饮料用或食品用密封容器的制造方法

申请号 CN200680021003.7 申请日 2006-08-01 公开(公告)号 CN101198523B 公开(公告)日 2010-12-22
申请人 麒麟麦酒株式会社; 浜松光子学株式会社; 发明人 中谷正树; 菅博文;
摘要 本 发明 的目的在于提供密封容器的制造方法,使得在使用 激光 焊接 法对饮料用或食品用容器进行密封时,能够提高密封工序的加工速度,无需严格地控制激光点的扫描 位置 且不易产生局部 能量 的供给过剩,不会产生由于 水 滴的聚集而引起的熔融接合面积和每面积的熔融接合强度的减小。本发明的饮料用或食品用密封容器的制造方法具有下述工序:由传送带将安装了盖的容器体进行输送,将激光从上方向下方以区域状的照射形状照射在容器体和盖之间的焊接预定部位的由传送带移动过来必定通过的区域上,该区域状的照射形状具有比焊接预定部位在各个方向上的宽度中的最小宽度大的宽度并与焊接预定部位的形状不一致,通过输送来的带盖容器到达激光照射区域而将激光照射在包含整个焊接预定部位的区域上,对容器体与盖之间的整个焊接预定部位在激光的照射区域内通过时进行熔融接合。
权利要求

1.一种饮料用或食品用密封容器的制造方法,该饮料用或食品用密封容器的制造方法通过激光焊接法将容器体和安装在该容器体的口部上的盖熔融接合成为气密状态,其特征在于,
上述密封容器形成为:在上述容器体的口部的外壁上设置有与口部的边缘平行的环状的肋;在上述盖的边缘上设置有形成与上述肋贴紧的贴紧部分的环状的圈,上述肋和上述圈的紧贴部分成为焊接预定部位;
该饮料用或食品用密封容器的制造方法具有下述工序:
由传送带将安装了上述盖的上述容器体进行输送,将激光从上方向下方以区域状的照射形状照射在上述容器体和上述盖之间的焊接预定部位的由上述传送带移动过来必定通过的区域上,该区域状的照射形状具有比上述焊接预定部位在各个方向上的宽度中的最小宽度大的宽度并与上述焊接预定部位的形状不一致,通过输送来的带盖容器到达激光照射区域而将激光照射在包含整个上述焊接预定部位的区域上,对上述容器体与上述盖之间的整个焊接预定部位在上述激光的照射区域内通过时进行熔融接合。
2.根据权利要求1所述的饮料用或食品用密封容器的制造方法,其特征在于,一边旋转在上述容器体上安装有上述盖的饮料用或食品用容器,一边对上述容器照射激光。
3.根据权利要求1所述的饮料用或食品用密封容器的制造方法,其特征在于,上述容器的输送为恒定速度的连续输送。
4.根据权利要求1所述的饮料用或食品用密封容器的制造方法,其特征在于,在一边输送在上述容器体上安装有上述盖的饮料用或食品用容器一边对上述容器照射激光时,仅限于在上述容器位于特定的位置范围的时域中照射激光。
5.根据权利要求1所述的饮料用或食品用密封容器的制造方法,其特征在于,上述容器体和上述盖由塑料树脂或金属形成。
6.根据权利要求5所述的饮料用或食品用密封容器的制造方法,其特征在于,上述塑料树脂为聚对苯二甲酸乙二醇酯。
7.根据权利要求6所述的饮料用或食品用密封容器的制造方法,其特征在于,针对上述焊接预定部位的激光照射能量为每平方厘米0.5~2.1J。
8.根据权利要求1所述的饮料用或食品用密封容器的制造方法,其特征在于,上述容器体和上述盖由厚度在0.2mm以下的形成。
9.根据权利要求8所述的饮料用或食品用密封容器的制造方法,其特征在于,针对上述焊接预定部位的激光照射能量为每平方厘米17~26J。

