包括带有平滑尾段的集成加筋件的复合材料结构及其制造方法

申请号 CN201180065886.2 申请日 2011-12-07 公开(公告)号 CN103370185B 公开(公告)日 2016-08-31
申请人 波音公司; 发明人 D·A·扑克; P·J·洛基特; A·格林;
摘要 一体式 复合材料 结构包括复合材料部件,所述复合材料部件具有至少一个集成的复合加筋件。加筋件的至少一个末端包括在所述加筋件和所述复合材料结构之间形成基本平滑的过渡的尾段。
权利要求

1.一种一体式复合材料结构,包括:
复合材料部件;和
至少一个复合材料加筋件,所述复合材料加筋件与所述复合材料部件集成形成用于强化所述部件,所述加筋件的至少一个末端具有尾段,所述尾段形成到所述复合材料部件内的基本平滑过渡;
其中所述尾段具有沿其长度在形状上变化但在周长和面积中的至少一个上基本保持恒定的横截面。
2.根据权利要求1所述的一体式复合材料结构,其中:
所述复合材料部件包括第一注入树脂纤维强化物,并且
所述加筋件包括第二注入树脂的纤维强化物,
其中所述注入树脂遍及所述第一和第二注入树脂的纤维强化物是基本连续和均匀的。
3.根据权利要求1所述的一体式复合材料结构,其中:所述复合材料部件是面板、蒙皮、梁、凸缘、腹板和通道中的一个。
4.根据权利要求1所述的一体式复合材料结构,其中所述尾段沿其长度是大致平滑地波状变化。
5.一种制造加筋的复合材料结构的方法,包括:
制造第一纤维预成型件,其中制造所述第一纤维预成型件包括编织纤维到挠性管状外壳中,以及用连续的单向纤维填充所述外壳;
在模具凹槽中放置所述第一纤维预成型件,所述模具凹槽具有所述加筋的复合材料结构的几何外形,其中在所述模具凹槽中放置所述第一纤维预成型件包括使所述管状外壳遵循所述凹槽的几何外形;
在所述模具凹槽上放置第二纤维预成型件覆盖所述第一纤维预成型件;
同时向所述第一和第二纤维预成型件灌注聚合树脂;并且
固化被树脂灌注的预成型件。
6.根据权利要求5所述的方法,其中编织纤维到挠性管状外壳中包括生产基本连续长度的所述管状外壳,并且所述方法还包括:
切下所述连续长度的管状外壳的一段,并且其中在所述模具凹槽中放置所述第一纤维预成型件是通过放置所述外壳的切段到所述凹槽中而被执行。
7.根据权利要求5所述的方法,其中制造所述第一纤维预成型件包括:
同时编织在一起并且成形以便形成纤维外壳和纤维内核
8.根据权利要求5所述的方法,其中制造所述第一纤维预成型件包括:
制造连续的外壳,所述连续的外壳具有通过在连续强化纤维的周围编织纤维所形成的强化内核,和
切割所述连续的外壳至期望的长度。
9.根据权利要求5所述的方法,其中制造所述第一纤维预成型件包括:
在所述模具凹槽上放置第一纤维层,
将所述第一纤维层成形到所述模具凹槽的内部,
用连续的强化纤维填充所成形的第一纤维层,
在所成形的纤维填充的第一纤维层上叠放第二纤维层。

说明书全文

包括带有平滑尾段的集成加筋件的复合材料结构及其制造

方法

技术领域

[0001] 本发明涉及复合材料结构,并且尤其涉及复合材料结构部件,所述复合材料结构部件包括集成加筋件,和制造这些部件的方法。

背景技术

[0002] 有时加强复合材料结构是有必要的,例如被用在航空工业用于符合强度和/或刚度需要的那些结构。这些结构可以通过将加筋件加至结构而得到强化,所述加筋件可以为所述结构提供额外的强度和刚度。在过去,通过使用任何一种二次装配工艺,单独的加筋件被安装至原始的结构部件,所述工艺包括但不限于使用离散固件、粘结、共粘结和共固化。这些工艺具有不利因素,例如但不限于,完成装配工艺需要额外的时间和劳动,和/或者需要相对昂贵的固定设备例如用来共固化部件的压热器。此外,在一些情况中,加筋件可以包括多个部件,所述部件可增加不想要的重量和/或者部件数目到车辆上和/或者增加完成所述装配工艺的时间和劳动。在加筋件被集成到复合材料部件中的一些应用中,被称为“尾段(runout)”的加筋件末端,可能不能平滑地融合或者过渡到所述部件中,这导致在结构部件中形成不愿出现的应集中。现有的过渡设计在裁剪边缘有不连续的纤维,这只能适度地减少周围结构的应力集中。
[0003] 因此,需要一种简单的、有成本效益的制造加筋的复合材料结构的方法,其中加筋件被集成在结构部件中以形成一体式结构。还需要一种可以平滑地融合在所述结构部件中并且减少或者消除加筋件末端应力集中的尾段的加筋件设计。

发明内容

[0004] 所公开的实施例提供一种一体式复合材料结构,所述结构包括集成的加筋件,在所述加筋件的端部有平滑地过渡尾段,所述尾段减少或者 本质上消除应力集中。所述加筋件通过纤维预成型件被生产,所述纤维预成型件为融合加筋件的末端至周围结构。这种平滑融合避免了在所述加筋件和所述结构周围之间的突然中止或者不连续过渡,并且减少或消除在加筋件的端部进行切边操作的需要。切边操作的减少可以降低制造时间、工序步骤和/或者劳动成本。所述尾段在保持周长和横截面积不变的情况下,使加筋件的横截面从狭长形轮廓转变为宽扁形轮廓。通过使用各种预成型制造工艺,各种加筋件结构和物理特性可以被实现。所述尾段设计允许加筋件的制造包含复杂的几何形状,从而导致更大的设计可变性和工艺优化。
