激光焊接用光吸收树脂组合物和光吸收树脂成型体以及光吸收树脂成型体的制造方法

申请号 CN201310295643.9 申请日 2008-01-11 公开(公告)号 CN103435949A 公开(公告)日 2013-12-11
申请人 住友金属矿山株式会社; 发明人 足立健治;
摘要 本 发明 提供 激光 焊接 用光吸收 树脂 组合物、光吸收树脂成型体以及光吸收树脂成型体的制造方法。所述光吸收树脂组合物可进行保持透明性的、稳定的 激光焊接 。该激光焊接用光吸收树脂组合物含有 玻璃化 转变 温度 在30℃以上的高分子分散剂和激光吸收微粒,其中,所述激光吸收微粒为通式XB6表示的六 硼 化物微粒,此处,X为选自La、Ce、Gd、Tb、Dy、Ho、Y、Sm、Eu、Er、Tm、Yb、Lu、Sr、Ca中的至少一种元素。
权利要求

1.一种光吸收树脂成型体,该光吸收树脂成型体是将下述激光焊接用光吸收树脂组合物与热塑性树脂进行捏合、并进行成型而得到的;
所述激光焊接用光吸收树脂组合物含有激光吸收微粒和玻璃化转变温度为30℃以上的苯乙烯-丙烯酸类高分子分散剂,其中,
所述激光吸收微粒为LaB6、CeB6、GdB6或YB6表示的六化物微粒;
所述热塑性树脂为丙烯酸类树脂、聚酸酯树脂、聚对苯二甲酸乙二醇酯树脂、聚苯乙烯树脂、聚酰胺树脂、或低密度聚乙烯树脂,
在该光吸收树脂成型体的距表面3mm以内的区域中,所述六硼化物微粒的含量为
2 2
0.004g/m ~2.0g/m。
2.根据权利要求1的光吸收树脂成型体,其中,
在该光吸收树脂成型体的距表面3mm以内的区域中,所述六硼化物微粒的含量为
2 2
0.084g/m ~0.44g/m ;
该光吸收树脂成型体的可见光透过率为41%~77%。
3.根据权利要求1的光吸收树脂成型体,其中,
在该光吸收树脂成型体的距表面3mm以内的区域中,所述六硼化物微粒的含量为
2 2
0.084g/m ~0.216g/m ;
该光吸收树脂成型体的可见光透过率为57%~77%。
4.根据权利要求1的光吸收树脂成型体,其中,所述六硼化物微粒的平均粒径为
1000nm以下。
5.根据权利要求1的光吸收树脂成型体,其中,所述六硼化物微粒的平均粒径为
92nm~181nm。
6.根据权利要求1的光吸收树脂成型体,其中,
所述光吸收树脂成型体的形状为板状或膜状。
7.根据权利要求1的光吸收树脂成型体,其可见光透过率为30%以上,在波长800~
1100nm具有吸收的极大值,雾度值为30%以下。
8.根据权利要求1的光吸收树脂成型体,其可见光透过率为30%以上,在波长800~
1100nm具有吸收的极大值,雾度值为2%~15%。
9.根据权利要求1的光吸收树脂成型体,其中,所述苯乙烯-丙烯酸类高分子分散剂的添加量为所述激光吸收微粒重量的2~10倍。
10.一种光吸收树脂成型体,该光吸收树脂成型体包括透明基材和形成在该透明基材表面的涂覆膜;
其中,所述涂覆膜是通过用紫外线固化树脂及异丙醇稀释下述激光焊接用光吸收树脂组合物并将其涂覆于所述透明基材表面后,进行固化而形成的;
所述激光焊接用光吸收树脂组合物含有激光吸收微粒和玻璃化转变温度为30℃以上的高分子分散剂;
所述激光吸收微粒为LaB6表示的六硼化物微粒;
所述透明基材为丙烯酸类树脂。
11.根据权利要求10的光吸收树脂成型体,其可见光透过率为30%以上,在波长800~
1100nm具有吸收的极大值,雾度值为2%~15%。
12.一种光吸收树脂成型体的制造方法,所述光吸收树脂成型体通过下述方法成型:
由热塑性树脂稀释激光焊接用光吸收树脂组合物,并进行捏合、成型;所述激光焊接用光吸收树脂组合物含有激光吸收微粒和玻璃化转变温度在30℃以上的苯乙烯-丙烯酸类高分子分散剂,其中,
在该光吸收树脂成型体的距表面3mm以内的区域中,所述六硼化物微粒的含量为
2 2
0.004g/m ~2.0g/m,
所述激光吸收微粒为LaB6、CeB6、GdB6或YB6表示的六硼化物微粒;
使用所述激光吸收微粒、所述高分子分散剂、和丙烯酸类树脂、聚碳酸酯树脂、聚对苯二甲酸乙二醇酯树脂、聚苯乙烯树脂、聚酰胺树脂、或低密度聚乙烯树脂中的任意热塑性树脂制造所述光吸收树脂成型体。
13.根据权利要求12的光吸收树脂成型体的制造方法,其中,所述苯乙烯-丙烯酸类高分子分散剂的添加量为所述激光吸收微粒重量的2~10倍。
14.一种树脂接合体,其是由光透过树脂成型体和权利要求1的光吸收树脂成型体经激光焊接而得到的接合体,其中,所述光透过树脂成型体和所述光吸收树脂成型体的接合面是凹凸相配的面。

说明书全文

激光焊接用光吸收树脂组合物和光吸收树脂成型体以及光

吸收树脂成型体的制造方法

[0001] 本申请是基于申请日为2008年1月11日,优先权日为2007年1月11日,申请号为200810002931.X,发明名称为:“激光焊接用光吸收树脂组合物和光吸收树脂成型体以及光吸收树脂成型体的制造方法”的专利申请的分案申请。

技术领域

[0002] 本发明涉及采用激光焊接法对塑料部件进行接合时使用的激光焊接用光吸收树脂组合物和光吸收树脂成型体、以及光吸收树脂成型体的制造方法。具体而言,本发明涉及激光焊接用光吸收树脂组合物和光吸收树脂成型体、以及光吸收树脂成型体的制造方法,所述激光焊接用光吸收树脂组合物具有传统的有机光吸收剂所不具备的热稳定性,并且对塑料构件赋予使用传统类吸光剂所无法实现的激光焊接后的透明性和透光性。

背景技术

[0003] 近年来,作为热塑性树脂的接合方法,使用激光焊接法的场合越来越多。可以认为其原因是使用这种激光焊接法具有以下优点:即使对于具有精细复杂表面的部件也可实现无振动易稳接合,无闪无烟,在改善接合产品外观的同时扩展了接合部位的设计自由度
[0004] 在激光焊接法中,通常待接合的塑料部件中的一个由光透过性树脂成型体构成,而另一个由吸收激光而发热的光吸收树脂成型体构成。
