能力至少等于没有本发明结构特征的现有薄壁/大表面积蜂窝结构。“现有薄壁/大表面积蜂窝结构”在本发明中称为“标准薄壁蜂窝体”。

具体地说,本发明提供的蜂窝体中包括由相交内壁形成的许多平行通道,这些通道在蜂窝体的两端之间以平行和垂直方式排列,有外壁围绕这些通道,并进一步与内壁连通,这些通道分成第一区域和第二区域,第一区域中包括与外壁相邻的通道部分,第二区域包括其余通道,第一区域中的通道壁厚度沿着朝向外壁的轴线连续增加,至少在第一区域通道内壁之间的交叉处形成圆,圆角半径沿着朝向外壁的轴线连续增加。因此,本发明中的壁厚和圆角半径都沿着朝向蜂窝体外围的轴线逐渐增加,从而增加均衡强度同时保持高的耐热冲击性。

制造本发明蜂窝体的挤压模具中包括进口面,与进口面相对的出口面,从进口面延伸至模具之中的许多给料孔,从出口面延伸至模具之中的出料狭缝交叉阵列,用这些阵列来连接模具内给料孔/狭缝交叉点的给料孔,狭缝由许多销针形成,模具外围附近许多出料狭缝的宽度沿着朝向模具外围的轴线连续增加,模具外围附近的许多销针具有圆角。

制造挤压模具的方法是,首先提供具有进口面,与进口面相背的出口面,从进口面延伸至模具之中的许多给料孔,和从出口面延伸至模具之中的出料狭缝交叉阵列的模具,出料狭缝交叉阵列由出口面延伸进入体内与模具内给料孔交叉点的给料孔连接,出料狭缝交叉阵列由销针阵列的侧面形成。接着提供包括许多开口的放电电极,开口由交叉带材网络形成,带材其宽度沿着朝向电极外围的轴线连续增加,电极中还包括圆角。

然后使放电电极与模具出口面上的许多销针接触,使模具外围相邻区域中的销针缩小,这种缩小在销针的所有侧面上是对称的,同时使销针边角变圆。由此形成的模具中包括销针阵列,其中许多销针具有圆角,形成出料狭缝其宽度沿着朝向模具外围的轴线连续增加,而其余销针不经过放电电极机械加工

附图简要说明参考以下图能进一步理解本发明,其中:图1所示为圆柱形蜂窝体,图中表示出进口端,由相交内壁形成的许多孔道,和外壁;图2所示为图1蜂窝体的放大顶视图,图中表示出第一区域中的通道壁厚度沿着朝向外壁的轴线连续增加,以及内壁之间交叉处的圆角;图3所示为本发明陶瓷蜂窝体的均衡强度数据;图4所示为本发明陶瓷蜂窝体和标准薄壁蜂窝体之间均衡强度的比较;图5所示为本发明陶瓷蜂窝体和标准薄壁蜂窝体之间压力降的比较;图6所示为本发明的模具加工过程;图7所示为本发明模具出口面上的销针阵列。

优选实施例具体说明试看图1所示的蜂窝体10透视图,具有前端即进口端12,与进口端12相背的后端即出口端14。进口端12和出口端14之间延伸着许多通道16。这些通道是由内壁18形成的,在蜂窝体10的进口端12和出口端14之间基本纵向并相互平行排列。有个外壁20围绕通道16和内壁18。外壁20在工业中被称为“外皮”。虚线23将通道16分成第一区域22和第二区域24。具体地说,第一区域22包括与外壁20靠近的通道,第二区域24中包括靠近中轴21的其余通道16。第一区域22中至少包括20排与外壁20靠近的通道,优选至少10排,更优选至少7排,最优选至少4排。

试看图2所示图1中进口端12一部分的放大顶视图,该图能较好表示本发明蜂窝体的结构。第一区域22中通道16的壁厚沿着朝向外壁20的轴线连续增加,如箭头25所示,因此靠近外壁20的内壁18比蜂窝体10中轴21处的内壁更厚。虽然蜂窝体可以具有不同的通道壁厚度,但是本发明最适合的壁厚为小于等于0.15毫米,优选小于等于0.10毫米。第一区域22中通道的壁厚为沿着轴线25的第二区域24中通道壁厚的1.01到4倍。