[0005] 根据一个公开的实施例,一体式复合材料结构包括复合材料部件和至少一个被集成在复合材料部件中用于加强所述部件的复合加筋件。至少一个所述加筋件的末端包括尾段,所述尾段形成基本平滑的过渡到所述复合材料部件中。所述复合材料部件包括第一注入树脂纤维强化物,并且所述加筋件包括第二注入树脂纤维强化物,其中注入树脂是大体上连续和均匀的遍及所述第一和第二纤维强化物。沿着所述尾段的长度上的横截面形状发生变化,但面积基本保持不变。
[0006] 根据另一个的实施例,集成加筋复合材料结构包括固化聚合物树脂基体、结构部件部分和加筋件部分,所述结构部件部分包括在基体中保持的第一强化物,所述加筋件部分用于对结构部件部分加筋。所述加筋件部件包括保持在所述基体中的第二纤维强化物。所述加筋件部分包括至少一个具有尾段的末端,所述尾段形成至结构部件部分的基本平滑的过渡。基体在遍及第一和第二部分是基本连续和均匀的。
[0007] 根据其他实施例,提供用于制造加筋复合材料结构的方法。所述方法包括制造第一纤维预成型件,放置所述第一纤维预成型件到具有所述加筋件形状的模具凹槽中,在所述模具凹槽上方放置覆盖所述第一预成型件的第二纤维预成型件,同时向所述第一和第二预成型件中注入聚合树脂,并且固化所述注入树脂的预成型件。制造所述第一纤维预成型件包括编织纤维到挠性的管壳中,和将持续性的、单一方向的纤维填充在所述壳中。在所述模具凹槽中放置所述第一纤维预成型件包括使得管壳遵循所述凹槽几何形状。
[0008] 总之,根据本发明的一方面,提供了一种一体式复合材料结构,包括复合材料部件;和至少一个与所述复合材料部件集成的用于加筋部件的复合材料加筋件,加筋件的至少一个末端包括尾段,所述尾段形成融入所述复合材料部件的基本平滑的过渡。
[0009] 有利的是所述一体式复合材料结构,其中所述复合材料部件包括第一注入树脂纤维强化物,并且所述加筋件包括第二注入树脂纤维强化物,其中所述注入树脂在遍及所述第一和第二纤维强化物是基本连续和均匀的。
[0010] 有利的是所述一体式复合材料结构,其中复合材料部件是以下其中之一:面板、蒙皮、梁、凸缘、腹板和通道(channel)。
[0011] 有利的是所述一体式复合材料结构,其中所述尾段在沿其长度上基本平滑地波形变化。
[0012] 有利的是所述一体式复合材料结构,其中所述尾段具有沿其长度在形状上变化但在周长上基本保持恒定的横截面。
[0013] 有利的是所述一体式复合材料结构,其中所述尾段具有沿其长度在形状上变化但在面积上基本保持恒定的横截面。
[0014] 根据本发明的另一方面,提供一种集成的加筋复合材料结构,包括固化的聚合树脂基体;结构部件部分,其包括保持在所述基体内的第一纤维强化物;和用于加筋所述结构部件部分的加筋件部分,所述加筋件部分包括在所述基体中保持的第二纤维强化物,所述加筋件部件包括至少一个末端,所述末端包括尾段,所述尾段形成融入所述结构部件的基本平滑的过渡。
[0015] 有利的是在所述加筋复合材料结构中,所述基体在遍及所述第一和第二部件上是基本持续和均匀的。
[0016] 有利的是在所述加筋复合材料结构中,所述结构部件部分是以下其中之一:面板、蒙皮、梁、凸缘、腹板和通道。
[0017] 有利的是在所述加筋复合材料结构中,所述加筋件部分包括外壳内核
[0018] 有利的是在所述加筋复合材料结构中,所述核包括纵向穿过所述加筋件部分的强化纤维。
[0019] 有利的是在所述加筋复合材料结构中,所述内核包括填充器,强化纤维被保持在填充器中,并且所述外壳包括至少一层相连的纤维。
[0020] 有利的是在所述加筋复合材料结构中,所述尾段沿着加筋件的长度呈波状外形。
[0021] 有利的是在所述加筋复合材料结构中,所述加筋件具有沿其长度在形状上变化但在周长上基本保持恒定的横截面。
[0022] 有利的是在所述加筋复合材料结构中,所述加筋件具有沿其长度在形状上变化但在面积上基本保持恒定的横截面。
[0023] 有利的是在所述加筋复合材料结构中,所述加筋件包括具有宽度的冠部,有高度的边和有宽度的基底,其中
[0024] 有利的是所述冠部的宽度和所述基底的宽度沿着所述尾段的长度方向增加和所述边的高度沿着所述尾段方向减小。
[0025] 有利的是在所述加筋复合材料结构中,所述加筋件的高度和宽度沿着所述尾段长度方向分别增加和减小。
[0026] 根据本发明的另一方面,提供一种制造加筋的复合材料结构的方法,包括制造第一纤维预成型件;放置所述第一纤维预成型件到模具凹槽中,其中所述模具凹槽有所述加筋件的几何形状;在所述模具凹槽上放置第二纤维预成型件以覆盖所述第一预成型件;同时向所述第一和第二纤维预成型件中注入聚合树脂;以及固化所述注入树脂的预成型件。