[0005] 从光透过性树脂成型体一侧对该塑料构件照射激光时,首先,光吸收树脂成型体熔融,然后热量从熔融的光吸收树脂成型体的周边传导至光透过性树脂成型体一侧,引起熔融,从而实现两成型体的接合。
[0006] 作为激光光源,主要使用波长1064nm的Nd:YAG激光或波长800~1000nm的半导体激光,因此使用可有效吸收波长800~1200nm的近红外线的材料作为激光焊接用光吸收树脂组合物。
[0007] 已知上述激光焊接用光吸收树脂组合物中包括含有下列物质的树脂组合物(见专利文献1):有机化合物如酞菁类化合物、花青类化合物(cyanine compounds)、铵类化合物(aminium compounds)、亚铵类化合物(imonium compounds)、鲨 (squalium)类化合物、甲川类化合物、蒽醌类化合物、偶氮类化合物;以及无机化合物如碳黑。
[0008] 此外,专利文献2提出了一种激光焊接用光吸收树脂组合物,为提高对激光的灵敏度,与具有芳香环的膦酸一起添加了金属的单质、盐、化物、氢氧化物等。所述树脂组合物中包含的金属氧化物的具体例子包括:氧化、氧化、氧化、氧化、氧化镁、氧化锌、氧化钴、氧化铅、氧化、氧化锑、氧化铟、氧化锰、氧化钼、氧化镍、氧化铜、氧化钯、氧化镧、钼掺杂氧化锡(ATO)、铟掺杂氧化锡(ITO)等。
[0009] 此外,专利文献3提出了一种激光焊接用光吸收树脂组合物,其中,添加了锡掺杂氧化铟(ITO)、钼掺杂氧化锡(ATO)作为在激光波长区域内具有光吸收能的无机材料。
[0010] 此外,专利文献4中公开了六化镧(LaB6)等六硼化物微粒可作为遮蔽日光中的近红外线的材料。
[0011] 专利文献1:特开2004-148800号公报
[0012] 专利文献2:特开2005-290087号公报
[0013] 专利文献3:国际公开WO2005/084955A1号小册子
[0014] 专利文献4:特开2000-096034号公报

发明内容

[0015] 本发明所要解决的技术问题
[0016] 然而,根据本发明人的研究,专利文献1中记载的激光焊接用有机光吸收树脂组合物(激光吸收材料)通常波长吸收范围狭窄,需要较多的添加量才能获得充分的发热效果。此外,所述激光吸收材料的热稳定性差,在发热的同时发生分解,根据激光照射条件不同,有时不一定能够得到均匀稳定的接合体。
[0017] 另一方面,专利文献1记载的无机碳材料的热稳定性高。但是,塑料部件在可见光波长区域内有吸收,因而其本身呈黑色,不适用于需要透明塑料接合部件的情况或不希望接合部变黑的部件。然而,以医疗领域为代表,对于透明无着色接合的需求日益增加。此外,碳黑易聚集,如果其在基体树脂(host resin)中的分散状态出现聚集或不均,则激光吸收导致的发热变得不均匀,在焊接中出现局部不均、局部发泡、以及焊接时间延长等问题。
[0018] 专利文献2记载了一种激光焊接用光吸收树脂组合物,其中与具有芳香环的膦酸铜一起添加了金属的单质、盐、氧化物、氢氧化物等,该光吸收树脂组合物对激光的灵敏度不够,为了进行稳妥地接合,必须添加大量该组合物。然而,大量添加该组合物有可能改变树脂成型体自身的基本性质,并存在导致机械强度下降等问题。此外,其它问题还包括:上述组合物中的大多数在可见光波长区域具有吸收,会使塑料部件强烈着色。
[0019] 专利文献3记载了一种添加了锡掺杂氧化铟(ITO)、钼掺杂氧化锡(ATO)的激光焊接用光吸收树脂组合物,该光吸收树脂组合物具有良好的透明性/无色性,但其单位重量的红外线吸收率远低于碳等。此外,因其吸收是从1000nm以上较长波长的近红外线开始,所以存在的问题是:在半导体激光的波长800~1000nm或Nd:YAG激光的波长1064nm处的吸收实际上已经非常微弱。因此,为了进行适宜的激光焊接,必须向塑料部件中大量添加该组合物。但是,该组合物的大量添加不但会改变构件自身的基本性质,还会增加成本限制。特别是,在使用ITO的情况下,资源方面和价格方面的问题尤为显著。
[0020] 考虑到上述问题,做出了本发明,本发明要解决的问题是,提供激光焊接用光吸收树脂组合物和光吸收树脂成型体、以及光吸收树脂成型体的制造方法,其中,所述激光焊接用光吸收树脂组合物,可以实现由激光产生均匀发热、稳定的激光焊接,并且可以保持接合焊接部分的透明性。
[0021] 解决问题的方法
[0022] 本发明人为解决上述问题进行了反复研究,结果认为作为激光焊接用光吸收树脂组合物,要求具有如下特征:
[0023] 1.在整个半导体激光或Nd:YAG激光的波长区域附近即近红外线波长800~1200nm具有强吸收,并具有高吸收系数;
[0024] 2.在可见光波长即380~780nm的吸收小;
[0025] 3.激光焊接用光吸收树脂组合物在基体树脂中的溶解性或分散性高。
[0026] 因此,本发明人等对下述激光焊接用光吸收树脂组合物、光吸收树脂成型体以及光吸收树脂成型体的制造方法进行了研究,所述激光焊接用光吸收树脂组合物在整个用于激光焊接的激光波长区域即近红外线波长800~1200nm具有强吸收,而在可见光范围的吸收足够小,从而保持了透明性,并且能够通过激光均匀发热并在不破坏接合焊接部分透明外观的情况下进行稳定的激光焊接,而且在基体树脂中的溶解性或分散性高。
[0027] 作为本研究的结果,本发明人发现:在含有激光吸收微粒和玻璃化转变温度在30℃以上的高分子分散剂的激光焊接用光吸收树脂组合物中,通过使用通式XB6表示的六硼化物微粒(此处,X为选自La、Ce、Gd、Tb、Dy、Ho、Y、Sm、Eu、Er、Tm、Yb、Lu、Sr、Ca中的至少一种元素)得到了以下激光焊接用光吸收树脂组合物:一方面可以强烈吸收Nd:YAG激光、半导体激光波长范围的光,从而有利于进行激光焊接,另一方面还可以使可见光波长区域的光几乎完全透过,从而可保持成型体的透明性。从而,实现了本发明。
