复合材料的粘结

申请号 CN201480046396.1 申请日 2014-06-30 公开(公告)号 CN105473239B 公开(公告)日 2017-09-29
申请人 塞特工业公司; 发明人 李奥纳·麦克亚当斯; 达利普·K·柯里;
摘要 本 发明 涉及用于表面准备的剥离层和一种在粘着粘结之前的表面准备的方法。将富含 树脂 的剥离层涂覆到可 固化 、基于树脂的复合衬底上,随后共固化。在共固化之后,所述复合衬底完全固化而所述剥离层中的所述基质树脂保持部分固化。当去除所述剥离层时,暴露出具有化学活性官能团的粗糙、可粘结表面。可以将具有所述化学活性、可粘结表面的所述复合衬底粘结到另一复合衬底以形成共价键结结构。
权利要求

1.一种用于在粘着粘结之前的表面准备的方法,其包含:
(a)提供复合衬底,其包含用可固化、第一基质树脂浸渍的加强纤维
(b)将可去除、富含树脂的剥离层涂覆到所述复合衬底的表面上,所述剥离层包含用可固化、不同于所述第一基质树脂的第二基质树脂浸渍的编织品;
(c)使所述复合衬底与所述剥离层共固化直到所述复合衬底完全固化而所述剥离层中的所述第二基质树脂保持部分固化;和
(d)从所述复合衬底的表面去除所述剥离层,在所述复合衬底的表面上留下部分固化的第二基质树脂的薄膜,所述薄膜提供具有化学活性官能团的粗糙、可粘结表面。
2.根据权利要求1所述的方法,其中所述第二基质树脂包含一或多种多功能环树脂,并且在去除所述剥离层之后,所述粗糙、可粘结表面上的所述化学活性官能团包含环氧官能团。
3.根据权利要求1所述的方法,其中所述第二基质树脂包含至少一种热固性树脂和至少一种用于使所述热固性树脂交联的固化剂,并且热固性树脂与固化剂的摩尔比使得在步骤(c)中,在共固化之后,在所述剥离层中存在未反应的非交联热固性树脂。
4.根据权利要求3所述的方法,其中固化剂与热固性树脂的所述比率使得存在不足以用于与100%所述热固性树脂反应必要的量的固化剂。
5.根据权利要求1或2所述的方法,其中所述第二基质树脂包含一或多种多功能环氧树脂,但不含任何用于使所述环氧树脂交联的固化剂。
6.根据权利要求1所述的方法,其中保留在所述复合衬底的表面上的部分固化的第二基质树脂的所述薄膜由于不完全固化而具有低于所述复合衬底的基质树脂的玻璃转移温度(Tg)的玻璃转移温度。
7.一种固化复合衬底,其具有通过根据权利要求1所述的方法产生的具有化学活性官能团的粗糙、可粘结表面。
8.一种粘结方法,其包含:
(a)提供第一复合衬底,其包含用可固化、第一基质树脂浸渍的加强纤维;
(b)将可去除、富含树脂的剥离层涂覆到所述第一复合衬底的表面上,所述剥离层包含用可固化、不同于所述第一基质树脂的第二树脂基质浸渍的编织品;
(c)使所述第一复合衬底与所述剥离层共固化直到所述第一复合衬底完全固化而所述剥离层中的所述第二基质树脂保持部分固化;
(d)从所述第一复合衬底的表面去除所述剥离层,在所述第一复合衬底的表面上留下部分固化的第二基质树脂的薄膜,所述薄膜提供具有化学活性官能团的粗糙、可粘结表面;
(e)通过在所述复合衬底之间的可固化粘着膜将所述固化、第一复合衬底接合到第二复合衬底,所述粘着膜与所述第一复合衬底的所述可粘结表面接触,其中所述可固化粘着膜包含能够与所述第一复合衬底的所述可粘结表面上的所述化学活性官能团反应的化学活性官能团;和
(f)使所述粘着膜固化以形成共价键结结构,由此所述粘着膜上的所述官能团与所述第一复合衬底的所述可粘结表面上的所述官能团反应以形成共价键。
9.根据权利要求8所述的粘结方法,其中所述第二复合衬底在接合到所述固化、第一复合衬底之前固化。
10.根据权利要求9所述的粘结方法,其中所述固化、第二复合衬底包含具有化学活性官能团的粗糙、可粘结表面,所述表面通过与用于形成所述固化、第一复合衬底的所述粗糙、可粘结表面相同的方法制备。
11.根据权利要求9所述的粘结方法,其中所述第二复合衬底在接合到所述第一复合衬底之前未固化或部分固化,并且在步骤(f)期间,所述粘着膜和所述第二复合衬底同时固化。
12.根据权利要求9所述的粘结方法,其中所述第二基质树脂包含一或多种多功能环氧树脂,并且在去除所述剥离层之后,所述第一复合衬底的所述粗糙、可粘结表面上的所述化学活性官能团包含环氧官能团。
13.根据权利要求12所述的粘结方法,其中所述可固化粘着膜包含至少一种多功能环氧树脂和至少一种能够与多功能环氧树脂反应的脂肪族或环状胺化合物。
14.根据权利要求9所述的粘结方法,其中所述第二基质树脂包含至少一种热固性树脂和至少一种用于使所述热固性树脂交联的固化剂,并且热固性树脂与固化剂的摩尔比使得存在不足以用于与100%所述热固性树脂反应必要的量的固化剂,并且因此在步骤(c)中,在共固化之后,在所述剥离层中存在未反应的非交联热固性树脂。