[0027] 有利的是在所述方法中,制造第一纤维预成型件包括向挠性管壳中编织纤维,并且填充连续、单向的纤维到所述壳中,并且在所述模具凹槽中放置所述第一纤维预成型件包括使得所述管壳遵循所述凹槽几何形状。
[0028] 有利的是在所述方法中,向挠性管壳编织纤维包括生产在长度上基本连续的管壳,并且所述方法进一步包括在所述管壳连续长度上切下一段,并且其中通过在凹槽中放置外壳的切段,在模具凹槽中放置所述第一预成型件。
[0029] 有利的是在所述方法中,制造第一纤维预成型件包括同时编织和成形纤维外壳和纤维核心。
[0030] 有利的是在所述方法中,制造第一预成型件包括通过在一组连续的 强化纤维周围编织纤维来制造含有加强核心的连续的外壳;以及将所述连续外壳切割成合适长度。
[0031] 有利的是在所述方法中,制造第一预成型件包括在模具凹槽上放置第一纤维层,使所述第一层进入模具凹槽的内部,将连续的强化纤维填充在成型的第一层,在形成的填充第一层的纤维上覆盖第二纤维。
[0032] 根据本发明的另一方面,提供一体式、加筋复合飞行器外壳,包括复合材料蒙皮,所述蒙皮包括注入树脂编织的纤维预成型件;和多个集成到所述蒙皮的狭长的加筋件,每个加筋件在它们的相反端包括尾段,所述尾段形成所述加筋件到所述蒙皮内的基本平滑过渡,每个加筋件具有外壳和内核,所述外壳包括注入树脂的编织的纤维外壳,所述内核包括注入树脂的连续强化纤维,其中所述尾段沿着自身的长度呈波状外形并且具有横截面,所述横截面的形状沿着所述尾段长度发生变化但面积和周长基本保持不变。
[0033] 根据本发明的另一方面,提供一种制造一体式加筋的复合材料飞行器蒙皮的方法,所述方法包括制造带凹槽的模具,其中所述凹槽对应加筋件的几何形状,包括在凹槽中形成尾段;通过向挠性管编织纤维而制造第一纤维预成型件,并且将连续的强化纤维填充到所述管;在所述模具凹槽中放置所述第一纤维预成型件,包括使得所述预成型件遵循所述尾段的形状;在模具上放置第二纤维预成型件覆盖所述第一纤维预成型件;同时将聚合树脂注入到所述第一和第二纤维预成型件;和固化所述注入树脂预成型件。附图说明
[0034] 图1为具有集成形成的加筋件的一体式复合材料面板的透视图。
[0035] 图2为图1中沿线2-2截取的横截面图。
[0036] 图3为对应于在图2中被标记为“A”的部分的加筋件的替代形式的拐的剖视图。
[0037] 图4-13为分别示出加筋件的替代形式的截面图。
[0038] 图14为示出在制造根据所公开的方法的加筋复合材料结构的装配工艺图。
[0039] 图15为制造具有集成形成的加筋件的一体式复合材料结构的装置的横截面剖视图,为了清晰被稍微分解。
[0040] 图16-20为具有不同加筋件布置结构的加筋复合材料结构的平面图。
[0041] 图21为具有集成形成的加筋件网格的一体式飞行器蒙皮的透视图。
[0042] 图22为具有遵循结构中厚度变化的集成加筋件的复合机构截面图。
[0043] 图23为具有集成形成的加筋件的飞行器蒙皮的弯曲前缘的截面图。
[0044] 图24为具有集成形成的加筋件的尾段板的透视图。
[0045] 图25为具有集成形成的加筋件的C状结构部件的透视图。
[0046] 图26为制造带有集成加筋件的复合结构的方法的全部步骤的流程图
[0047] 图27为示出集成到复合材料蒙皮的加筋件的尾段的透视图。
[0048] 图28为图27所示的加筋件的平面图。
[0049] 图29为图28中沿线29-29截取的剖视图。
[0050] 图30为图29中沿线30-30截取的剖视图。
[0051] 图31为图29中沿线31-31截取的剖视图。
[0052] 图32为图29中沿线32-32截取的剖视图。
[0053] 图33为沿尾段的不同位置的周边的示意图。
[0054] 图34为用于制造所述加筋件的管状预成型件的横截面图。
[0055] 图35为用于制造图34所示的管状预成型件的步骤示意图。
[0056] 图36为用于制造图35所示的管状预成型件的替代方法的示意图。
[0057] 图37为所述预成型件的替代实施例的横截面图。
[0058] 图38为制造图37所示预成型件的步骤图。
[0059] 图39为所述预成型件的其他实施例横截面图。
[0060] 图40为用于制造图39中图示说明的预成型件的步骤的示意图。
[0061] 图41为制造集成加筋件的联合复合材料结构的方法流程图。
[0062] 图42为飞行器生产和服役方法的流程图。
[0063] 图43为飞行器的方框图

具体实施方式