[0028] 所述六硼化物微粒为在激光波长区域内具有光吸收功能的无机微粒,并且是保有大量自由电子、可产生等离子体共振的微粒。激光入射在上述微粒上时,根据该光波的频率激发自由电子,产生电子的集体振荡,从而吸收或辐射能量。此时,吸收波长依赖于自由电子密度或微粒的能量结构(energy structure),在Nd:YAG激光或半导体激光的光波范围800~1200nm附近具有等离子体吸收波长。使用能量分辨率(energy resolution)高的电子能量损失光谱法(EELS),可以直接观测由于等离子激发导致的能量损失峰。其中,使用LaB6、CeB6、GdB6效果显著。
[0029] 即,本发明的第一方面涉及一种激光焊接用光吸收树脂组合物,其含有玻璃化转变温度在30℃以上的高分子分散剂和激光吸收微粒,其中,
[0030] 所述激光吸收微粒为通式XB6表示的六硼化物微粒,此处,X为选自La、Ce、Gd、Tb、Dy、Ho、Y、Sm、Eu、Er、Tm、Yb、Lu、Sr、Ca中的至少一种元素。
[0031] 本发明的第二方面涉及第一方面的激光焊接用光吸收树脂组合物,其中,所述六硼化物微粒的平均粒径为1000nm以下。
[0032] 本发明的第三方面涉及一种光吸收树脂成型体,其通过下述方法成型:由包含于该激光焊接用光吸收树脂组合物中的高分子分散剂和热塑性树脂稀释第1或2方面的激光焊接用光吸收树脂组合物,并进行捏合、成型;其中,在该光吸收树脂成型体表面层即距表2 2
面3mm以内的区域中,六硼化物微粒的含量为0.004g/m ~2.0g/m。
[0033] 本发明的第四方面涉及第三方面的光吸收树脂成型体,其通过下述方法成型:由包含于该激光焊接用光吸收树脂组合物中的高分子分散剂和热塑性树脂稀释第1或2方面的激光焊接用光吸收树脂组合物,并进行捏合、成型;其中,该成型后的光吸收树脂成型体的形状为板状或膜状。
[0034] 本发明的第五方面涉及第三或第四方面的光吸收树脂成型体,其中,所述热塑性树脂为选自丙烯酸类树脂、聚碳酸酯树脂、苯乙烯树脂、低密度聚乙烯树脂、聚丙烯树脂、聚酯树脂、聚酰胺树脂、聚对苯二甲酸乙二醇酯树脂、聚对苯二甲酸丁二醇酯树脂、氟树脂中的至少一种树脂。
[0035] 本发明的第六方面涉及一种光吸收树脂成型体,其中,使用粘合剂对第一或第二方面的激光焊接用光吸收树脂组合物进行稀释,再涂覆于基材表面。
[0036] 本发明的第七方面涉及第3~6方面中任一项的光吸收树脂成型体,其可见光透过率为30%以上,在波长800~1100nm具有吸收的极大值,雾度值为30%以下。
[0037] 本发明的第八方面涉及一种光吸收树脂成型体的制造方法,所述光吸收树脂成型体通过下述方法成型:由包含于该激光焊接用光吸收树脂组合物中的高分子分散剂和热塑性树脂稀释该激光焊接用光吸收树脂组合物,并进行捏合、成型,所述激光焊接用光吸收树脂组合物含有玻璃化转变温度在30℃以上的高分子分散剂和激光吸收微粒;其中,[0038] 所述该激光吸收微粒为通式XB6表示的六硼化物微粒,此处,X为选自La、Ce、Gd、Tb、Dy、Ho、Y、Sm、Eu、Er、Tm、Yb、Lu、Sr、Ca中的至少一种元素,
[0039] 使用所述高分子分散剂和热塑性树脂稀释所述激光吸收微粒并进行捏合、成型,使得所述光吸收树脂成型体的表面层即距表面3mm以内的区域中,六硼化物微粒的含量为2 2
0.004g/m ~2.0g/m,由此制造光吸收树脂成型体。
[0040] 发明的效果
[0041] 根据本发明,含有玻璃化转变温度在30℃以上的高分子分散剂和激光吸收微粒的激光焊接用光吸收树脂组合物使用通式XB6(X为选自La、Ce、Gd、Tb、Dy、Ho、Y、Sm、Eu、Er、Tm、Yb、Lu、Sr、Ca中的至少一种元素)表示的六硼化物微粒作为激光吸收微粒,并且所述激光焊接用光吸收树脂组合物为固体粉末状,其中这些微粒高度分散于高分子分散剂中。
[0042] 作为具备上述方案的结果,该激光焊接用光吸收树脂组合物一方面可以容易地成型为激光吸收树脂成型体,并可以强烈地吸收Nd:YAG激光或半导体激光波长范围的光,从而容易实施激光焊接;另一方面可见光波长区域的光几乎完全透过,从而可以保持物体的透明性,获得着色少的透明焊接界面。因此,其扩展了激光焊接的使用范围,且热稳定性良好,可以提供稳定的塑料部件间接合,在工业上是十分有价值的。附图说明
[0043] 图1为各种激光吸收微粒分散液的重量吸收系数与光的波长之间的关系图。
[0044] 图2是示出实施例1~10和比较例2~6的光吸收树脂成型体的主要组成及其特性的表。

具体实施方式

[0045] 以下,对本发明的具体实施方式进行说明。
[0046] 本实施方式的激光焊接用光吸收树脂组合物,其含有激光吸收微粒和玻璃化转变温度为30℃以上的高分子分散剂,其中,所述激光吸收微粒为通式XB6(此处,X为选自La、Ce、Gd、Tb、Dy、Ho、Y、Sm、Eu、Er、Tm、Yb、Lu、Sr、Ca中的至少一种元素。以下,有些情况下简记为X)表示的六硼化物微粒。
[0047] 本实施方式的激光吸收微粒为在激光波长区域内具有光吸收能力的无机微粒,并且是保有大量自由电子、可产生等离子体共振(resonance vibration)的微粒。激光入射到上述微粒上时,根据该光波的频率激发自由电子,产生电子的集体振荡(collective vibration),从而吸收或辐射能量。此时,吸收波长依赖于自由电子密度或微粒的能量结构,根据微粒的种类,有些种类的微粒具有的等离子吸收波长在Nd:YAG激光或半导体激光的光波范围800~1200nm附近。使用能量分辨率高的电子能量损失光谱法(EELS),可以直接观测由于等离子激发导致的能量损失峰。
[0048] 使用具有通式XB6的六硼化物微粒,可获得期望的激光吸收特性。这其中,使用LaB6、CeB6、GdB6效果显著。