15.一种共价键结结构,其通过根据权利要求9所述的方法产生。
16.一种共价键结结构,其通过根据权利要求11所述的方法产生。
17.一种可固化复合结构,其包含:
在复合衬底的表面上的可去除、富含树脂的剥离层,
其中所述复合衬底包含用可固化、第一基质树脂浸渍的加强纤维并且所述剥离层包含用可固化、不同于所述第一基质树脂的第二基质树脂浸渍的织品,和
其中所述第二基质树脂含有不足以用于在将引起所述第一基质树脂完全固化的相同固化条件下完全固化所述第二基质树脂的量的固化剂。
18.根据权利要求17所述的可固化复合结构,其中所述第二基质树脂包含至少一种热固性树脂和至少一种用于使所述热固性树脂交联的固化剂,并且热固性树脂与固化剂的摩尔比使得当所述第一基质树脂和所述第二基质树脂均经受将引起所述第一基质树脂完全固化的相同固化条件时,存在不足以用于与100%所述热固性树脂发生反应必要的量的固化剂,并且因此当所述第一基质树脂完全固化时,在所述剥离层中存在未反应的非交联热固性树脂。
19.根据权利要求18所述的可固化复合结构,其中所述第二基质树脂中的所述至少一种热固性树脂是多功能环氧树脂。

说明书全文

复合材料的粘结

背景技术

[0001] 习知地将粘着粘结用作接合复合结构(如航天工业中使用的复合结构)的方法。当前,复合结构的粘着粘结主要通过以下三种方式中的一种来进行:(1)共固化、(2)共粘结和(3)二次粘结。
[0002] “共固化”涉及通过同时固化和粘结来接合未固化复合部件,其中将所述复合部件与粘着剂一起固化,产生化学键结。然而,难以将这种技术应用于未固化预浸体的粘结中以制造具有复杂形状的大型结构部件。未固化复合材料,例如预浸体,为粘性(也就是触感为粘性)的并且缺乏自行支撑所必需的刚性。因此,未固化复合材料为难以处理的。举例来说,在具有复杂三维形状的工具上难以组装和粘结未固化复合材料。
[0003] “共粘结”涉及通过粘着粘结将预固化复合部件接合到未固化复合部件,其中粘着剂和未固化复合部件在粘结期间固化。预固化复合物通常在粘着粘结之前需要额外的表面准备步骤。
[0004] “二次粘结”是通过粘着粘结将预固化复合部件接合在一起,其中仅将粘着剂固化。这种粘结方法典型地需要在粘结表面处对每个经预先固化的复合部件进行表面准备。
[0005] 用于共粘结和二次粘结的适当表面处理是获得粘着粘结结构中的最高程度粘结线完整性的先决条件。粘结线完整性一般是指粘结界面的整体质量和稳固性。习知共粘结和二次粘结方法典型地包括在粘着粘结之前遵循制造商说明书对复合结构进行表面处理。表面处理包括(但不限于)喷粒处理、砂磨、剥离层、上底漆等。这些表面处理方法主要通过表面的机械粗糙化来改良粘著作用。粗糙表面由于粘结界面处的机械联而可以实现更好的粘着。预固化复合结构的所述共粘结或二次粘结具有以下局限性:粘结机制仅经由机械联锁产生,而无如共固化粘结中的化学键的形成。所述表面处理,如果不适当地进行,那么在使用最终粘结结构期间可以变为粘结失效的来源。此外,在复合物粘结组合件的界面处未形成化学键的情况下,粘结线质量的评估为至关重要的,以确保存在适当粘结。不幸的是,粘结线质量的评估通常为困难的并且所属领域中已知的用于测量粘结线质量的当前技术并非良好适于测量和评估弱粘结的所有潜在来源。
[0006] 在航天工业中,粘着剂典型地与机械固件(例如铆钉、螺钉和螺栓)组合使用以安全并且可靠地固定结构材料。在飞机中很少将结构粘着剂用作用于接合结构部件的唯一机制。粘着粘结部件与通过机械紧固件接合的部件相比呈现显着优点,包括:重量较轻、减少应集中、耐久性、较少部件数等。尽管具有这些益处,但部分由于评估粘结线完整性的难度,粘着粘结的使用受到限制。当前,不存在用于测量接合部件的粘结强度的非破坏性方法。用于测量粘着粘结接合的强度的唯一方式是找到极限强度,其通过破坏粘结而获得。由于显而易见的原因,这种类型的破坏性测试在如飞机组装的工业制造环境下为不实用的。此外,验证测试大量试样以确定粘着剂的平均负载能力并不能保证各个和每一个粘结结构将具有预期的粘结强度。
[0007] 为了满足如美国的国家的某些航空认证要求,当前需要主要结构的结构复联。当前先进技术粘结方法不能够满足这些要求。当前,仅共固化结构被美国联邦航空管理局(FAA)认可用于主要结构并且广泛地用于航天工业中。因此,仍需要可在制造环境下使用的粘着粘结方法或技术,如在产生可靠并且高强度的化学粘结的同时提供粘结线质量的极佳再现性的方法。此外,仍需要可以满足结构复联要求(例如由美国FAA提出的要求)而不增加额外制造步骤的粘结方法。发明内容