[0064] 首先如图1所示,一体式复合材料结构30包括结构部件32,所述结 构部件有多个集成形成的加筋件34,所述加筋件可以为结构部件32提供额外的强度和刚度。在图示示例中,结构部件32是基本平的面板32a,并且加筋件34被设置为在面板32a的一侧以基本互相平行的方式延伸。每个加筋件34在各自的末端包括尾段52,所述尾段基本平滑地融合加筋件34到面板32a中,以便减少面板32a上的最大应力集中。如后面将会讨论到,结构部件32可以根据应用具有其他形状和几何外形,包括但不限于通道、梁、腹板、凸缘、蒙皮等等。
[0065] 现在参考图2,每个加筋件34是模化设计的并且包括内核38,所示内核被外壳36围绕,外壳36具有沿对接接头29连接到面板32a的底盖35。可选的粘合层40可以在对接接头29处被用于辅助连接加筋件34至面板32a。在后面的以更多细节将被讨论的,壳36可包括被编织(braid)、圆机针织(knit)或梭织(woven)为织物的树脂注入的复合材料部件纤维强化物或者预成型件67(图14)的一个或者更多层(图2中没有显示)。所述强化纤维可包括、玻璃或者各种聚合物或者其他合适的强化纤维。在这个示例中,壳36是连续的并且包括半径顶部或者冠部43和侧壁45,所述侧壁与覆盖在面板32a上的半径段47被整体地连接。
[0066] 根据应用,内核38可部分或者完全地被结构或者非结构材料填充。例如图2所示情况,内核38被一种合适的单向碳纤维强化物39填充。图3所示为一个可替换的模块加筋件34实施例,其中壳36包括多层用于保持在树脂基体内的编织纤维层36a,并且内核38被一个或者更多纤维强化树脂板层41填充,其形式可以是单向的带条、丝束或者织物。
[0067] 如上面提到的,加筋件34可以有许多种几何形状或者结构形式。图4所示加筋件类似于图2所示的加筋件34,但其中通过厚度强化物,例如但不限于到Z-插脚44可以被选择性地辅助连接加筋件34至面板32a,并且为结构32提供额外的加强。Z-插脚44延伸穿过面板32a和加筋件34的底盖35到内核38中。图4所示的加筋件34的横截面通常是梯形,然而,其他横截面形状可包括但不限于“T”、“J”、“C”、“I”、“Z”或者帽型。在其他实施例中,加筋件34可以包括固体压板(没有显示),或者带有固体压板面板的内核(没有显示)。
[0068] 图5所示为加筋件34的另一种变化,所示加筋件包括外壳46,外壳 46划分内核38为中空核段48,中空核段48分两个段38a、38b,38a、38b可以或者不被结构强化物39或者其他填充物填充。在这个示例中,底盖35沿着对接接头29被直接连接到面板32a,并且粘合剂42沿着对接接头29的外边界33被使用。
[0069] 图6所示为加筋件34的另一个版本,类似于图2所示,但其中的核38是中空的。
[0070] 图7所示的仍然是加筋件34的另一个变化,其具有带有填充强化物39的内核38和呈辐射状(radiused)的低侧壁边缘37。
[0071] 图8所示为加筋件34的另一个实施例,其中外壳36具有覆盖在底盖35的侧向延伸凸缘51。凸缘51增加对接接头29在加筋件34和面板32a之间的面积,同时还在外壳36和面板32a之间提供一个平滑地过渡,以帮助最小化面板32a上的峰值应力集中,如前面所述的。
[0072] 图9所示为加筋件34的另一个示例。这个加筋件34的实施例除了一个或者更多额外的板层50缠绕在外壳36并且侧向延伸以形成凸缘51外,类似于图2所示的实施例。板层50加强加筋件34并且增加面板32a和外壳38/凸缘51之间的接触面积,同时凸缘51形成加筋件尾段52的一部分,其帮助最小化面板32a上的峰值应力集中。
[0073] 图10所示为加筋件34的另一个实施例,其中外壳36包括扁平盖43和连接到基底35的倾斜侧壁45,所述基底具有侧向延伸的凸缘52。正如图2和图8所示的实施例情况,侧向延伸凸缘51增加对接接头在加筋件34和面板32a之间的面积,同时还在外壳36和面板32a之间提供平滑的过渡,用于帮助最小化面板32a上的峰值应力集中。
[0074] 图11所示为加筋件34的另一个变化,其中外壳36包括辐射状冠部43,和侧壁45。侧壁45通过倒圆段(radius sections)47过渡到一体凸缘51,其中凸缘被附接在面板32a上。
[0075] 图12所示为加筋件34的进一步实施例,其除了通过厚度加固物44例如Z-插脚44从内核38延伸进入面板32a以外,类似于图11所示实施例。加固物44帮助连接加筋件34到面板32a并且为结构32提供额外的加强。
[0076] 图13所示为加筋件34的另一个例子,所示例子除了一个或者更多额 外的层50被缠绕在外壳36和被用于形成侧向延伸凸缘51以外类似于图11所示例子。
[0077] 在图2-13中,可被理解的是加筋件34的几何结构、特征、内核填充物和加固物可具有宽的范围,它们可增加加筋件34的强度和/或刚度和/或增加在加筋件34和面板32a之间的对接接头29的强度和/或损伤容限。从被省略的说明可理解,加筋复合材料结构30包括基本连续和均匀的聚合物树脂基体,其作用为支撑结构部件部分32和加筋件部分34。结构30被利用,因为所述结构部件部分和加筋件部分32、34通过基体材料被集成。