[0049] 具体地,当上述具有通式XB6的六硼化物微粒以分散粒径1000nm以下的大小分散时,在波长800~1100nm范围具有吸收的极大值。在该极大值附近的波长范围内,上述具有通式XB6的六硼化物微粒具有足够大的吸收系数,因而可以极高效地吸收波长范围为800~1200nm的激光并发热。
[0050] 根据本发明人等的研究,可以观察到:在充分细微且均匀地分散了这些微粒的膜或成型体中,透过率在波长500~600nm之间具有基极大值,且在800~1200nm之间具有极小值。考虑到可见光的波长为380~780nm,且视觉敏感度呈吊钟型分布,其峰值在波长550nm附近,可以理解这种膜或成型体可以有效地透过可见光,并有效地吸收其它波长的光。
[0051] 在使用本发明的激光焊接用光吸收树脂组合物的光吸收树脂成型体中,可以获得可见光透过率为30%~90%、雾度值为30%以下的产品。在工业应用时,可以通过着色剂灵活地调整该光吸收树脂成型体的色调,因此,作为光吸收树脂成型体,优选其可见光透过率尽可能高。但是,当可见光透过率超过90%时,激光吸收微粒的添加量极少,所以其在激光波长800~1200nm的吸收效率降低,难以获得充分的熔融。相反地,如果可见光透过率为30%以下,则由六硼化物微粒引起的在波长800~1200nm处的透过率几乎为零。总之,即使可见光透过率更低,激光的吸收量也不会增加。因此,当希望光吸收树脂成型体尽量透明、消除着色影响时,可以使可见光透过率为30%以上,当然,即便使可见光透过率为30%以下,也不会有任何问题。
[0052] 在使用本发明的激光焊接用光吸收树脂组合物的光吸收树脂成型体中,为了得到均匀的焊接,有必要使激光吸收微粒均匀存在。如果激光吸收微粒聚集或偏析,激光的散射增加,从而使雾度值增大。在雾度值超过30%的产品中,光吸收树脂成型体本身在视觉上变得模糊、丧失透明性,同时色斑、斑点等变得明显,此外,在激光焊接中也会由于局部发热不均而出现发泡或色斑,因此,不是优选的。优选雾度值为30%以下,且越低越好,更优选为5%以下。如果雾度值在5%以下,则这样的部件的视觉透明性非常高,给人以通透的印象,具有很高的工业价值。
[0053] 本发明的激光吸收微粒的粒径,只要其可作为激光吸收成分发挥功能即可,可以是任意的。而且,如果激光吸收微粒的粒径或者由激光吸收微粒聚集而成的大聚集微粒的粒径为1000nm以下、更优选200nm以下,则可以避免下述现象:这些激光吸收微粒或大聚集颗粒成为成型后的光吸收树脂成型体的光散射源,以至激光焊接后的透明光吸收树脂成型体看上去变得模糊。进一步,如果这些激光吸收微粒或大聚集颗粒的粒径在1000nm以下,则还可以避免激光吸收能本身的衰减。
[0054] 本发明的激光吸收微粒在可见光区域并非是完全透明的,根据微粒的种类或粒径、分散或聚集的状态等存在些许的着色。通过减小激光吸收微粒粒径或使微粒分散得更均匀,可以减少该激光吸收微粒对光的散射。例如,当激光吸收微粒均匀分散并且其平均粒径为200nm以下时,处于瑞利(Rayleigh)散射模式,即使是在结(bulk)状态下不透可见光的黑色材料,该激光吸收微粒的集合体也会产生在可见光区的透明性。
[0055] 光吸收树脂成型体中激光吸收微粒的分散状态是极其重要的。当微粒分散不充分而聚集时,光吸收树脂成型体的最终着色状态不均匀,因激光照射而发热的部位也不均匀,因而出现局部发泡或焊接后的外观缺陷。为了避免这些问题,在本发明中制造激光吸收微粒均匀分散的光吸收树脂成型体。为了提高级光吸收微粒的分散性,本发明中首先制备激光吸收微粒与分散剂一起高度均匀地分散在溶剂中的分散液。然后,通过加热等从所述分散液中除去溶剂,制备激光焊接用光吸收树脂组合物,其中,激光吸收微粒均匀地分散于高分子分散剂中。接下来,用与所述高分子分散剂同种类的热塑性树脂成型材料或者与所述高分子分散剂相容的不同种热塑性树脂成型材料稀释该激光焊接用光吸收树脂组合物,并进行捏合、成型,制造目标光吸收树脂成型体。
[0056] 为了提高最终获得的光吸收树脂成型体中激光吸收微粒的分散性,需要在初期的激光吸收微粒分散液的制备中添加适合于激光吸收微粒的分散剂。作为使激光吸收微粒与分散剂和溶剂一起均匀分散于光吸收树脂成型体的方法,具体而言可以选择任何方法,只要其是使激光吸收微粒均匀地分散在树脂中的方法即可。作为具体的例子,可以使用珠磨机、球磨机、砂磨机、超声分散等方法。
[0057] 作为分散剂,高分子分散剂是优选的,其附着于微粒表面时通过空间阻碍作用能够防止所述微粒之间的聚集,而低分子分散剂则不是优选的。所述高分子分散剂为下述高分子的分散剂:在聚脂类、丙烯酸类、聚氨酯类或其它高分子骨架的末端连有各种亲油性官能团、亲性官能团的高分子。可以根据激光吸收微粒的种类、表面特性,以及与后续步骤中添加的热塑性树脂的亲和性、相容性,适宜地决定高分子分散剂的种类、添加量。
[0058] 使用真空干燥机、热干燥机、亨舍尔混合机等热混机(hot mixer)从激光吸收微粒分散液中除去溶剂,可以形成将六硼化物(XB6)作为激光吸收微粒分散于高分子溶剂中得到的激光焊接用光吸收树脂组合物,该激光焊接用光吸收树脂组合物通常呈松散的固体粉末状。然而,如果所用高分子分散剂的玻璃转变温度低于室温,则在除去溶剂后,该激光焊接用光吸收树脂组合物会变得不便处理,如固化为凝胶状、发粘等,因此,优选所用高分子分散剂的玻璃化转变点温度为30℃以上。
[0059] 高分子分散剂的添加量是任意的,可根据分散剂的种类来确定其最适量。一般地,高分子分散剂的添加量优选为激光吸收微粒重量的约2~10倍。如果添加量为激光吸收微粒重量的2倍以上,则该量能够充分保证最终获得的光吸收树脂成型体中激光吸收微粒的分散均一性;而如果添加量为激光吸收微粒重量的10倍以下,则可以避免下述缺陷:根据与成为在最终获得的光吸收树脂成型体的主成分的树脂的亲和程度的不同,会使光吸收树脂成型体在透明性方面出现模糊。