[0008] 本发明提供一种富含树脂的剥离层,其由经树脂基质浸渍的编织品组成,所述树脂基质与复合预浸体的树脂基质不同。剥离层经设计使得其可以与复合衬底(例如预浸体或预浸体迭层)共固化,并且在去除所述剥离层时,在完全固化复合衬底的固化表面上保留剥离层树脂的薄、连续性薄膜,但剥离层树脂部分固化。部分固化剥离层树脂薄膜提供具有化学反应性官能团的表面,所述化学反应性官能团能够在随后的粘结步骤中与粘着性树脂发生化学反应。这个剥离层经设计使得其可以应用于各种复合衬底,如预浸体,以改质其表面,从而获得改良的粘着和粘结特性。因此,本文所揭示的剥离层提供优于当前先进技术方法的粘结技术中的步骤变化。
[0009] 本文还揭示一种在粘着粘结之前的新颖的表面准备方法。这种表面准备方法涉及将上文所述的富含树脂的剥离层涂覆到可固化、基于树脂的复合衬底上,随后共固化。在共固化之后,复合衬底完全固化而剥离层中的基质树脂保持部分固化。当去除剥离层时,暴露出具有化学活性官能团的粗糙、可粘结表面。还揭示用于将具有化学活性、可粘结表面的复合衬底粘结到另一复合衬底以形成共价键结结构的方法。附图说明
[0010] 图1A到1C说明根据本发明的一个实施例的制备用于粘着粘结的复合衬底的表面的方法。
[0011] 图1D到1E说明在表面准备之后的复合衬底的粘着粘结。
[0012] 图2A示意性说明层合到纤维加强型复合衬底上的富含树脂的剥离层。
[0013] 图2B示意性说明在共固化和去除剥离层之后的图2A中所示的复合衬底。
[0014] 图3展示根据本发明的实施例的与富含树脂的剥离层堆栈在一起,随后共固化的多个未固化预浸体层。
[0015] 图4展示含有1:1的环树脂:固化剂比率的剥离层的FT-IR(傅里叶变换红外(Fourier Transform Infrared))光谱
[0016] 图5展示含有不足量的固化剂的剥离层的FT-IR光谱。
[0017] 图6是根据一个实例的展示不同剥离层系统的热机械分析(TMA)的图。

具体实施方式

[0018] 本文所揭示的新颖的表面准备方法能够产生一种化学活性复合表面,其可以经由使用基于树脂的粘着剂而以化学方式粘结到另一衬底。这种粘结方法的一个优点是在复合表面与粘着剂之间产生化学粘结,从而在复合衬底之间产生更强的粘结。这种方法的另一优点是其最小化对复合衬底的粘结表面的污染作用。此外,这种粘结方法可以工业规模实践并且无需实质性改变工业中当前使用的基础结构。
[0019] 本文所揭示的粘结方法允许通过在待粘结表面产生化学反应性官能团,从而产生共固化结构来实现可认证的粘结方法的方式。因此,本文所揭示的新颖的粘结方法提供一种在不增加额外制造步骤的情况下满足如由美国FAA提出的结构复联要求的方式。
[0020] 前述化学活性复合表面通过使用富含树脂的剥离层产生。图1A到1C说明如何使用富含树脂的剥离层来产生具有化学活性官能团的可粘结表面。参考图1A,首先将可固化剥离层10层合到未固化或可固化复合衬底11的最外侧表面上。未固化/可固化复合衬底由用未固化或可固化基质树脂灌注或浸渍的加强纤维组成,所述基质树脂含有一或多种热固性树脂。可固化剥离层10由用不同于复合衬底的未固化/可固化基质树脂的可固化基质树脂灌注或浸渍的编织品组成。剥离层10的基质树脂还含有一或多种热固性树脂;然而,其经配制使得当复合衬底11在相同固化条件下完全固化时,剥离层树脂仅部分固化。接着,通过在高温下加热预定时间直到复合衬底11完全固化而剥离层10仅部分固化来进行剥离层10与复合衬底11的共固化。作为共固化的结果,剥离层基质树脂与复合基质树脂混合并且发生反应。控制剥离层树脂的流变和固化动力以获得所需的剥离层树脂基质与复合衬底的树脂基质之间的混合量,从而最大化树脂基质的共固化,藉此确保在共固化之后,表面上保留足量的剥离层树脂。在共固化之后,将剥离层(包括其中的织品)剥离(图1B)以产生具有化学活性官能团的粗糙、可粘结表面12(图1C)。粗糙、可粘结表面12通过在去除剥离层之后保留在复合衬底11上的部分固化剥离层树脂的薄膜提供。
[0021] 可以在0psi到80psi(0MPa到0.55MPa)范围内的压力下在室温到375℉(191℃)范围内的温度下进行剥离层10与复合衬底11的共固化保持1小时到12小时。此外,可以在高压釜中或通过一种其中不施加外压力的高压釜外方法来实现共固化。
[0022] 如图1D中所示,可以通过包夹在衬底之间并且与可粘结表面12接触的可固化、树脂基粘着膜14将具有可粘结表面12的固化复合衬底11接合到另一复合衬底13。基于树脂的粘着膜14处于未固化或部分固化状态中并且具有能够与可粘结表面12上的化学活性官能团发生反应的化学官能团。在影响粘结的后续热处理期间,这些官能团相互反应以形成化学键或共价键。
