燃料箱制造工艺以及该燃料箱在混合动车辆中的用途

申请号 CN201710265221.5 申请日 2011-03-07 公开(公告)号 CN107364142A 公开(公告)日 2017-11-21
申请人 全耐塑料高级创新研究公司; 发明人 P·马丁; S·杜邦; B·克里尔;
摘要 本 发明 涉及一种 燃料 箱制造工艺以及该 燃料箱 在混合动 力 车辆中的用途,该燃料箱包括热塑性塑料壁和位于燃料箱外表面的至少一部分上的 纤维 加强件,其中:将熔融热塑性塑料型坯在模具内模制,然后将其冷却,制得燃料箱壁;纤维加强件选用包括与燃料箱壁材料相似或相容的热塑性塑料,该加强件被加热至其热塑性塑料被 软化 甚至 熔化 ;用力将加强件施加于燃料箱的外表面上,使得二者可以 焊接 在一起,其中,纤维加强件中的纤维含量为至少30%,其中,纤维加强件的拉伸强度为至少2000MPa。
权利要求

1.一种燃料箱制造工艺,燃料箱包含热塑性塑料壁和位于燃料箱外表面的至少一部分上的纤维加强件,其中:
-将熔融热塑性塑料型坯在模具内模制,然后将其冷却,制得燃料箱壁;
-纤维加强件选用包括与燃料箱壁材料相似或相容的热塑性塑料,该纤维加强件被加热至其热塑性塑料被软化甚至熔化;以及
-用将纤维加强件施加于燃料箱的外表面上,使得二者可以焊接在一起,其中,纤维加强件中的纤维含量为至少30%,
其中,纤维加强件的拉伸强度为至少2000MPa。
2.如权利要求1所述的工艺,其特征在于,在燃料箱壁模制过程中或之后,该壁设置有至少一个抗压区域,该区域至少局部地包含在纤维加强件的焊接区域内或者位于其附近,其中,燃料箱包括上下壁部分,所述抗压区域由一个壁部分组成,该壁部分是加厚的以及/或者位于连接燃料箱上下壁部分的至少两个部件之间。
3.如权利要求2所述的工艺,其特征在于,纤维加强件焊接在包括至少一个加强柱的区域。
4.如上述任一权利要求所述的工艺,其特征在于,纤维加强件受拉力作用,并在拉力作用下被施加于燃料箱表面上。
5.如权利要求4所述的工艺,其特征在于,超过一半的燃料箱表面被一个或多个所述纤维加强件覆盖
6.如权利要求1-3中任一项所述的工艺,其特征在于,燃料箱用向纤维加强件施加压力,从而进行压力焊。
7.如权利要求1-3中任一项所述的工艺,采用一种焊接和预热工具,并包括以下步骤:
-将纤维加强件紧固在该工具之内或之上;
-使纤维加强件和该工具构成的组合件置为与燃料箱焊接区域相垂直;
-通过该工具预热该纤维加强件,以及可选地预热所述区域的表面;
-利用该工具施加压力以及/或者从燃料箱内部向该区域施加压力,将纤维加强件焊在表面上。
8.如权利要求1-3中任一项所述的工艺,其特征在于,燃料箱壁的塑料和纤维加强件的塑料是高密度聚乙烯(HDPE)。
9.如权利要求1-3中任一项所述的工艺,其特征在于,纤维加强件的纤维是无规则分布的连续纤维。
10.如权利要求1-3中任一项所述的工艺,其特征在于,纤维加强件的纤维是玻璃纤维。
11.如权利要求1-3中任一项所述的工艺,其特征在于,纤维加强件覆盖一个附接有部件的区域的至少一部分,纤维加强件通过压缩模塑多层片材而制成,该多层片材包括:介于两个HDPE层之间的EVOH层;无规则分布、非编织的连续玻璃纤维毡片;以及HDPE片材。
12.如权利要求1-3中任一项所述的工艺,其特征在于,该工艺包括排出截留在纤维加强件和燃料箱之间的空气的排气步骤。
13.如权利要求1-3中任一项所述的工艺,其特征在于,纤维加强件包括开口。
14.如权利要求1-3中任一项所述的工艺,其特征在于,纤维加强件一旦焊接,就将燃料箱放回到尺寸稳定框架中。
15.如权利要求1-3中任一项所述的工艺,其特征在于,纤维加强件的表面积介于50到