[0060] 本发明中作为含有热塑性树脂和激光吸收微粒的光吸收树脂成型体所使用热塑性树脂,优选使用丙烯酸类树脂、聚碳酸酯树脂、苯乙烯类树脂、低密度聚乙烯树脂、聚丙烯树脂、聚氨酯树脂、聚酰胺树脂、聚对苯二甲酸乙二醇酯树脂、聚对苯二甲酸丁二醇酯树脂、氟树脂等热塑性树脂。
[0061] 作为丙烯酸类树脂,可以列举出下述聚合物或共聚物:所述聚合物或共聚物以甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸丙酯、甲基丙烯酸丁酯为主要原料,必要时使用具有碳原子数为1~8的烷基的丙烯酸酯、乙酸乙烯酯、苯乙烯、丙烯腈、甲基丙烯腈等作为共聚成分。例如,可以列举出:在50~99.95mol%的甲基丙烯酸甲酯中以0.05~50mol%的比例加入丙烯酸烷基酯等其它可共聚单体得到的共聚物。
[0062] 作为苯乙烯类树脂,可以列举出,使用30~100mol%的苯乙烯和70~0mol%的其它可共聚单体得到的共聚物。这样的共聚物例如聚苯乙烯、丙烯腈-苯乙烯共聚物、甲基丙烯酸甲酯-苯乙烯共聚物、丙烯腈-甲基丙烯酸甲酯-苯乙烯共聚物、丙烯腈-丁二烯-苯乙烯树脂、丙烯腈-丙烯酸橡胶-苯乙烯树脂、丙烯腈-EPDM-苯乙烯树脂等。
[0063] 作为氟树脂可以列举出聚氟代乙烯、聚二氟乙烯、聚四氟乙烯、乙烯-二氟乙烯共聚物、乙烯-四氟乙烯共聚物、四氟乙烯-全氟烷氧基乙烯共聚物等。
[0064] 视需要,光吸收树脂成型体可以含有下述物质中的至少一种:稳定剂、润滑剂、填料、玻璃纤维碳纤维等增强剂、染料、颜料。
[0065] 激光吸收微粒即六硼化物必须均匀分散,但其可以均匀分散地包含于整个激光吸收树脂成型体,也可以均匀分散地包含于激光吸收树脂成型体表面的涂覆膜中。
[0066] 该光吸收树脂成型体的表面层即距表面3mm以内的区域中,六硼化物微粒的含量2 2
优选为0.004g/m ~2.0g/m。以表面层3mm厚度以内区域的浓度进行规定的原因是:在激光照射该光吸收树脂成型体时,希望熔融接合的部分实质上是光吸收树脂成型体的距表面3mm以内的区域。此外,如果该距表面3mm以内区域中的六硼化物微粒含量小于上述的
2
2.0g/m,则可以避免下述问题:视光吸收树脂成型体的厚度不同,会使该部件着色过度,变成深绿色。进而,还可以克服下述弊端:局部产生的热量过多,树脂、分散剂蒸发,伴有焊接
2
部位周围产生气泡等。另一方面,如果六硼化物微粒含量高于0.004g/m,则在进行激光照射时,吸收激光的能量增加,若提高激光功率,则光透过树脂和光吸收树脂成型体在激光发热量方面表现出足够大的差别,有利于实现良好的焊接。
[0067] 光吸收树脂成型体的形状,视需要可以成型为任意形状,可以成型为平面状、曲面状或其它复杂形状。此外,平面光吸收树脂成型体的厚度,视需要可以调整为从板状到薄膜状的任意厚度。而且,成型为平面状的树脂薄板,可以通过后续加工成型为球面状等任意的形状。
[0068] 作为上述光吸收树脂成型体的成型方法,可以列举任意的方法,例如注射成型、挤出成型、压缩成型或旋转成型(rotational molding)等。特别优选通过注射成型获得成型品的方法和通过挤出成型获得成型品的方法。作为通过挤出成型获得板状、薄膜状成型品的方法,可以采用下述方法进行制造:用冷辊冷却的同时,拉取使用T型模等挤出机挤出的熔融热塑性树脂。
[0069] 此外,象丙烯酸类树脂、氟树脂等那样地,可以通过单体溶液的浇注(casting)制造树脂成型体时,可以将上述激光焊接用光吸收树脂组合物混合并溶解于丙烯酸浆(acrylic syrup)原液中,或者直接混合、溶解六硼化物微粒,并浇注于成型塑模中,然后经过聚合过程制成成型体。这种情况下,应根据与丙烯酸浆原液中通常含有的单体溶液、引发剂、交联剂或其它添加剂的相溶性,选择微粒分散液所含的溶剂和分散剂。这些溶剂和分散剂抑制丙烯酸类聚合物的聚合过程,从而避免了树脂成型体中产生空隙。
[0070] 下面,针对使激光吸收微粒均匀地分散于设置在成型体的基材表面的涂覆膜中的方法进行说明。
[0071] 首先,采用珠磨机、球磨机、砂磨机、超声分散等方法制备激光吸收微粒分散液,所述激光吸收微粒分散液是使用分散剂将上述激光吸收微粒分散至任意溶剂中得到的,向其中添加粘合剂树脂,制备涂覆液。
[0072] 将该涂覆液涂覆于成型体的基材表面,蒸发溶剂,用指定的方法使树脂固化,从而可以形成该激光吸收微粒分散于媒介物中的涂覆薄膜。关于涂覆薄膜的厚度,没有特别的限制,优选在1μm~100μm左右的范围。关于涂覆方法,没有特别的限制,只要其可以在基材表面均匀地涂覆含激光吸收微粒的树脂即可,例如有刮涂法(bar coating)、凹版涂法、喷涂法、浸涂法、丝网印刷、涂刷法等。此外,将激光吸收微粒直接分散于粘合剂树脂中得到的产品,在涂布于基材表面后无需蒸发溶剂,在环境、工业方面是优选的。
[0073] 可以视目的选择例如UV固化树脂、热固化树脂、电子射线固化树脂、常温固化树脂、热塑性树脂等,作为上述粘合剂树脂。具体实例包括聚乙烯树脂、聚氯乙烯树脂、聚偏二氯乙烯树脂、聚乙烯醇树脂、聚苯乙烯树脂、聚丙烯树脂、乙烯-乙酸乙烯酯共聚物、聚酯树脂、聚对苯二甲酸乙二醇酯树脂、氟树脂、聚碳酸酯树脂、丙烯酸类树脂、聚乙烯醇缩丁树脂。此外,还可以利用含金属醇盐的粘合剂。上述金属醇盐的典型实例包括Si、Ti、Al、Zr等的醇盐。水解、加热这些使用了金属醇盐的粘合剂,可以形成氧化物膜。
[0074] 待激光焊接的光透过性树脂和光吸收树脂成型体之间的接合面可以是平面,也可以凹凸相配。该光吸收树脂成型体可以涂覆接合面中一面或两面。
[0075] 可以适宜地选择照射的激光的照射条件,通常优选以下条件:激光输出功率为5~500W,扫描速度为2mm/s~500mm/s,激光照射角与接合面垂直。
[0076] 实施例
[0077] 以下具体说明本发明的实施例和比较例。但本发明并不受以下实施例的限制。
[0078] 实施例1(激光吸收微粒分散液的制备)