[0078] 现在将注意转向图14,图14所示为制造一体式复合材料机构30的方法的一些基本步骤,其中所述结构包括一个或者更多的集成形成的加筋件34(图1)。如在54所示,单体简单的工具56有工具面56a,所述工具面用于限定精确的复合材料结构30的内模线(IML)。工具面56a是基本平的,如图14所示,或者可以有一个或者更多匹配完成结构30的内模线的弯曲或者特征。一个或者更多的凹槽58被成形在对应于加筋件34的几何形状的工具面56a中,其被集成在成品结构30中。凹槽58的深度D基本对应于加筋件34(图15所示)的高度H。工具面56a还可以包括额外的像凹槽的腔(没有显示),节点连接器(没有显示)可以被放置在腔内用于在加筋件34之间形成网状的相互连接,这些将在下面更详细地讨论。
[0079] 如在62所示,干燥的或者基本干燥的纤维加筋件预成型件65通过手工方式或者使用自动放置装置60被放置在凹槽58中。根据加筋件预成型件65的形状和结构,加筋件预成型件65的部分可以被增粘剂或者粘结剂附加在一起,帮助支持预成型件65在一起和/或维持它们的形状直到它们被注入树脂。被注入树脂和固化之前,加筋件预成型件65在长度上呈连续绳索状,这可以使它们按需要以缠绕的方式保存、分配和根据长度切断。作为选择,预成型件65可以是硬的并且根据所需要的长度、尺寸、形状和储存面板或者在连续/挠性和离散/刚性之间的变化被大致成形。当自动放置装置60被应用时,预成型件65可以以相对高的速率被放置在工具56上。因为工具56中的凹槽58是预先对齐的,加筋件34 相对于复合材料部件32的位置和方向能够被精确的控制。换句话说,工具面56a中凹槽58的安装位置相对彼此,和相对纤维强化物65索引预成型件65。所述预成型件65除了没有被注入树脂并且因此相对挠性外,基本和以前描述的加筋件34相同。
[0080] 凹槽58可具有横截面轮廓(没有显示),所述轮廓基本和预成型件65的轮廓匹配,这样当预成型件65被放在凹槽58中时,基本完全填充在凹槽58,从而形成基本平滑的IML轮廓。挠性预成型件65容易符合凹槽58的横截面轮廓和弯曲(如果有的话)。离散/刚性预成型件可以被预成型以至少基本匹配所述凹槽的横截面轮廓和弯曲(如果有的话)。凹槽58基本使加筋件预成型件65相对于纤维强化物67凹进工具面56,这样预成型件65位置的顶部一般和工具面56a齐平。可选择地,在期望加筋件盖35沿着对接接头29黏附地结合到复合材料部件32应用中,胶膜(没有显示)可以被放置在凹槽58中,从而覆盖加筋件预成型件65,如图2所示。
[0081] 接着如在64所示,干燥或者基本干燥的复合材料部件纤维强化物67被放置到工具面56a上,从而覆盖并且接触加筋件预成型件65和工具面56a。复合材料部件纤维强化物67以及纤维预成型件65可以被粘合剂(没有显示)粘合。复合材料部件纤维强化物67可以包括,例如但不限于,包括多个梭织或者圆机针织织物的预成型件,所述多层被一层一层地放置在工具面56a上,或者被堆叠和然后被作为单体预装配叠层而放置在工具面56a上。在图示说明的示例中,复合材料部件纤维强化物67基本是平的,但是,在其它实施例中,可能的是复合材料部件纤维强化物67可以是在复合材料部件纤维强化物67被放置在工具面56a之前被成形的预成型件。在66,胚模(caul)片材68被放置在复合材料部件纤维强化物67上。胚模片材68帮助控制所述OML(外模线)表面完成(finish)和外壳与邻近的加筋件34的划分。然后,在70,预成型件65和复合材料部件纤维强化物67被同时使用各种已知的树脂注入技术注入合适的热固性树脂,包括,例如但不限于真空辅助树脂灌注成型(VARIM)。下面将会被讨论的是预成型件65和纤维强化物67可以在树脂注入之前被压缩与加强。然后被灌注的预成型件65和复合材料部件纤维强化物67通 过任何合适的方式加热被固化,例如烘箱72。
[0082] 现在将注意转向图15,图15所示为被用于执行前面讨论结合图14的方法步骤的VARIM叠层组件80的其他细节。加筋件预成型件65被放置在工具54的凹槽58中,然后复合材料部件强化物67被放置在工具面56上,从而覆盖和接触加筋件预成型件65。脱模布82被放置在复合材料部件纤维强化物67上并且合适的树脂分布介质86被放置在脱模布82上用于辅助移动和甚至分配流动树脂。脱模布84还可以被放置在复合材料部件纤维67的外边缘下面。