[0023] 复合衬底13可以是已经受与关于复合衬底11所描述相同的剥离层表面准备的固化复合衬底,以便形成具有化学活性官能团的对应物可粘结表面。经接合的复合衬底11和13接着在高温下经受热处理以固化粘着剂,产生共价键结结构15(图1E),这称作二次粘结。
可以将粘着膜14涂覆到复合衬底11的可粘结表面12和复合衬底13的可粘结表面中的任一者或其两者上。
[0024] 或者,复合衬底13的可粘结表面可以通过其它已知的如喷砂处理、喷粒处理、干式剥离层表面准备等表面处理来制备。“干式剥离层”是无编织品(不含树脂),通常是由尼龙、玻璃或聚酯制造,将其涂覆到复合衬底的粘结表面上,随后固化。在固化之后,去除所述干式剥离层以暴露出纹理化粘结表面。
[0025] 在另一实施例中,当将复合衬底13接合到固化复合衬底11时,复合衬底13处于未固化状态。在这种情况下,在随后的加热步骤中同时固化未固化复合衬底13和可固化粘着膜14,这称作共粘结。
[0026] 在根据本文所揭示的方法的复合衬底的共粘结或二次粘结期间,在存在于基于树脂的粘着剂中的反应性部分与来源于富含树脂的剥离层的复合衬底的可粘结表面上的化学反应性官能团之间形成化学键或共价键。因此,共价键结结构本质上不具有粘着剂-复合物界面。本文所述的可粘结表面上的化学活性官能团的存在通过增加粘结衬底之间的粘结强度和提高粘结可靠度来使随后的粘结方法优化。此外,共价键结结构比通过习知的共粘结或二次粘结方法制备的粘结结构更耐污染。
[0027] 如本文所用的术语“固化(cure)”和“固化(curing)”涵盖通过混合基础组分、在高温下加热、曝露于紫外光和辐射而产生的聚合材料的聚合和/或交联。如本文所用的“完全固化”是指100%程度的固化。如本文所用的“部分固化”是指低于100%程度的固化。
[0028] 剥离层树脂可以含有一或多种固化剂(curing agents)(或固化剂(curatives))或可以不含任何固化剂。在剥离层树脂含有固化剂的实施例中,在与复合衬底共固化之后,部分固化剥离层的固化程度可以在完全固化的10%-75%的范围内,例如25%-75%或25%-50%。在剥离层树脂不含任何固化剂的实施例中,除在复合物-剥离层界面处的外,在与复合衬底共固化之后剥离层大部分未固化。
[0029] 热固性树脂系统的固化程度可以通过差示扫描热量测定法(DSC)确定。热固性树脂系统在固化期间进行不可逆化学反应。随着树脂系统中的组分固化,由树脂放出热量,其通过DSC仪器监测。固化的热量可以用于确定树脂材料的固化百分比。作为实例,以下简单计算可以提供这个信息:
[0030] %固化=[ΔH未固化-ΔH固化]/[ΔH未固化]×100%
[0031] 剥离层
[0032] 本发明的富含树脂的剥离层由用可固化基质树脂浸渍的织品组成,并且视所浸渍的织品的特定类型而定,具有以剥离层的总重量计至少20重量%的树脂含量。在某些实施例中,树脂含量在20重量%-80重量%的范围内,优选为20重量%-50重量%。在一个实施例中,本发明的富含树脂的剥离层含有以剥离层的总重量计:20重量%-80重量%的热固性基质树脂、2重量%-20重量%的固化剂和5重量%-40重量%的额外改质剂或填料添加剂。
[0033] 图2A示意性说明层合到纤维加强型复合衬底上的富含树脂的剥离层。图2B示意性说明在共固化和去除剥离层之后的具有剩余剥离层树脂的残余层的复合衬底。在剥离期间的破裂线在纤维-树脂界面处,但不在织品内。选择剥离层树脂组合物和织品构造,使得在去除剥离层之后无断裂纤维留在复合衬底的表面上。优选地,由于不完全固化,在固化之后保留在复合衬底的表面上的剥离层树脂具有低于复合树脂基质的玻璃转移温度(Tg)的玻璃转移温度。较低树脂Tg也允许表面剥离层树脂在随后粘结步骤期间经历粘性流,藉此产生剥离层树脂可以与粘着性树脂混合的条件。
[0034] 在一个实施例中,剥离层的基质树脂由可固化树脂组合物形成,所述组合物包括:一或多种热固性树脂;至少一种固化剂;和任选的添加剂、改质剂和填充剂。根据另一实施例,剥离层的树脂组合物含有一或多种热固性树脂,但不包括任何固化剂。
[0035] 适合的热固性树脂包括(但不限于)环氧树脂树脂、苯酚、氰酸酯、双来酰亚胺、苯并恶嗪、聚苯并恶嗪、聚苯并恶唑、其组合和其前体。
[0036] 特别适合的是每分子具有多个环氧官能团的多功能环氧树脂(或聚环氧化物)。聚环氧化物可以是饱和、不饱和、环状或非环状、脂肪族、芳香族或杂环聚环氧化物化合物。适合的聚环氧化物的实例包括聚缩水甘油醚,其在存在下通过表氯醇或表溴醇与多酚的反应来制备。因此,适合的多酚是例如间苯二酚、邻苯二酚、对苯二酚、双酚A(双(4-羟基苯基)-2,2-丙烷)、双酚F(双(4-羟基苯基)甲烷)、氟4,4'-二羟基二苯甲酮、双酚Z(4,4'-亚环己基双酚)和1,5-羟基。作为聚缩水甘油醚的基础的其它适合的多酚是已知的酚醛清漆树脂型酚和甲醛或乙醛的缩合产物。