[0079] 如下制备LaB6微粒分散液(A液):称量住友金属矿山制造的六硼化镧(LaB6)微粒5重量%、作为高分子类分散剂的东亚合成(株)制造的苯乙烯-丙烯酸类高分子分散剂UG-4030(室温下为固体粉末,玻璃化转变温度为52℃)的甲苯溶液(有效成分40%)50重量%、甲苯45重量%,放入装有氧化锆珠的涂料振荡器(paint shaker)中,粉碎/分散该混合物六小时。
[0080] 这里,使用基于动态光散射法的装置(大塚电子(株)社制造的ELS-8000)测得A液中LaB6微粒的分散粒径为113nm。
[0081] 然后,用甲苯稀释该A液,使LaB6微粒浓度为0.01重量%。将稀释液装入厚1cm的玻璃池(glass cell),使用日立制作所制造的分光光度计U-4000,从紫外区至近红外区测定其透光率。假定Lambert-Beer定律成立,使用以下的式(1)在各波长下求出此时的重量-浓度相互换算的吸收系数ε。如图1所述,在横轴上取可见光/近红外区域的光的波长,在纵轴上取重量浓度换算的重量吸收系数ε得到的图表中,通过实线将该测定结果作图。
[0082] ε=[log(100/T)]/C --------------(1)
[0083] (T:波长λ处的透光率%,C:分散液中的填料(filler)浓度g/L)
[0084] 如图1所示,发现A液在波长950nm附近具有高峰吸收。在可见光部分的波长380~780nm,其在波长550nm附近具有吸收的极小值,可知其可赋予可见光透过性。而且,在带来极小值的波长附近还存在一定的吸收,所以A液呈现深绿色。在主要激光波长即波长800~1100nm,其重量吸收系数超过45L/gcm,可知该LaB6微粒是无机物中具有最大近红外线吸收能力的材料之一。而且,由该吸收谱图(profile)可以确定:该LaB6微粒极适合于吸收Nd:YAG激光器(波长1064nm)或半导体激光器(波长800~1000nm)发出的激光。
[0085] 实施例2(激光焊接用光吸收树脂组合物和光吸收树脂成型体的制造)[0086] 加热实施例1的A液,使甲苯溶剂成分蒸发,获得激光焊接用光吸收树脂组合物,其为固体粉末,其是将20重量%的硼化镧LaB6微粒均匀地分散于高分子分散剂中制成的。
[0087] 混合均匀分散了该LaB6微粒的激光焊接用光吸收树脂组合物(B粉)1重量份和无色透明丙烯酸类树脂粒料7重量份,使用双螺杆挤出机于280℃进行熔融捏合,将挤出的线料剪成粒料,得到LaB6微粒浓度为2.5%的含光吸收成分的母料。
[0088] 将该含光吸收成分的母料用丙烯酸类树脂粒料进一步稀释,用搅拌器混合均匀,然后使用T型模挤出成型为1.0mm厚,制作丙烯酸类树脂测试板,其为激光吸收树脂成型体,其是将LaB6微粒以0.015重量%的浓度均匀地分散在整个树脂中获得的(以下,将分散了激光吸收微粒的丙烯酸类树脂测试板记作板1)。
[0089] 板1为板状样品,其尺寸为5cm×9cm,呈透明的绿色。
[0090] 另外,为了进行比较,还制作了与所述板1尺寸相同的不含LaB6微粒的无色透明板(以下,将不含激光吸收微粒的丙烯酸类树脂测试板记作板2)。
[0091] 这种情况下,通过(1m2丙烯酸类树脂板的体积)×(丙烯酸类树脂的密度g/3
cm)×(微粒重量浓度%),求出光吸收树脂成型体即板1中厚1mm的范围内的LaB6微粒的
3
含量,结果为100cm×100cm×0.1cm×1.2g/cm×0.00015=0.18g。
[0092] 使用日立制作所(株)社制造的U-4000测定含LaB6微粒的板1的光学特性。其结果,可见光透过率为68%、940nm处的透过率为22%,可知其在具有充分的视觉明亮度和无模糊的透明度的同时,可以充分地吸收波长940nm的半导体激光。此外,板1呈现视觉上均匀的绿色,可知LaB6微粒分散均匀。进一步,作为考察LaB6微粒的聚集情况的一个指标,使用村上色材研究所(株)制造的雾度计测定了板1的雾度值,结果其为2.0%,该值足够小。比较例1
[0093] 除使用室温下为液体状的高分子分散剂即东亚合成(株)制造的XG-4000(玻璃化转变温度为-61℃)作为高分子催化剂以外,进行与实施例1相同的操作,制备分散粒径为152nm的比较例1的LaB6微粒分散液。
[0094] 接下来,对比较例1的LaB6微粒分散液进行加热,使甲苯蒸发,制得激光焊接用光吸收树脂组合物,其是将20重量%的LaB6微粒均匀分散于高分子分散剂中获得的。然而,该激光焊接用光吸收树脂组合物成型为粘性凝胶状,在其后的步骤中很难正确地称量或与清洁粒料(clear pellets)混合,因此,弃之不用,终止试验。
[0095] 实施例3(激光焊接的评价)
[0096] 将实施例2中制造的含LaB6微粒的板1与不含LaB6微粒的板2紧贴在一起,使其相互重叠,用压接装置将其紧密连接。在从板2的方向对该紧密连接体在宽度(5cm)方向上的中央区域3cm的范围内照射激光。激光照射使用输出功率为30W的Fine Device Co.制造的半导体激光(波长940nm),焦半径为0.8mm,扫描速度为16mm/s。随着激光照射,含激光吸收微粒的板1发热熔融,进而由于热的传播,板2也发生熔融,两者融合在一起,经冷却而固化,完成接合,形成接合在一起的两张板。即使放开压接装置,接合仍可维持现状。
[0097] 肉眼观察接合在一起的两张板的外观,评价为:无色斑,表面光泽良好。接下来,在该接合在一起的两张板的缝隙间插入楔子,施加力的作用,以期将它们分离,以此来推测接合部的强度。可知:即使施加很大的力,接合部仍可保持稳固。以下,关于接合强度的评价,在强力下仍可维持接合表示为○;实现接合但在弱力下发生分离表示为△;接合本身不完全表示为×(在下面的实施例和比较例中同样地进行评价)。
[0098] 实施例4