[0083] 刚性或者半刚性的胚模68被放置在树脂分布介质86的上面,然后真空袋88被放置在叠层上并且通过密封带90或者相似的方式密封至工具54。在其它实施例中,双层真空袋技术可以在第二真空袋(没有显示)被放置在第一真空袋88上用于保护预成型件65避免第一真空袋88在树脂灌注和固化过程期间泄露中被使用。胚模68和树脂分布媒介86说明了一种典型的树脂灌注装置,但在其它树脂灌注技术被使用时可不需要。其它各种树脂灌注技术是可能的。热固性树脂供应储存器92通过树脂入口管94被联接至真空袋88中的进口通道管96。出口真空存储器102通过树脂出口管100被联接至真空袋88中的出口通道管98。
[0084] 通过出口真空储存器102产生的袋88中的空气排出袋88中的空气,从而在真空袋88中产生小于大气压的压力,这引导树脂从供应储存器92经过进口通道管96进入真空袋
88。在树脂灌注之前,袋88可以被用于压缩和加固预成型件65和纤维强化物67。树脂从进口通道管96流出并且通过出口通道管98离开袋88,在此被收集在真空储存器102中。当树脂从进口通道96传输到出口通道98时,预成型件65和复合材料部件纤维强化物67被单个射束树脂同时灌注,同时大气压向下作用真空袋88到胚模68上。正如前面提及的,图15仅仅举例了许多可以被应用到制造加筋的复合材料结构30的树脂灌注技术的一种。
[0085] 胚模68施加基本均匀的压力到注入预成型件65和复合材料部件纤维强化物67的面积上,这使得预成型件65和复合材料部件纤维强化物67在树脂灌注过程中互相挤压和压迫。热量可以在树脂灌注过程期间和树脂灌注过程之后被应用在注入预成型件65和复合材料部件纤维强化物 67,用于增强树脂流动,并且然后固化所述树脂生成一体式复合材料结构30,其中加筋件34基本集成在复合材料部件32中。预成型件65和复合材料部件纤维强化物67同时注入树脂产生基本连续和均匀的树脂基体,所述基体分别支持和集成所述结构部件和加筋件部件部分32、34。
[0086] 图16-20图示说明了有各种各样加筋件34布局模式的加筋复合材料结构30。图16图示说明为复合材料面板32a,所述面板被多个集成形成的、一般平行的加筋件34强化,类似于图1中所述的实施例。图17图示说明加筋复合材料面板32a,其中加筋件34被排成十字网格状。图18所示为另一个变化,其中加筋件34被并行排列,但同时沿着面板32a锥形化。图19所示这样实施例,其中加筋件34被排成相同的网格图形,其中所述加筋件34的末端在连接节点104处相互连接。图20所示为使用大致同心、椭圆加筋件34,其中所述椭圆加筋件绕着面板32a中的开口106用于加强面板32a中开口106周围区域。
[0087] 图21图示说明了节点网格加筋面板32b的另一个示例,其中所述加筋件34被连接节点104相互连接,连接节点104可以在成型期间被凹进工具面56a(图14和图15),这样连接节点104和加筋件34在制造过程期间各自和面板32a集成成形。在这个示例中,面板32在单个方向上弯曲,并且因此,至少一定数量的加筋件34也在面板弯曲的方向弯曲。所述连接节点104可以包括,例如并且但不限于,预成型网格部件,例如金属部件、预固化复合材料部件、或者干燥或者基本干燥的纤维预成型件,所述纤维预成型件是和复合材料部件纤维强化物67同时被树脂灌注。在那些所述连接节点104是预成型网格部件的实施例中,其可以同时粘合加筋件34和面板32a,或者加筋件34和面板32a通过使用粘合层(没有显示)被二次粘合,所述粘合层被放置在所述连接节点104,所述加筋件34和所述面板32a之间。
[0088] 图22图示说明在厚度上有变化108的面板32。这个厚度变化108可以通过在工具面56中形成合适的深度被适应。所述加筋件预成型件65的挠性允许所述预成型件65遵循下面面板32b的厚度轮廓。
[0089] 图23图示说明另一个一体式加筋复合材料结构30,所述复合材料结构是机翼前缘110的形式。这个例子显示所述加筋件34遵循用于被加强 的复合材料部件32的相对严重弯曲,包括复合弯曲的能力。
[0090] 图24图示说明加筋件34加强面板32的应用,以加强在一个方向上弯曲的面板32。加筋件34的弯曲匹配面板32的弯曲。
[0091] 图25图示说明一体式加筋复合材料结构30,所述复合材料结构是C形槽(channel beam)32c中的形式,所述C形槽钢通过集成形成的类似肋骨的加筋件34被加强,其中所述加筋件与所述槽钢32c的横截面相匹配并且被沿着槽钢32c的长度被间隔。类似肋骨的加筋件34可以被应用在有其他横截面形状的复合材料结构30中。
[0092] 现在将注意转向图26,图中大体所示为制造一体式复合材料结构30的方法步骤,其中所述复合材料结构具有集成成形的加筋件34。从步骤112开始,有合适的深度和几何形状的凹槽58通过任何合适的制造技术被成形在工具面56a中,例如在硬性材料例如钢中研磨凹槽58。在114,加筋件预成型件65被成形为包括叠放多个干燥纤维材料层,如前面提到过,可以包括编织、梭织或圆机机织的材料。加筋件预成型件65可以或者不被前面讨论的填充物类型填充。