[0037] 适合的环氧树脂的实例包括双酚A或双酚F的二缩水甘油醚,例如可以购自陶氏化学公司(Dow Chemical Co.)的EPONTM 828(液体环氧树脂)、D.E.R.331、D.E.R.661(固体环氧树脂);基酚的三缩水甘油基醚,例如来自亨斯迈公司(Huntsman  Corp.)的MY 0510、MY 0500、MY 0600、MY 0610。其它实例包括酚基酚醛清漆环氧树脂,可以从陶氏化学公司以DEN 428、DEN 431、DEN 438、DEN 439和DEN 485商购;甲酚基酚醛清漆环氧树脂,可以从汽巴嘉基公司(Ciba-Geigy Corp.)以ECN 1235、ECN 1273和ECN 1299商购;酚醛清漆环氧树脂,可以从亨斯迈公司以 71756、 556和756商购。
[0038] 剥离层树脂组合物优选地是将在高温下固化的单组分系统,并且因此其含有一或多种固化剂。当加热到高于室温的温度时,所述固化剂能够实现剥离层树脂组合物的选择性组分的交联或固化。为达成本文所述的目的,选择固化剂的量使得每1当量环氧树脂分子优选存在约0.1到约1当量固化剂,更优选在0.1-0.5之间。选择固化剂与环氧树脂的精确比率,使得在与复合衬底共固化之后保留最佳数目的化学活性表面官能团。用于剥离层树脂的适合的固化剂可以包括(但不限于)脂肪族和芳香族胺、三氟化复合物、胍、双氰胺、双脲(例如2,4-甲苯双-(二甲基脲)、4,4'-亚甲基双-(苯基二甲基脲))和二氨基二苯砜(例如4,4'-二氨基二苯砜或4,4'-DDS)。可以使用一或多种固化剂并且固化剂的总量以树脂组合物的总重量计可以在2重量%-20重量%的范围内。
[0039] 还可将呈颗粒形式(例如粉末)的无机填充剂添加到剥离层树脂组合物中作为流变改质组分以控制树脂组合物的流动和防止在其中粘聚。适合的无机填充剂包括(但不限于)烟雾状二氧化、滑石、母、、氧化研磨或沉淀的白垩、石英粉末、氧化锌、氧化钙和二氧化。如果存在,那么剥离层树脂组合物中的填充剂的量可以是以树脂组合物的总重量计0.5重量%到40重量%,优选为1-10重量%,更优选为1-5重量%。
[0040] 可以通过将上述树脂组合物涂布到编织品上来形成富含树脂的剥离层,以便使用习知溶剂或热熔融涂布方法来完全浸渍织品中的纱线。接着使湿润的剥离层干燥(如果需要)以降低挥发性物质含量,优选降低到低于2重量%。可以通过在室温下的干隔夜,随后在140℉-170℉下烘干,或视需要通过在高温下烘干以减少干燥时间来进行干燥。随后,可以通过将可去除剥离型纸或合成薄膜(例如聚酯薄膜)涂覆到相对侧上来保护经干燥的富含树脂的剥离层。所述剥离型纸或合成薄膜将在使用用于表面粘结的剥离层之前去除。
[0041] 在一个实施例中,调节剥离层树脂的组合物中的热固性树脂与固化剂的比率,使得所述组合物含有不足以用于与100%热固性树脂反应必要的量的固化剂,并且因此,由于这种不足,在预先确定的固化循环结束时将存在来自热固性树脂材料的未反应或非交联官能团。例如,在预先确定的固化循环中如果需要X量的固化剂以获得100%程度的固化,则在剥离层树脂组合物中可以使用低于X的量,例如至多80%的X,优选25%-50%的X以实现部分固化。热固性树脂材料含有未反应/非交联官能团,其是用于上文所论述的可粘结表面的化学活性官能团的来源。
[0042] 复合衬底
[0043] 在这种上下文中,复合衬底是指纤维加强型树脂复合物,包括预浸体或预浸体迭层(如用于制造航空复合结构者)。如本文所用的术语“预浸体”是指已用可固化基质树脂浸渍的纤维材料层(例如单向纤维束或带、非织毡或织品层)。复合衬底中的基质树脂可以处于未固化或部分固化状态。纤维加强型材料可以呈编织或非编织织品层或单向带形式。“单向带”是指加强纤维层,其在相同方向上对准。如本文所用的术语“预浸体迭层”是指多个堆栈在堆栈配置中的预浸体层。
[0044] 可手动或通过如自动铺带(ATL)的自动方法完成预浸体层的迭层。可以将迭层内的预浸体层安置在相对于彼此的所选择的定向上。例如,预浸体迭层可以包含具有单向纤维架构的预浸体层,其中所述纤维相对于迭层的最大尺寸(如长度)以所选度θ,例如0°、45°或90°定向。另外应理解,在某些实施例中,预浸体可以具有纤维架构的任何组合,如单向对准纤维、多向纤维和编织品。
[0045] 根据一个实施例(图3中所说明),可以将多个未固化预浸体层20与上文描述为最外层的可固化、富含树脂的剥离层11堆栈在一起,随后共固化并且去除剥离层以提供如上文参考图1A到1C所述的具有化学活性官能团的可粘结表面。作为实例,预浸体层的数目可以是2-100层或10-50层。