500cm2。
16.如权利要求1-3中任一项所述的工艺,其特征在于,纤维加强件的厚度为0.1到2mm之间。
17.把按照如权利要求1到16中任一项所述的工艺制得的燃料箱用作混合动力车辆燃料箱的用途。

说明书全文

燃料箱制造工艺以及该燃料箱在混合动车辆中的用途

[0001] 本申请是分案申请,其母案申请的申请号为201180013265.X(国际申请号为PCT/EP2011/053377),申请日为2011年3月7日,发明名称为“一种燃料箱制造工艺以及该燃料箱在混合动力车辆中的用途”。
[0002] 本发明涉及一种燃料箱的制造工艺,也涉及该燃料箱在混合式发动机车辆中的用途。
[0003] 混合式发动机一般指内燃机电动机的结合。
[0004] 混合式发动机的一般工作原则就是,根据不同模式,要么电动机工作、要么内燃机工作、要么两者同时工作。
[0005] 其中一个具体的原则就是:
[0006] -在静止阶段(当车辆静止时),两个发动机都是关闭的;
[0007] -在启动阶段,由电动机推动汽车,直到较高速度(25或者30km/h);
[0008] -当达到较高速度时,由内燃机接管;
[0009] -当快速加速时,两个发动机同时工作,这样可以获得与同功率发动机相同甚至更高的加速度;
[0010] -在减速和刹车阶段,动能用来向电池充电(值得注意的是,目前市售的混合动力发动机并不都具有这个功能)。
[0011] 根据这个原理,内燃机并不一直在工作,于是罐(用于防止燃油蒸汽释放到大气中的活性炭过滤器)的净化阶段就不能正常进行,因为在净化阶段中,空气(可选地经过预热)流过碳罐,以使活性炭再生(即解除被吸附的燃油蒸汽),然后空气被吸入发动机内以用于燃烧。并且,混合动力车辆的目的就是为了降低燃油消耗和尾气排放,在不降低发动机性能的前提下,这使得对从碳罐流出来的燃油蒸汽燃烧进行的发动机管理就会变得更加复杂,甚至不可能。
[0012] 所以,这些发动机的燃料箱通常是加压的(一般加至约300-400毫巴),以便限制碳罐的负荷。这通常是由位于通气后的功能性元件来完成的,称作FTIV(燃料箱隔离阀)。该元件包含一个安全阀(按燃料箱最大工作压力标定)和一个电子控制器,以便在加油前将燃料箱气压调节至大气压。所以,相比传统内燃机的燃料箱,这些燃料箱必须有更高的机械强度,特别是对于塑料燃料箱来说。
[0013] 目前市场上的解决办法就是采用厚度较大的金属燃料箱,这显著增加了燃料箱的重量和油耗,也增加了尾气排放。
[0014] 针对上述压力问题,另外的办法可以是增加塑料燃料箱的壁厚以及/或者采用内部加强件(杆、间壁等)将两壁连相连,但是这些办法一般会消极影响其重量,降低燃料箱的使用容积,增加燃料箱成本。另一个办法就是为燃料箱提供焊合点(kiss point)(即下壁和上壁的局部焊接),但是这会降低燃料箱的工作容积。
[0015] 还有一种办法就是专利US 5,020,687中所介绍的,即在燃料箱的外壁贴上加强织物;在燃料箱制造中,采用挤出吹塑法将该织物包覆上去;在型坯进入模具之前,先将织物放入模具内,经过吹塑后,型坯就形成了燃料箱。
[0016] 不过,该办法有一个大的缺点,就是由于燃料箱壁和加强织物之间的热收缩(冷却时)不同,织物上会形成褶皱。这样不但会制造应力集中区域,还可能使得一些区域更接近车体,进而在某些情况下不得不增加燃料箱在车辆上的安装空间。该办法的另一个缺点就是织物与模具的冷壁是相接触的。这样就更难熔化与型坯接触的织物壁,所以包覆效果较差,甚至出现冷焊(粘接)。
[0017] 因此,本发明的一个方面就是一种工艺,用来生产具有良好的长期机械强度的燃料箱,同时又没有上述缺点。