[0099] 除用六硼化铈(CeB6)微粒代替LaB6微粒,并且改变由母料到板材的树脂稀释率以使板1的CeB6浓度为0.018%以外,按与实施例1~3相同的方式依次制备了均匀地分散了CeB6的甲苯分散液、光吸收丙烯酸类树脂组合物、母料以及板1(光吸收树脂成型体)。然后,进行板1的光学特性评价和激光焊接试验评价,其结果示于图2。在所有评价项目上获得的结果均与使用LaB6微粒时的结果基本相同。此外,实施例4的板1的1mm厚度范围内,2
CeB6微粒的含量为1200×0.00018=0.216g/m。
[0100] 实施例5
[0101] 按与实施例1~3相同的方式依次制备均匀地分散了GdB6的甲苯分散液、聚碳酸酯树脂一级组合物、母料以及板1(光吸收树脂成型体),所不同的是:用六硼化钆(GdB6)微粒代替LaB6微粒,使用聚碳酸酯树脂粒料作为热塑性树脂,双螺杆挤出机的熔融温度为300℃,改变由母料到板材试验片的树脂稀释率以使板材的GdB6浓度为0.034%(此时,1mm
2
厚度范围内,LaB6微粒的含量为0.408g/m)。然后,进行板1的光学特性评价和激光焊接试验评价,其结果示于图2。相对于可见光透过率,波长940nm处的透过率略逊于LaB6,而在激光焊接评价中获得的结果与使用LaB6微粒时的结果基本相同。
[0102] 实施例6
[0103] 按与实施例1~3相同的方式依次制备均匀地分散了YB6的甲苯分散液、PET树脂一次组合物、母料以及板1(光吸收树脂成型体),所不同的是:用六硼化钇(YB6)微粒代替LaB6微粒,使用聚对苯二甲酸乙二醇(PET)树脂粒料作为热塑性树脂,双螺杆挤出机的熔融温度为270℃,改变由母料到板材试验片的树脂稀释率以使板材的YB6浓度为0.018%(此2
时,1mm厚度范围内,YB6微粒的含量为0.216g/m)。然后,进行板1的光学特性评价和激光焊接试验评价,其结果示于图2。PET树脂结晶化迅速,在整个板的范围内可见若干由结晶化引起的模糊。随着这样的结晶化,获得了较高的雾度值。此外,相对于可见光透过率,波长940nm处的透过率略逊于LaB6,而在激光焊接评价中获得的结果与使用LaB6微粒时的结果基本相同。
[0104] 比较例2
[0105] 如下制备比较例2的ITO微粒分散液:称量住友金属矿山(株)制造的ITO微粒20重量%、作为高分子类分散剂的东亚合成(株)制造的苯乙烯-丙烯酸类高分子分散剂UG-4030(室温下为固体粉末,玻璃化转变温度为52℃)的甲苯溶液(有效成分40%)70重量%、甲苯10重量%,放入装有氧化锆珠的涂料振荡器(paint shaker)中,粉碎/分散该混合物六小时。该比较例2的微粒分散液中,微粒的分散粒径为140nm。用甲苯稀释该比较例
2的微粒分散液使得ITO微粒浓度为0.1重量%,按与实施例1相同的方式测定重量换算吸收系数。然后,像实施例1那样,将该测定值用单点划线描绘在图1的图表中。
[0106] 由图1中采用单点划线表示的谱图可知比较例2的ITO微粒分散液具有下述特性:其吸收始于波长1100nm左右的较长波长的近红外线。但是,在进行测定的波长范围内,未获得吸收的极大值。其重量吸收系数的最大值仍然较小,为约8L/gcm,与本发明的LaB6微粒分散液的吸收峰值相比,可知其仅显示约1/7以下的效果。在波长940nm处,这个差异更大,ITO微粒的吸收系数的大小仅为LaB6微粒的约1/400。由该结果可以判断出:如果使用ITO微粒达到与本发明的LaB6微粒相同的效果,则与LaB6微粒相比,必须使用比其大三个数量级以上的大量的ITO微粒。
[0107] 接下来,使用该比较例2的ITO分散液,按与实施例2、3相同的方式依次制备了均匀地分散了ITO的激光焊接用光吸收树脂组合物、母料以及板1(光吸收树脂成型体),所述2
板1厚1mm、ITO微粒浓度为0.24重量%(ITO含量为2.88g/m)。然后,进行板1的光学特性评价和激光焊接试验评价,其结果示于图2。
[0108] 在比较例2中,尽管板1的ITO微粒含量比例如实施例1~4的LaB6微粒含量大一个数量级以上,但通过激光照射,板1基本上未熔融,两张板未发生良好的接合。
[0109] 比较例3
[0110] 如下制备比较例3的ATO微粒分散液:称量住友金属矿山(株)制造的ATO微粒20重量%、作为高分子类分散剂的东亚合成(株)制造的苯乙烯-丙烯酸类高分子分散剂UG-4030(室温下为固体粉末,玻璃化转变温度为52℃)的甲苯溶液(有效组分40%)70重量%、甲苯10重量%,放入装有氧化锆珠的涂料振荡器(paint shaker)中,粉碎/分散该混合物六小时。该比较例3的微粒分散液中,微粒的分散粒径为115nm。用甲苯稀释该比较例
3的微粒分散液使得ATO微粒浓度为0.1重量%,按与实施例1相同的方式测定重量换算吸收系数。然后,像实施例1那样,将该测定值用虚线描绘在图1的图表中。
[0111] 如图1中虚线表示的谱图所示,ATO微粒分散液具有下述特性:其吸收波长大于900nm左右的近红外线,但是在进行测定的波长范围内,未获得吸收的极大值。其重量吸收系数小,在2100nm处为约5L/gcm,与本发明的LaB6微粒分散液的吸收峰值相比,可知其仅具有约1/11以下的效果。在波长940nm处,这个差异更大,ATO微粒的吸收系数的大小仅为LaB6微粒的约1/180。
[0112] 由该结果可以判断出:如果使用ATO微粒达到与本发明的LaB6微粒相同的效果,则与LaB6微粒相比,必须使用比其大三个数量级以上的大量的ATO微粒。
[0113] 接下来,使用该比较例3的ATO分散液,按与实施例2、3相同的方式依次制备均匀地分散了ATO的激光焊接用光吸收树脂组合物、母料以及板1(光吸收树脂成型体),所述板2
1厚1mm、ATO微粒浓度为0.24重量%(ATO含量为2.88g/m)。然后,进行板1的光学特性评价和激光焊接试验评价,其结果示于图2。
[0114] 这种情况下,尽管ATO含量比例如实施例1~4的LaB6含量大一个数量级以上,但通过激光照射,板1基本上未熔融,两张板未发生良好的接合。实施例7