[0046] 可以通过使用基质树脂系统输注或浸渍连续性纤维或编织品、形成材料的可弯性和粘性薄片来制造预浸体。通常这称作预浸方法。可以指定所述纤维的精确规格、其定向和树脂基质的配制品以实现用于预浸体的预期用途的最佳性能。还可根据需求指定每平方米的纤维量。
[0047] 在预浸中,以可控方式用基质树脂浸渍加强纤维并且接着冷冻以抑制树脂的聚合。接着在冷冻状态下运送和储存冷冻预浸体直到需要时。当由预浸体制造复合材料部件时,将预浸体解冻到室温,切割成一定尺寸并且组装到模具上。一旦定位,在压力下固结和固化预浸体以获得所需的具有最小空隙的纤维体积部分。
[0048] 术语“浸渍”是指将可固化基质树脂材料引入加强纤维中以便通过树脂部分或完全囊封纤维。用于制造预浸体的基质树脂可以呈树脂薄膜或液体的形式。此外,在粘结之前,基质树脂处于可固化/未固化状态。可以通过施加热量和/或压力来促进浸渍。
[0049] 作为实例,浸渍方法可以包括:
[0050] (1)连续移动纤维通过熔融浸渍基质树脂组合物的(经加热的)槽以完全或实质上完全浸湿所述纤维;或
[0051] (2)挤压顶部和底部树脂薄膜与并联配置的连续性、单向纤维或织品层相抵。
[0052] 复合衬底(例如预浸体)中的加强纤维可以呈短切纤维、连续性纤维、长丝、纤维束、集束、薄片、层和其组合的形式。连续性纤维可以进一步采用单向(在一个方向上对准)、多向(在不同方向上对准)、非编织、编织、针织、缝合、卷绕和编织构型以和旋流垫、毛毡垫和短切垫结构中的任一者。编织纤维结构可包含多个编织纤维束,每个纤维束由多个长丝组成,例如数千个长丝。在其它实施例中,可以通过交叉纤维束针、投纬针织针或少量如热塑性树脂的树脂粘合剂将所述纤维束固持在位置上。
[0053] 纤维材料包括(但不限于)玻璃(包括电气玻璃或E玻璃)、碳、石墨、芳族聚酰胺、聚酰胺、较高模量聚乙烯(PE)、聚酯、聚对亚苯基苯并恶唑(PBO)、硼、石英、玄武岩、陶瓷和其组合。
[0054] 就如用于航空和汽车应用的高强度复合材料的制造来说,优选的是,加强纤维具有大于3500MPa的抗张强度。
[0055] 一般来说,复合衬底的基质树脂与剥离层树脂的基质树脂类似。其含有一或多种热固性树脂作为主要组分以及少量添加剂用于在固化之前或在固化之后改良树脂基质的特性,所述添加剂如固化剂、催化剂、共聚单体、流变控制剂、增粘剂、流变改质剂、无机或有机填充剂、热塑性或弹性韧化剂、稳定剂、抑制剂、颜料/染料、阻燃剂、反应性稀释剂和所属领域的技术人员熟知的其它添加剂。
[0056] 适用于复合衬底的基质树脂的热固性树脂是上文参考剥离层的基质树脂所述的树脂。
[0057] 适用于复合衬底的基质树脂的环氧树脂包括芳香族二元胺、芳香族单一级胺、氨基酚、多元酚、多元醇、聚羧酸的聚缩水甘油衍生物。适合的环氧树脂的实例包括如双酚A、双酚F、双酚S和双酚K的双酚的聚缩水甘油醚;和甲酚基与酚基酚醛清漆环氧树脂的聚缩水甘油醚。
[0058] 添加固化剂和/或催化剂可以提高固化率和/或降低基质树脂的固化温度。用于热固性树脂的固化剂适当地选自已知的固化剂,例如胍(包括经取代的胍)、脲(包括经取代的脲)、三聚氰胺树脂、胍胺、胺(包括一级和二级胺、脂肪族和芳香族胺)、酰胺、酸酐(包括聚羧酸酐)和其混合物。
[0059] 韧化剂可以包括热塑性和弹性聚合物,和如核-壳型橡胶粒子、聚酰亚胺粒子、聚酰胺粒子的聚合粒子。
[0060] 无机填充剂可以包括烟雾状二氧化硅石英粉末、氧化铝、板状填充剂,如云母、滑石或粘土(例如高岭土)。
[0061] 粘着剂
[0062] 用于粘结复合衬底的粘着剂是适用于与未固化或可固化复合衬底一起共固化的可固化组合物。可固化粘着剂组合物可以包含一或多种热固性树脂、固化剂和/或催化剂、和任选的韧化剂、填充材料、流动控制剂、染料等。热固性树脂包括(但不限于)环氧树脂、不饱和聚酯树脂、双马来酰亚胺、聚酰亚胺、氰酸酯、酚等。
[0063] 可以用于可固化粘着剂组合物的环氧树脂包括每分子具有多个环氧基的多官能环氧树脂,如揭示用于剥离层和复合衬底的基质树脂的树脂。
[0064] 固化剂可以包括例如胍(包括经取代的胍)、脲(包括经取代的脲)、三聚氰胺树脂、胍胺、胺(包括伯胺和仲胺、脂肪族和芳香族胺)、酰胺、酸酐和其混合物。特别适合的是潜在的基于胺的固化剂,其可以在高于160℉(71℃)、优选高于200℉、例如350℉的温度下活化。适合的潜在的基于胺的固化剂的实例包括双氰胺(DICY)、胍胺、胍、氨基胍和其衍生物。特别适合的潜在的基于胺的固化剂是双氰胺(DICY)。
[0065] 可以将固化促进剂与潜在的基于胺的固化剂结合使用以促进环氧树脂与基于胺的固化剂之间的固化反应。适合的固化促进剂可以包括经烷基和芳基取代的脲(包括芳香族或脂环族二甲基脲);基于甲苯二胺或亚甲基二苯胺的双脲。双脲的实例是2,4-甲苯双(二甲基脲)。作为实例,可以将双氰胺与经取代的双脲组合用作固化促进剂。