[0093] 在116,加筋件预成型件65被放置在工具面56a的凹槽58中,然后在118,复合材料部件纤维强化物67被放置在工具面56a上,从而覆盖和接触加筋件预成型件65,如前面图11中所描述的。在120,叠层80剩余的部件被装配,包括放置真空袋88在预成型件65和复合材料部件纤维强化物67上面并且将其密封至工具54。接着,在122,真空袋88被抽取真空,接着在124,预成型件65和复合材料部件纤维强化物67在一次树脂灌注过程中基本同时被灌注(即同时注入)热固性树脂。真空袋88中的真空可以帮助所述树脂进入并且通过预成型件65与复合材料部件纤维强化物67。尽管没有在图26中显示,但真空袋88可以先于树脂注入步骤124而被抽取真空,以便压缩和加固加筋件预成型件65与纤维强化物67以减少它们的体积,这样有最小树脂体积的复合材料结构可以被生产。作为替代地,所述压缩和加固过程可以在树脂注入步骤124期间完成。最后,在126步骤,所述树脂灌注结构通过加热所述结构根据合理的固化计划被固化。
[0094] 参考图27-32,图中图示说明了在每个加筋件34的每个末端上的尾 段52的另外的细节,如前面结合图1中提及的。所述尾段52形成加筋件34融入周围复合材料部件32的末端128的基本平滑和连续的过渡,这个情况中,所述复合材料部件是面板或者蒙皮32a。在加筋件34的末端128的中部,加筋件34的横截面几何形状被外壳36和底盖35限定。在末端128的中部,外壳36的所述顶部或者冠部43相对狭窄,并且侧壁45是相对陡的,而底盖35具有基本恒定的宽度。但是沿着尾段52,所述冠部128的宽度“W”不断地增大,侧壁45的高度“H”不断地增长,底盖34如35a所示的向外展开。所述冠部43的宽度“W”、侧壁34的高度“H”和底盖35的宽度“W”的变化速率取决于具体的应用,以及蒙皮32a的几何形状。
[0095] 现在将注意力具体指向图30-32,它们示出加强件34的截面轮廓的变化。虽然没有按比例绘制,但是这些图说明了随着高度“H”沿尾段52减小,宽度“W”增大。然而,加筋件34的总截面面积“A”沿尾段52的长度保持基本恒定。尾段52的恒定截面加筋件34的内部结构连续至加筋件34的外部极端。保持恒定的截面面积“A”允许核“38”连续穿过尾段52,并且因此可不需要任何材料例如碳绳(carbon tows)来在沿尾段52的中间点处终止(减少),这可能产生生产的复杂性、固化结构30中的潜在树脂富区域和压力集中。
[0096] 图33图示说明了图30-32所示的横截面周长P。与所述加筋件34的总截面面积A相似,加筋件横截面的总周长P沿着尾段52基本保持恒定。因此,在图29中剖面线30-30的加筋件34的周长P1与图29中的剖面线31-31处的周长P2、剖面线32-32处的周长P3相等。尾段52中恒定周长的规定允许外壳36内恒定的纤维方向被持续贯穿尾段52的长度,这帮助最小化纤维变形,否则会导致树脂富区域和机械性能的削弱。
[0097] 图34所示为纤维预成型件136的实施例,所述预成型件可以被树脂灌注形成加筋件34,包括图27-33所示的尾段52。在这个示例中,预成型件136包括编织的纤维管壳36,纤维管壳36具有填充着松散的单向纤维39的核38。其它核填充物也是可能的。如图35所示,所示管纤维预成型件136可以被装配过程140在连续长度(没有显示)上制造,其中所述装配过程包括将编织的单向纱线39引入管状编织外壳36。然后外壳 36可以被单向的纤维丝束39填充。所述管状预成型件136的使用在一些应用中是合适的,因为它可以从连续供应中高效地按一定长度切割并且容易在横截面和沿着工具槽的长度上保持一致,例如图15中所示的工具凹槽58。制造预成型件136的可替换的方法如图36所示,其中单个编织过程41可以被应用于以形成在单向纤维39组138周围的外壳36。
[0098] 图37图示说明了刚性或者半刚性纤维预成型件142的可替换实施例,其中所述预成型件和尾段52形成加筋件34。所述预成型件142包括编织形状的外壳136,所述外壳可以包括侧向凸缘51和填充了单向强化纤维39的核38。图37所示预成型件142可以通过图38所示的过程被制造,其中单个编织和成形的过程146可以被应用于在单向纤维39的组138的外围形成外壳136,其中预成型件142的横截面形状基本与模腔58(图15)相匹配。在这个示例中,外壳136和单向纤维39的组138被编织在一块并且基本同时被成形。所成形的预成型件142可以在连续长度(没有显示)上被制造。
[0099] 图39图示说明预成型件148的其他实施例,其中所述预成型件包括织物叠加层形成的外壳36,其包括侧向凸缘和织物底盖35。所述预成型件148进一步包括被单向纤维39填充的核38。所述预成型件148可以在离散的长度(没有显示)上被成形并且在横截面和沿着横截面的长度上基本是刚性的。图40图示说明了制造图39所示预成型件148的过程。从150开始,具有合适几何外形的凹槽158在工具面54内被形成,并且叠加织物层160被放置在工具54的上面覆盖着凹槽58。在152,成形工具162被施加作用力F用于使所述层160进入凹槽158中并且使层160遵循凹槽158的轮廓。在154,所述工具162被移除,所述成形的叠加层160被单向的强化纤维39填充,并且第二个叠加层165被放置在第一个叠加层160上面。在156,合适的工具167可以被用于压缩所述层160、165。