[0018] 所以,本发明涉及一种燃料箱制造工艺,该燃料箱包括热塑性塑料壁和位于燃料箱外表面的至少一部分上的纤维加强件(reinforcement),其中:
[0019] -将熔融热塑性塑料型坯(parison)在模具内模制,然后将其冷却,制得燃料箱壁;
[0020] -纤维加强件选用包括与燃料箱壁材料相似或相容的热塑性塑料,该加强件被加热至其热塑性塑料被软化甚至熔化;
[0021] -用力将加强件施加于燃料箱的外表面上,使得二者可以焊接在一起。
[0022] 本发明燃料箱的燃料可以是汽油、柴油、生物燃料等,酒精含量可以介于0%到100%。
[0023] 根据本发明,燃料箱采用热塑性塑料制成。
[0024] “热塑性塑料”一词指任何热塑性聚合物,含热塑性弹性体及其混合物。“聚合物”一词既指均聚物,又指共聚物(尤指二元或三元聚合物)。共聚物的例子有(非限制性)无规共聚物、线性嵌段共聚物、非线性嵌段共聚物、接枝共聚物。
[0025] 任何热塑性聚合物或共聚物,只要其熔点低于分解温度,都是合适的。熔点的范围至少大于10摄氏度的合成热塑塑料尤其适合。具备分子量多分散性的材料就属于这类材料的例子。
[0026] 具体地说,聚烯类、热塑聚酯、聚、聚酰胺及它们的共聚物都可以使用。还可使用聚合物或共聚物的混合物,同样,也可使用聚合物跟无机物填充料、有机物填充料和/或天然填充料的混合物,例子有(非限制性的)碳、粘土类、盐类、其他无机衍生物、天然纤维或聚合物纤维。也可使用由堆叠的层粘结在一起而组成的多层结构,其中包含至少一种上述聚合物或共聚物。
[0027] 常用的一种聚合物就是聚乙烯。采用高密度聚乙烯(HDPE),就获得了很好的结果。
[0028] 燃料箱壁可以是一层热塑性塑料,也可以是两层。额外的其它层或多层优选包含由可以阻挡液体或/气体的材料构成的阻挡层。优选地,阻挡层的性质和厚度选为可最小化与燃料箱内壁相接触的液体和气体的渗透性。该层优选采用阻挡树脂,也就是说不渗透燃料的树脂材料,比如EVOH(一种部分解的乙烯/醋酸乙烯酯共聚物)。另外,还可对箱体进行表面处理(氟化或磺化),使其不渗透燃油。
[0029] 本发明燃料箱优选在HDPE基外层之间设置一层EVOH基阻挡层。
[0030] 纤维加强件可采用许多形式;一般是短切纤维或长纤维或者连续纤维板,纤维可以经过编织也可以没经过编织。通常,短切纤维的最终长度为数十/数百微米。对于长纤维,残余长度为数毫米。当所用纤维的长度等于数十厘米时,就称为连续纤维或连续长丝。优选连续纤维,尤其是非编织的无规则分布连续纤维(称为多向纤维)。它们不但比编织长纤维更便宜,还能更加均匀地分布应力。在本发明情形下,另一个优势就是它们的纤维密度更低,即更高的空隙比例,优选采用热塑性塑料填充这些空隙,以便于焊接。
[0031] 这些纤维可以基于玻璃纤维,碳纤维或者聚合物纤维(比如聚酰胺,例如芳香族聚酰胺,如芳纶纤维),甚至是诸如大麻或剑麻等天然纤维。优选是玻璃纤维(E玻璃、S玻璃或其它种类玻璃)。本发明中纤维加强所用纤维优选是与热塑性塑料相容的,所以一般也与聚烯烃类相容,尤其是与HDPE相容。为了获得这种相容性,可以采用烷等增容物质对纤维进行上胶(表面处理)。也可使用活性HDPE型结合料。在本情形下,优选使用来酸酐型的活性官能团。