[0066] 韧化剂可以包括热塑性或弹性聚合物,和如核-壳型橡胶(CSR)粒子的聚合粒子。适合的热塑性聚合物包括具有或不具有反应性官能团的聚芳砜。具有官能团的聚芳砜的实例包括例如具有封端胺官能团的聚醚砜-聚醚醚砜(PES-PEES)共聚物。适合的弹性聚合物包括羧基封端的丁二烯腈聚合物(CTBN)和胺封端的丁二烯丙烯腈(ATBN)弹性体。CSR粒子的实例包括以商标Kane 市售者,如MX 120、MX 125和MX 156(全部含有25重量%的分散在液体双酚A环氧树脂中的CSR粒子)。
[0067] 无机填充剂可以呈粒状物形式,例如粉末、薄片,并且可以包括烟雾状二氧化硅石英粉末、氧化铝、云母、滑石和粘土(例如高岭土)。
[0068] 实例
[0069] 提供以下实例以说明本发明的某些方面。在以下实例中,除非另外指明,否则表中所示的量以重量份(“pbw”)计。
[0070] 实例1
[0071] 基于表1中所示的配制品制备四份可固化剥离层树脂混合物。使用与标记为对照物的树脂混合物相同的配制品制备标记为树脂-17、树脂-11、树脂-8的树脂混合物,但4,4'-二氨基二苯砜(4,4'-DDS)固化剂的量由20.9份分别变为17pbw、11.3pbw、8.3pbw。
[0072] 表1
[0073]成分 对照物 树脂-17 树脂-11 树脂-8
酚类酚醛清漆环氧树脂 50 50 50 50
双酚A的二缩水甘油醚 25 25 25 25
氨基酚的三缩水甘油醚 20 20 20 20
基于二环戊二烯的酚醛清漆环氧树脂 10 10 10 10
4,4'-二氨基二苯砜(4,4'-DDS) 20.9 17.0 11.3 8.3
烟雾状二氧化硅 2 2 2 2
[0074] 使用热熔融方法混合树脂混合物,随后将上述树脂混合物中的每一者涂布到来自博舍工业公司(Porcher Industries)的聚酯基织品材料(博舍(Porcher)8115)上。接着将所得经树脂浸渍的织品层用作剥离层材料。
[0075] 通过10层CYCOM 977-2(含有经基于环氧树脂的基质树脂浸渍的碳纤维的预浸体材料,可以从氰特工程材料公司(Cytec Engineered Materials)购得)手动堆栈所制备的剥离层材料中的每一者,其中剥离层形成外表皮。接着通过在80psi下在350℉下加热3小时使未固化层合物固化。在固化之后,手动去除所述剥离层(包括织品)以产生具有可粘结表面的固化复合对象。对照物剥离层完全固化并且在粘结表面上实质上未产生官能团,但其它剥离层提供含有未反应的环氧树脂官能团的部分固化表面。接着使用基于环氧树脂的粘着剂FM 309-1(可以从氰特工程材料公司购得)将具有可粘结表面的固化复合对象粘结(经由二次粘结)到另一相同复合对象。基于环氧树脂的粘着剂未固化并且含有提供胺官能团的胺型固化剂。通过在40psi下以每分钟3℉加热到350℉并且保持90分钟来进行二次粘结。
[0076] 表1中所揭示的剥离层配制品经设计使得4,4'-DDS固化剂的含量为变化的以选择性控制在与预浸体层共固化之后剩余的未反应的环氧树脂官能团的量。显而易见的是,通过降低剥离层配制品中4,4'-DDS的量,在与预浸体层共固化期间消耗较少的环氧基,藉此允许保留可随后与粘着剂的官能团发生反应的环氧官能团。
[0077] 粘结结构的机械特性和表征
[0078] 通过根据ASTM D5528完成的G1c破裂韧性测试确定上述产生的粘结结构的机械性能。G1c结果展示于表2中。
[0079] 表2
[0080]破裂韧性 对照物 树脂-17 树脂-11 树脂-8
G1c(焦/平方米) 976 1140 1046 1088
[0081] 表2展示借助于部分固化剥离层材料(树脂-17、树脂-11和树脂-8)形成的粘结结构与由使用完全固化剥离层(对照物)形成的粘结结构相比产生更强的粘结强度。更重要的是,失效模式,其为所需失效类型,在含有部分固化剥离层的系统中变得更有内聚性。
[0082] 实例2
[0083] 在部分固化剥离层表面上的活性官能团的保留经由使用傅里叶变换红外(FT-IR)光谱法的剥离层材料的调查证实。FT-IR光谱法是用于表征官能团的有效光谱工具并且允许鉴别材料的结构组分。剥离层由具有不足量的固化剂(也就是固化剂)的树脂组合物形成并且对照剥离层由具有1:1的环氧树脂:固化剂比率的树脂组合物形成。剥离层组合物展示于表3中。
[0084] 表3
[0085]成分 对照剥离层 固化剂不足的剥离层
酚类酚醛清漆环氧树脂;官能度=3.8 50.00 50.00
双酚A的二缩水甘油醚 25.00 25.00
氨基酚的三缩水甘油醚 20.00 20.00