至少在内壁18之间的汇合或交叉处,在第一区域22的通道中形成圆角26。圆角还可以在内壁与外壁的汇合处形成,不过这并非必需,也非优选。注意到虽然第一区域22中的所有通道16都具有圆角26,但是更靠近外壁的圆角半径大于靠近蜂窝体中轴21处的圆角半径。因此,圆角26的半径沿着朝向外壁20的轴线连续增加。具体地说,圆角26的半径在0.025-0.400毫米范围内。圆角可以具有凸出或凹陷的形状,或者是两种形状的组合。图2中所示圆角26具有凹陷形状。

发现靠近外壁的通道壁厚度增加和通道阵列中具有圆角能增加均衡强度,而不会对耐热冲击性造成不利影响,对压力降的影响也很小。表I所示数据与各种圆角半径(毫米)情况下的均衡强度相关。按照以下等式计算MIF,即机械完整性因子:MIF=t2L(L-t-2R)]]>式中t是内壁厚度,L是通道直径,R是圆角半径绝对值。在该算式中,t保持为0.07毫米,L为0.84毫米。R在0(没有圆角)和0.15毫米之间变化。很明显,即使圆角很小也能显著增加强度。比如,对于半径为0.05毫米的圆角,强度增加值(即MIF%增量)为15%,对于半径为0.127毫米的圆角,强度增加值为50%。

试看图3所示本发明陶瓷蜂窝体均衡强度数据的图。没有本发明蜂窝体结构特征的标准薄壁蜂窝体能达到20千克/平方厘米的平均均衡强度。相反,在本发明的蜂窝体上观察到38.9千克/平方厘米的明显更高的平均均衡强度。

试看图4所示本发明蜂窝体和标准薄壁蜂窝体之间均衡强度的比较。由图中可知,平均来说本发明的蜂窝体具有更高的均衡强度。

除了均衡强度增加,本发明的结构还具有接近于标准薄壁蜂窝体的压力降,以及高耐热冲击性。参见图5所示不同流量条件下,两个对比例标准薄壁蜂窝体(对比例1,对比例2)和两个本发明蜂窝体(发明例1,发明例2)的压力降比较。平均来说,对比例和发明例之间压力降的差值约为2%。因此,本发明蜂窝体压力降的较大保持为很小的。观察到平均2%的较大在汽车平台测试中事实上是无法检测的。

除了高均衡强度和低压力降之外,本发明的结构还具有高耐热冲击性。对本发明的堇青石蜂窝体进行了烘箱和循环热冲击测试。在烘箱热冲击测试中,根据本领域中已知的方法,所有部件都通过了1000℃测试。进行循环热冲击测试时,根据本领域中已知的方法,所有部件都通过了1075℃测试。

本发明蜂窝体的截面可以是圆柱形,正方形,椭圆形,矩形或具体尾气系统结构选用的其他截面形状。进一步可知,蜂窝体用的是耐热陶瓷材料,比如堇青石,等。蜂窝体优选是堇青石。本领域中已知的蜂窝体制造方法是,提供能形成堇青石的塑化混合物,然后挤压通过模具,形成蜂窝体生坯。生坯在可能用的干燥之后,在要求温度煅烧适当时间,形成最终陶瓷结构。

本发明的蜂窝体挤压模具能够制造上述结构独特的蜂窝体。具体地说,适用蜂窝体挤压模具中具有销针阵列,销针的一部分具有圆角,还具有沿着朝向模具外围的轴线逐渐扩大的出口或出料狭缝。

用于制造蜂窝体的传统挤压模具包括给料即进口部分,具有许多向模具中输入可挤压材料的给料孔,以及与给料部分相连的出口部分,能使可挤压材料变形,并从模具的出口面提供蜂窝体生坯。排出的材料已变形成蜂窝形状,包括由相交内壁形成的许多开口通道,从结构一端沿着挤压方向延伸至另一端。