[0100] 现在参考图41,图中大致图示说明了制造一体式加筋复合材料结构30的方法步骤,如图1中所示的加筋面板32。从164开始,带凹槽的模具54(图15)被制造,其中所述凹槽包括在其相对末端128的尾段52。在166中所示的一个实施例中,第一纤维预成型件或者强化物136、142 可以在连续长度上被制造。在170,纤维可以被编织入连续的管状外壳36,所述管状外壳有一致的或者半一致的横截面。在172,所述管状外壳被连续的强化纤维填充并且在174,第一预成型件136、142被切割成合适的长度。在176,所述第一预成型件被放置在模具凹槽58中并且遵循凹槽58的几何外形。
[0101] 另一个制造所述第一纤维预成型件的实施例如177所示。在179,单个编织过程被用于在单向纤维39的组138周围形成所述外壳36,并且在180,所述第一预成型件136被切割成合适的长度。在181,所述挠性预成型件136被放置在模具凹槽58中并且遵循凹槽58的几何外形。
[0102] 在如168所示的制造所述第一纤维预成型件的其他实施例中,第一纤维层160被放置模具54上覆盖模具凹槽158,如178所示。接着在182,第一纤维层160被成形入模具凹槽158并且遵循凹槽158的轮廓。在183中,所形成的第一层160被连续的强化纤维39填充,然后,在184,第二纤维层165被放置在模具54上覆盖着所述第一纤维层160。
[0103] 在185示出的依然是制造第一纤维预成型件142的另一个实施例。在187,外壳和核纤维被编织在一起并且同时成形入半刚性的预成型件142,所述预成型件142被预成形为基本与模具凹槽58的几何外形相匹配。在189所述预成形的切半刚性预成型件142然后被放置到模具凹槽58中。
[0104] 在所述第一预成型件136、142如上描述的被制造后,第二预成型件或者纤维强化物67(图14)被放置在模具54上覆盖所述第一预成型件,如186所示。在188,所述第一和第二预成型件被同时注入树脂,然后在190所述复合材料结构30被固化。
[0105] 所公开的实施例可以在各种各样潜在的应用中找到用处,尤其在运输业,包括例如航空航天、航海和汽车应用中。因此,现在参考图37和39,所公开的实施例可以被应用在飞行器制造环境和如图37所示的服务方法192以及图38所示的飞行器194。所公开的飞行器应用实施例可以包括多种多样结构的复合材料零件和部件,包括例如但不限于,控制面蒙皮、机翼和尾翼蒙皮、加筋的通道和面板、和加筋的肋和翼梁腹板,所提及的只是一部分。在预生产期间,示例性方法192可以包括飞行器194的规格和设计196以及材料采购198。在生产期间,飞行器194的部件和 子组件制造200和系统集成202发生。其后,飞行器194可以通过认证和交付204,以便服役206。在被顾客使用时,飞行器194被制定有日常维修和维护
208(其还可以包括修改、重新配置、翻新等等)。
[0106] 方法192的每个过程可通过系统整合商、第三方和/或操作者(例如,顾客)来执行或实施。为描述目的,系统整合商可包括但不限于任何数目的飞行器制造商和主系统子承包商;第三方可包括但不限于任何数目的供应商、子承包商和供给商;并且操作者可包括航线、租赁公司、军事团体、服务组织等等。
[0107] 如图38所示,通过示例性方法192生产的飞行器194可以包括机身210以及多系统212和内部214。高级系统212的是包括一个或者更多的推进系统216、电子系统218、液压系统229和环境系统222。任何数量的其他系统可以被包括。所公开的方法可以被应用于制造内部214和机身210中的加筋的零件、结构和部件。尽管举了航空航天例子,但是所公开的原理可以被应用与其它产业,例如航海和汽车产业。
[0108] 这里所实施的系统的方法可以被应用在任何一个或者更多生产和服役方法192中的阶段。例如,在飞行器194使用过程中,对应于生产过程200的零件、结构和部件可以被制造或者加工。所公开的方法实施例也可以被利用在生产阶段200和202,例如通过大幅度加快装配或者降低飞行器194的成本。同样地,在飞行器194使用过程中一个或者更多的装置实施例,方法实施例,或者两者结合可以被应用,例如但不限于,维修和维护208。
[0109] 尽管所公开的实施例已经被描述为特定示例性实施例,但是应该认识到这个具体的实施例的目的是举例并且不限于举例,因为本领域的技术人员将想到其他变化。
QQ群二维码
意见反馈