基于二环戊二烯的酚醛清漆环氧树脂;官能度=3.2 10.00 10.00
4,4'-DDS 20.85 8.34
烟雾状二氧化硅 2.00 2.00
[0086] 如实例1中所描述,将每个剥离层与预浸体层堆栈在一起并且共固化。图4展示对照剥离层材料的FT-IR光谱,其含有足够固化剂以完全固化其中的热固性树脂,并且图5展示其中存在不足量的固化剂的剥离层材料的FT-IR光谱,使得在共固化期间不消耗所有的-1热固性树脂,从而产生部分固化剥离层。在约914cm 处的峰是特征带,其归因于环氧乙烷环的伸缩振动。吸光度的高度或峰高度是存在于既定材料中的环氧基的量的指标。如在图5中可见,部分固化剥离层在共固化之后具有更高的环氧官能团的量。
[0087] 以这样一种方式产生的表面活性官能团的存在与传统的二次粘结结构相比具有在衬底-粘着剂界面处提供化学键的益处。因此,本发明的方法提供一种二次粘结复合材料以产生共固化结构的方式。这种粘结方法的改进在于其为粘结结构提供可靠性和结构复联。
[0088] 实例3
[0089] 经由热机械分析(TMA)研究实例1中的剥离层配制品以分析玻璃转移温度。图6展示研究结果并且表明可以通过修改配制品比率来控制剥离层树脂表面的Tg。
[0090] 实例4
[0091] 标记为树脂-12和树脂-6的两种可固化剥离层树脂混合物基于表4中所示的配制品制备。使用热熔融方法制备树脂混合物,随后将上述树脂混合物中的每一者涂布到来自博舍工业公司的基于聚酯的织品材料(博舍8115)上。接着将所得经树脂浸渍的织品层用作剥离层材料。
[0092] 表4
[0093]成分 树脂-12 树脂-6
双酚A的二缩水甘油醚 29.55 29.55
四官能缩水甘油胺环氧树脂 31 31
4,4'-二氨基二苯砜(4,4'-DDS) 12.6 6.3
聚醚砜 10 10
[0094] 将所制备的剥离层材料中的每一者通过10层CYCOM 977-2手动堆栈,其中剥离层形成外表皮。接着通过在80psi下在350℉下加热3小时使未固化层合物固化。作为比较,以类似方式制备另一个预浸体迭层,不同的处在于用干式聚酯织品剥离层(博舍8115)替换上述制备的富含树脂的剥离层。在固化之后,手动去除每个剥离层以产生具有可粘结表面的固化复合对象。接着使用基于环氧树脂的粘着剂FM 309-1将具有可粘结表面的固化复合对象粘结(经由二次粘结)到另一个相同复合对象上。基于环氧树脂的粘着剂未固化并且含有提供胺官能团的胺型固化剂。通过在40psi下以每分钟3℉加热到350℉并且保持90分钟来进行二次粘结。
[0095] 还通过CYCOM 977-2预浸体材料的两个10层堆栈、在预浸体堆栈之间包夹FM309-1粘着剂和通过在80psi下在350℉下加热90分钟共固化来制备共固化对照结构。
[0096] 粘结结构的机械特性和表征
[0097] 这个实例中产生的粘结结构的机械性能通过根据ASTM D5528进行的G1c破裂韧性测试确定。G1c结果展示于表5中。
[0098] 表5
[0099]破裂韧性 干式剥离层 共固化 基于树脂-12的剥离层 基于树脂-6的剥离层
G1c(焦耳/平方米) 1386 1113 1325 1373
[0100] 实例5
[0101] 通过上述实例4的基于树脂-6的剥离层堆栈CYCOM 977-2预浸体材料的4层层合物作为外表皮。接着通过在80psi下在350℉下加热3小时来使未固化层合物固化,藉此树脂-6剥离层在固化循环结束时部分固化。在去除剥离层之后,接着将具有部分固化、残余剥离层薄膜的固化复合层合物粘结到以类似方式制备、固化的层合物(还含有部分固化、残余剥离层薄膜)上,其中经剥离层处理的表面面向彼此并且基于环氧树脂的粘着剂FM 309-1夹在中间。基于环氧树脂的粘着剂未固化并且含有提供胺官能团的胺型固化剂。在粘结期间,粘结组合件还粘着于2”×2”铝固定。整个组合件经真空装袋并且在高压釜中通过在40psi下以每分钟3℉加热到350℉并且保持90分钟来固化。接着通过表面张力的拉伸在英斯特朗(Instron)测试机上测试固化层合物以评估失效的破裂力学。
[0102] 通过遵循上述程序类似地制造对照层合物,通过使用干式剥离层置换上述基于树脂-6的剥离层来制备二次粘结面板并且通过在一个步骤中固化整个组合件来产生共固化面板(但不使用剥离层)。
[0103] 表6展示来自固化层合物的平拉力测试的结果并且表明基于树脂-6的剥离层的有效性。还通过分析失效模式来评估树脂-6剥离层对界面特性的影响以确定剥离层是否不利地影响粘结能力。根据破裂试样的分析,组合件的弱点是预浸体层合物。所述结果清楚地表明使用树脂-6剥离层可以提供增强结构强度的稳固粘结表面。
[0104] 表6
[0105]
QQ群二维码
意见反馈