[0032] 根据本发明,纤维加强件包含与燃料箱的塑料相容甚至相同的热塑性塑料。对于燃料箱来说,一般是聚乙烯,尤其是HDPE。加强件中的纤维含量优选为至少30%,更优选为至少40%甚至至少45%。热塑性塑料优选熔化在纤维体积的周围和中间,以形成均质的片材,片材的至少部分表面上是热塑性塑料的,便于焊接。实际中,可以采用压缩模塑、注射模塑、喷射模塑、真空模塑或者压延加工来达到目的。优选地,加强件的生产工艺采用压缩模塑或喷射模塑法。若采用该方法,使用无规则分布的连续纤维可取得良好结果。尤其是,3B公司的含有 玻璃纤维的CFM(连续长丝毡片)产品给出了良好的结果。这类毡片包含一层或多层这种纤维,纤维无规则分布,采用硅烷上胶,用粘接剂组装在一起。
[0033] 根据本发明的一种特别优选的变体,加强件覆盖住一个附接有部件的区域的至少一部分(比如:附接有加油管的加注口颈)并包含阻挡层,这样既可起到加强作用(这个区域一般较脆弱),又可起到抗渗作用。在本变体中,该加强件有利地通过压缩模塑多层片材而成,该多层片材包括阻挡层(优选包括一介于两HDPE层之间的EVOH层)、纤维毡片(优选是无规则分布、非编织、连续玻璃纤维)以及HDPE片材。
[0034] 本发明所用加强件尺寸便于将其加热以及将其焊接在燃料箱壁上,同时又确保高性能的加强效果。其表面积优选在数十cm2之间(一般介于50到500cm2,甚至100到300cm2);或者,在本发明的一个有利的变体(下文将详细介绍)中,加强件可以覆盖燃料箱的整个外表面,在某种程度上包覆住燃料箱外表面。这种加强件的厚度优选为0.1到2mm之间,或者甚至0.2到1mm之间。为了使加强件具备有效的机械性能,其拉伸强度优选不低于2000MPa,甚至不低于3000MPa;在某些情况下,该强度甚至有利地不低于5000MPa或者10 000MPa。
[0035] 根据本发明的一种较有利的变体,加强件包括开口(孔),从而避免加强件和燃料箱壁之间吸留空气。开口尺寸一般为mm级别。
[0036] 本发明燃料箱的模制方法可以采用任何性质的方法,只要它包括使用模具将型坯(熔融热塑性塑料的预制件,通常是挤制的并呈圆柱形和/或呈圆柱形型坯半筒和/或片材)制成燃料箱形状。
[0037] 尤其是,模制还可结合吹塑和/或热成型法。模制之后还可以有组装步骤,特别是焊接。如果从型坯开始进行模制,那么型坯尤其可采用复合挤压或共注射成型法。
[0038] 采用复合挤压-吹塑法、共注射-焊接法、热成型法就取得过很好的结果。燃料箱优选采用复合挤压-吹塑法制造。这时,采用连续挤压法、累计挤压法或顺序挤压法这些本领域技术人员所熟知的方法,也可能取得同等的效果。
[0039] 根据本发明,型坯一旦被模制成燃料箱形状,就将其冷却,优选冷却至箱壁达到尺寸稳定性的温度。一般来说,这基本上就是环境温度,所以无需特别调理(除可能为了加速冷却)。实际中,有一种方式可达此目的,即把燃料箱放置在尺寸稳定框架中冷却——该框架也叫“吹塑后”框架,可防止其中的燃料箱变形——一般需要放置数分钟(通常2到6分钟)。
[0040] 另外,将加强件焊在燃料箱壁上可以单独(in line)进行,也可与燃料箱模制一起进行。换言之,可以先将燃料箱存放起来,然后再焊接加强件。这种变体的优势在于确保了尺寸稳定性和足够的箱壁刚度
[0041] 优选地,按本发明的第一个变体,在燃料箱壁的模制过程中或之后,在加强件焊接区域或其附近,燃料箱壁设置有至少一个抗压区域(覆盖住燃料箱的至少一个(当承受压力和/或真空时)会发生较大变形的区域),以便能承受焊接中所施加的力量。通常,该区域由一个壁部分组成,该壁部分是加厚的以及/或者位于至少两个连接燃料箱上下壁(即当燃料箱安装在车辆上时,分别是燃料箱的底和顶)的部件(附属件)之间。这些部件可以包括,比如说,当燃料箱安装在车辆上时燃料箱的大致竖向壁;一个计量;一个“焊合点”(即燃料箱上下壁的局部焊接),特别是本申请人的EP 09175263.4专利申请中所描述的其中一个点,该专利申请通过引用被包含在本专利申请中;以及/或者一个空心加强柱,可以整合了本申请人的FR 0952651专利申请中所描述的一种主动功能,该专利申请也通过引用被包含在本专利申请中。