[0115] 按与实施例1~3相同的方式依次制备均匀地分散了LaB6的甲苯分散液、激光焊接用光吸收树脂组合物、母料以及板1(光吸收树脂成型体),所不同的是:使用聚苯乙烯树脂粒料作为热塑性树脂,双螺杆挤出机的熔融温度为240℃,改变由母料到板材试验片的树脂稀释率以使板1的LaB6浓度为0.045%(此时,1mm厚度范围内,LaB6微粒的含量为0.54g/2
m)。然后,进行板1的光学特性评价和激光焊接试验评价,其结果示于图2。相对于可见光透过率,波长940nm处的透过率以及雾度值方面略逊于使用丙烯酸类树脂时的情况,而在激光焊接评价中获得的结果与使用丙烯酸类树脂时的结果基本相同。
[0116] 实施例8
[0117] 按与实施例1~3相同的方式依次制备均匀地分散了LaB6的甲苯分散液、激光焊接用光吸收树脂组合物、母料以及板1(光吸收树脂成型体),所不同的是:使用聚酰胺树脂粒料作为热塑性树脂,双螺杆挤出机的熔融温度为220℃,改变由母料到板材试验片的树脂稀释率以使板1的LaB6浓度为0.007%(此时,1mm厚度范围内,LaB6微粒的含量为0.084g/2
m)。然后,进行板1的光学特性评价和激光焊接试验评价,其结果示于图2。在所有评价项目上获得的结果均与使用丙烯酸类树脂时的结果基本相同。
[0118] 实施例9
[0119] 按与实施例1~3相同的方式依次制备了均匀地分散了LaB6的甲苯分散液、激光焊接用光吸收树脂组合物、母料以及板1(光吸收树脂成型体),所不同的是:使用聚乙烯树脂粒料作为热塑性树脂,双螺杆挤出机的熔融温度为240℃,改变由母料到板材试验片的树脂稀释率以使板1的LaB6浓度为0.018%(此时,1mm厚度范围内,LaB6微粒的含量为0.216g/2
m)。然后,进行板1的光学特性评价和激光焊接试验评价,其结果示于图2。聚乙烯树脂结晶化非常迅速,在整个板的范围内可见由结晶化引起的模糊。随着这样的结晶化,获得了较高的雾度值。由于雾度引起的透过光损失,相对于可见光透过率,波长940nm处的透过率逊于使用丙烯酸类树脂时的情况,而在激光焊接评价方面获得的结果与使用丙烯酸类树脂时的结果基本相同。
[0120] 实施例10
[0121] 向异丙醇(IPA)中加入以LaB6计为20重量%的住友金属矿山(株)制造的六硼化镧(LaB6)微粒和3重量%的作为高分子分散剂的ASICIA(株)制造的S-24000(玻璃化转变温度为62℃)。然后,通过使用氧化锆珠的涂料振荡搅拌器(paint shaker mill)对该IPA分散液进行分散处理,制备平均分散粒径为约108nm的分散液。在2g该分散液中混合5g紫外线固化树脂UV3701(东亚合成(株)制造)和7g IPA,制成涂布液。用刮条涂布机将该涂覆液涂布于厚2mm的透明丙烯酸板上,于70℃干燥1分钟,使溶剂蒸发,然后用高压汞灯进行紫外线照射以使膜固化。所获膜的可见光透过率为41%,雾度值为4.6%。对于该有涂覆膜的丙烯酸基板,使用探针式膜厚计测定其涂覆膜厚为5μm。由固体成分比例可知:
2
该膜中的LaB6微粒浓度为7.4重量%,5μm厚度内的LaB6微粒的含量为0.44g/m。
[0122] 将具有涂覆膜的丙烯酸类树脂板与透明丙烯酸类树脂板(板2)通过前者的涂覆面重合在一起,用压接装置将其紧密连接,对中央部分3cm的范围内进行激光照射,所述涂覆膜是将LaB6微粒与分散剂一起均匀地分散于UV固化树脂中而形成的。结果如图2所示,在所有评价项目中获得的结果均与使用在整个板材试验片中掺入LaB6微粒的板1时的结果基本相同。
[0123] 由图2可知:如果使用这些添加了六硼化物微粒的光吸收树脂,则焊接是美观的,其保持了充分透过可见光的良好透明性,并保持了表面光泽,可以进行接合部外观、强度均无问题的激光焊接。
[0124] 比较例4
[0125] 按与实施例1~3相同的方式依次制备了均匀地分散了LaB6的甲苯分散液、激光焊接用光吸收树脂组合物、母料以及板1(光吸收树脂成型体),所不同的是:在实施例2中,通过T型模挤出成型的厚度为5.0mm,改变由母料到板1片的树脂稀释率以使板1的LaB62
浓度为0.0002%(此时,1mm厚度范围内,LaB6微粒的含量为0.0024g/m)。然后,进行板1的光学特性评价和激光焊接试验评价,其结果示于图2。这种情况下,两板虽然发生了接合,但接合强度很弱,可以容易地徒手将两板分离。
[0126] 比较例5
[0127] 按如下方法制备比较例5的丙烯酸类树脂板1:不对住友金属矿山(株)产六硼化镧(LaB6)微粒进行分散,用混料机(blender)将其直接与丙烯酸类树脂粒料均匀混合,加热熔融,然后使用T型模挤出成型为1.0mm厚,其中LaB6微粒的浓度为0.015重量%(此时,2
1mm厚度范围内,LaB6微粒的含量为0.18g/m)。然后,进行板1的光学特性评价和激光焊接试验评价,其结果示于图2。
[0128] 该板1呈绿色且色斑明显,其雾度值为45%。按与实施例3相同的方式进行激光焊接试验,可见色斑及局部发泡,存在外观问题。此外,接合强度也不够。
[0129] 比较例6
[0130] 按与实施例1相同的方式制备了实施例6的分散液。所不同的是:在分散液制备过程中不使用高分子分散剂,而且涂料振荡搅拌器的分散时间为10分钟。经测定,所得比较例6的分散液中,LaB6微粒的分散粒径为1250nm。然后,按与实施例2和3相同的方式制备了板1,所不同的是:改变由母料到板材试验片的树脂稀释率以使板1的LaB6浓度为2
0.007%(此时,1mm厚度范围内,LaB6微粒的含量为0.084g/m)。然后,进行板1的光学特性评价和激光焊接试验评价,其结果示于图2。
[0131] 该板1的颜色为绿中带黄,其雾度值为33%。此外,激光焊接试验结果为:接合强度不够,且可观察到明显的色斑。
QQ群二维码
意见反馈