这些模具出口面中的出口能形成各种形状的相连接的蜂窝壁结构。目前,用于挤压汽车尾气用陶瓷蜂窝体的出口是由等间隔的十字交叉长而直的出料狭缝阵列形成的。这些长的狭缝交叉成更短的狭缝网络,形成通道为正方形或三角形的蜂窝体直壁。

商购模具中加工的可挤压材料必须经过复杂的流路。可挤压材料首先从各个给料孔通过过渡区进入狭缝阵列底部,然后横向流动与相邻给料孔中的材料合并。合并的材料由此再次朝通向狭缝所形成出口的给料孔流动,出料的形式是相连内壁阵列形式的,形成蜂窝体的通道壁。

在这些挤压模具的出口面上由相交狭缝所形成岛即“销针”的截面形状影响着挤压物中孔道的内部形状。传统模具无法在靠近蜂窝体外围处实现厚度增加和通道壁的圆角化。

因此,本发明另一方面提供了模具和模具制造方法,该蜂窝体挤压模具中包括固定正方形或矩形销针尺寸和形状的出口面销针阵列,出料狭缝宽度相同,此挤压模具经过放电机械加工(EDM)处理。这种被称为陷入式EDM的方法是,使用放电电极从靠近模具外围区域中的销针侧面和边角上对称地除去材料。

适合于实现陷入式EDM方法的放电电极可以通过本领域已知的移动丝状放电机械加工(丝状EDM)由-钨合金坯形成。由于本发明仅改变了部分模具销针,所以电极只要包括挤压时能形成蜂窝体那部分的模具区域即可。因此,由此形成的区域包括改变模具外围附近区域中的销针。具体地说,许多销针阵列的一部分从模具外围向内延伸,需要用放电电极进行加工。

注意到本发明方法中使用了传统挤压模具。具体地说,挤压模具中包括进口面,与进口面相背的出口面,从进口面延伸至模具中的许多给料孔,和从出口面延伸至模具中的出料狭缝交叉阵列,与模具内给料孔/狭缝交叉处的给料孔连接,出料狭缝交叉阵列由销针阵列的侧面形成。

图6所示为本发明模具100和电极110的局部投影图。模具100中包括销针102和出料狭缝104。电极110中包括由交叉带材114网络形成的开口112。带材114的宽度(未示)沿着朝向与内缘109相背的外缘111的轴线连续增加,带材114中还包括圆角113。电极110的形状与蜂窝结构非常类似,与模具上的销针阵列匹配,因此能成批地改变销针形状。

在凹陷式EDM过程中,模具100固定,而电极110下降至销针阵列102上。电极110的移动方向如箭头120所示。电极110下降至销针阵列102中时,带材114比原有狭缝104更厚,不仅从销针102的所有侧面上,还从销针102的边角处对称地除去材料。结果是原有狭缝104被窄化的周围销针102机械加工成更宽的形式。带材114的圆角113使销针102边角圆化,在挤压出的蜂窝体中形成圆角。根据需要改变的销针阵列数,电极110的尺寸,开口112的数量以及带材114的厚度随之变化。

为了变化销针102的形状,用电极110从销针侧面对称地除去材料。图7所示为经过本发明凹陷式EDM方法机械加工之后的许多销针102a。销针的原始形状和尺寸如虚线106所示。变化之后的销针具有更小的直径103和圆角105,导致销针变窄,出料狭缝变宽,如数字104a所示。出料狭缝104a的宽度沿着朝向模具外围的轴线逐渐增加。

所用销针机械加工方法不会改变模具的给料孔,也不会改变模具的进口部分。从这种结构的机械加工模具制造的挤压蜂窝体具有连续增加的内壁厚度以及在与蜂窝体外壁靠近的通道区域中在壁汇合处的圆角。

表I

QQ群二维码
意见反馈