[0042] 在优选的子变体中,加强件焊接在包括至少一个加强柱的区域。另一个优选的子变体则是结合使用毡片和肋,这样可增加加强效果。应避免有棱的肋,以确保毡片可以贴合表面轮廓。
[0043] 同样优选地,在本发明的第二种变体中(也可以与第一种变体相结合),纤维加强件受拉力作用,并在拉力作用下被施加于燃料箱表面上。当燃料箱表面较大部分(超过一半)甚至全部表面都被纤维加强件或者覆盖上多个纤维加强件覆盖时,该变体会获得良好的结果。要使加强件受拉,可以采用张拉中所用的类似紧固夹具,也可采用热成型中所用的类似夹架。在该变体中,优选先加入纤维加强件,然后再将加强件施加在燃料箱上,纤维材料优选在加热前就受拉。
[0044] 同样优选地,在本发明的第三种变体中(可以与另外两种变体或者其中之一结合使用),优选用燃料箱向加强件施加压力,从而进行压力焊。其想法就是将燃料箱用作热成型模具,将先前加热/熔化的纤维加强件焊在燃料箱表面上。优选分几步来完成这样的工艺:i)将纤维加强件紧固在支架或夹具中;ii)加热/熔化纤维加强件中的热塑性塑料;iii)将燃料箱用作型腔,对加强件进行热成型。
[0045] 在本发明中,在焊接之前先对加强件和/或其燃料箱焊接区域表面进行预热。在已有的加热技术中,可以列举以下几种(非限制性):
[0046] -旋转加热;
[0047] -振动加热;
[0048] -超声加热;
[0049] -感应加热
[0050] -微波加热;
[0051] -用加热电阻加热;
[0052] -用热金属块加热;
[0053] -热气加热;
[0054] -红外加热;
[0055] -激光加热。
[0056] 这些方法都非常适用,因为它们加热燃料箱壁的表面的同时避免使壁的中心过热,中心过热会造成焊接后变形过大。
[0057] 在预热操作中,将加强件靠近燃料箱焊接表面,将这类热源施加在加强件上,可以同时加热加强件和燃料箱表面。
[0058] 预热温度取决于所用方法。优选地,温度要足够高以确保能熔化HDPE。因此,需要将HDPE加热到135℃以上,优选高于150℃甚至180℃。
[0059] 按照本发明,加强件是在预热后焊接在燃料箱外表面部位上的。可使用焊接工具进行焊接。焊接工具优选包括热源和向焊接施压以及/或者拉伸加强件的装置。热源可以与用来预热待焊接部件的热源相同。
[0060] 于是,按照本发明的一个变体,采用以下步骤来对加强件和燃料箱表面部分进行预热和焊接:
[0061] -将加强件紧固在预热和焊接工具之内或之上;
[0062] -使其组合件置为与燃料箱焊接区相垂直;
[0063] -通过该工具预热该加强件,以及可选地预热所述区域的表面;
[0064] -利用该工具(比如:使用隔板或者使用泡沫作为工具)施加压力,以及/或者从燃料箱内部向该区域施加压力,而将加强件焊在表面上。可以在焊接过程中或者焊接后采用直接机械接触(接触压力)以及/或者采用压缩空气来施加压力。
[0065] 采用隔板或泡沫,可以弥补吹塑后通常都存在的燃料箱表面尺寸差异(一般等于3到5mm),并且即使这种差异存在,也可以在表面上施加均匀的压力。如果是隔板,要确保排空隔板和加强件之间的空气,以保证焊接压力均匀。可以在加强件边缘外的加强件夹具上整合真空抽吸来排空空气。为了弥补吹塑燃料箱上的尺寸差异,可用柔性部件来形成真空密封。柔性部件可以采用:泡沫、硅胶片等。
[0066] 一般来说,无论是本发明的哪种变体,都排空燃料箱和加强件之间的截留空气都是有利的,确切地说,保证压力的均匀性是有利的。
[0067] 按照本发明的某一变体,采用以下步骤来将加强件施加于燃料箱上:
[0068] -将加强件置于加热板上;
[0069] -同时,对燃料箱壁上加强件施加区域进行红外加热;
[0070] -用合适的工具夹住加强件;
[0071] -转移加强件,将其置于燃料箱施加区域上;
[0072] -向整个焊接区域或者按顺序向加强件焊接区域的各个部分施加力(优选为均匀力)。
[0073] 当焊接表面较大时,一次性向整个焊接表面施加焊接需要的力会造成燃料箱过度变形,这时采用后一种方式是有利的。
[0074] 另外,将加强件焊在燃料箱上不一定非得要焊满整个表面。比如,可以只焊接边缘和几个中间区域。不过,有利地,要焊几乎全部表面,即至少90%的表面,理想情况下甚至达到100%。为此,为了降低循环时间,有利地提供多个热源(多激光或IR头、多股热空气等),也不一定非得是相同性质的热源。
[0075] 根据本发明的一种优势变体,在加强件一旦焊接之后且材料冷却之前,就将燃料箱放(回)到前述尺寸稳定框架中,以防止冷却时焊接区域变形。
[0076] 本发明还涉及到按上述工艺制造的、包括热塑性塑料壁和焊接在外表面的至少部分区域上的纤维加强件的燃料箱,该纤维加强件包含与燃料箱外表面塑料相同或相容的塑料,以及无规则分布的连续纤维。连续纤维优选是如上文所述的玻璃纤维。本发明工艺的上述各种优选变体适用于本发明燃料箱。
[0077] 本发明还涉及到将(按一种工艺制得的)上述燃料箱用作混合动力车辆燃料箱的用途。该燃料箱也可用在传统车辆上,其中的加强效果可被充分利用,以避免使用金属带——通常,将燃料箱固定在车上底部时,用这种金属带来防止燃料箱底壁发生徐变。有了加强件,就可以降低燃料箱厚度,进而降低重量,增加使用容积。
[0078] 还应注意到,本发明主题所获得的加强效果还可与其它已知的加强方式结合使用,比如上述的带子、焊合点、内部加强件(杆、间壁)、包覆模织物等,以及其他任何类型的内部和外部加强件(尤其如此,因为第一种加强类型获得了抗压区域)。将本发明结合这些已知方法使用,可以降低焊合点、内部加强件(杆、间壁)、包覆模织物等的尺寸和/或数量。于是,燃料箱重量最后降至最低,将使用容积增到最大。
[0079] 附图1到7(非限制性地)图示了本发明,分别示意地表示了:
[0080] -图1:一个燃料箱和一个装有加强件的IR辐射激光焊接工具;
[0081] -图2:用工具进行焊接;
[0082] -图3:焊接结果的俯视图;1019300
[0083] -图4到图6:本发明工艺的一种变体,使用了有隔板的夹具;
[0084] -图7:本发明工艺的一种变体,使用了有泡沫的夹具;
[0085] 图1显示了装有纤维加强件(2)并包括红外加热部件(4)的焊接和预热工具(5)是如何与燃料箱壁(1)的表面区域相垂直地放置的,该表面区域位于两加强柱(3)之间。
[0086] 在图2中,可以看到部件(4)向加强件(2)上发出的辐射,加强件的厚度允许部分辐射穿透,这样就可以也加热燃料箱壁(1)的焊接表面。同时,工具施加了压力,以逐渐进行焊接。
[0087] 在图3中,可以看到由多个适当分布的辐射源所获得的焊缝线(6)。
[0088] 图4到图6分别显示:
[0089] -图4:设有隔板(9)的夹具(5)如何通过线管系统(8)的真空抽吸来夹住加强件(2)的,同时排空了隔板和加强件之间的空气(沿箭头所示方向),以确保下一步(图5)中焊接压力的均匀性。用柔性部件(10)来提供真空密封。
[0090] -图5:如何通过向管子(7)吹压缩空气来施加焊接力的。
[0091] -图6:释放所有压力和真空以取走工具(5)。
QQ群二维码
意见反馈