说明书全文

饮料用或食品用密封容器的制造方法

技术领域

[0001] 本发明涉及能够使用激光焊接法廉价地制造高密封性的饮料用或食品用密封容器的技术。

背景技术

[0002] 在密封容器、例如饮料用容器中,公知有瓶、罐以及塑料容器等各种容器。近年来,从其良好的操作性等便利性的观点出发,罐和塑料容器得到了广泛使用。
[0003] 其中,罐由于容器价格低、生产速度快、运输效率高等原因而广泛流通。该罐通常由有底的呈圆筒形的“容器体”和封闭容器体的口部的“盖”构成。由于被限定于将盖与该容器体适当地接合来密封食品饮料等内装物的方法,所以在目前的市场上等金属制的罐较为流通。
[0004] 该容器体和盖的接合是这样进行的:使容器体的端部与盖的端部重合而形成凸缘结构,然后进行使其机械重叠的卷边接缝。由于该卷边接缝工序是利用了金属部件的机械变形的工序,所以盖一般由比容器体厚的部件构成,采用苯乙烯-丁二烯橡胶和聚氯乙烯等聚合物材料用以密封内装物。这样就需要聚合物材料,而且如果盖是厚壁的,则金属材料的使用量就会变大。
[0005] 因此,为了解决上述问题,公开了以金属罐为对象、利用激光焊接对罐进行密封的技术(例如参照专利文献1~3)。
[0006] 金属罐的另一特色是每分钟从数百罐甚至到2000罐的高速生产线的使用。现有的卷边接缝装置,为了应对该生产速度,需要多个卷边接缝压头,所以装置尺寸变得比较大。其结果是,直到在卷边接缝装置内将盖安装到填充有内部溶液的容器体上的期间,一般需要在容器体开口于外部空气的状态下在传送带上将其输送数米的距离。由于输送速度快以及容器体在卷边接缝装置和传送带之间的转移,使得容器体受到来自外部的冲击,其结果是发生与外部空气的气体交换和液体溢出。气体交换由于拾取了气而加快内部溶液的劣化。特别是在酸饮料的情况下,使内部溶液的二氧化碳气浓度降低而影响其味道。另外,液体溢出使产品的内部容量控制变难,或者污损生产设备,有可能给生产的稳定运转/卫生管理带来问题。
[0007] 关于塑料容器,难以实施卷边接缝工序,所以像饮料用金属罐容器那样进行卷边接缝来密封的塑料容器并未流通。在塑料容器中,最流通的容器是PET(聚对苯二甲酸乙二醇酯)瓶。在PET瓶中,用将盖拧进瓶口部中的方式作为密封方式。但是,该盖在整个容器当中成为成本较大提高的主要因素。此外,由于盖主要是由PP(聚丙烯)制的,所以妨碍再循环。
[0008] 对于PET瓶,一般也使用具有每分钟数百瓶的处理能的高速生产线。一般在填充之后上用压盖机进行盖的安装和密封。
[0009] 另外,也公开了对于杯状的容器,通过照射激光来对具有塑料树脂层和铝箔层的盖进行热密封的技术(例如参照专利文献4。)。
[0010] 专利文献1:WO02/42196 A2号公报
[0011] 专利文献2:日本特开昭63-194885号公报
[0012] 专利文献3:日本特开昭61-289932号公报
[0013] 专利文献4:日本特开昭60-193836号公报
[0014] 根据对金属制的罐进行密封时进行的卷边接缝方式,要使用聚合物材料,在卷边接缝部分中使用多余的罐材料,以及使用壁比罐体厚的盖,这些成为成本上升的主要原因。另一方面,以专利文献1为首的进行了激光焊接的罐容器,是以削减材料的使用量和不需要使用聚合物材料为目的进行探讨的,并尝试用激光焊接来代替现有的卷边接缝而完成的。但是,在激光的输出方法和容器体与盖的重合方法中,焊接工序的生产速度和经济性无法超越卷边接缝方式,所以未被实用化。
[0015] 在这种状况下,在利用激光焊接法对与现有的供饮料或食品所使用的容器相同的形状和材质的容器进行密封时,以可靠的熔融接合为目的,可以考虑实施如下所述的方法:使激光点沿着线状的焊接部位移动的方法;或者固定激光点的位置,使线状的焊接部位移动到能依次被激光点照射的方法。但是,在如饮料用或食品用容器那样在填充了内装物之后尝试密封的情况下,口部等容器各处有可能被沾湿,而且明确可知,在要求密封速度在每分钟数百个容器以上的高速加工的条件下,利用激光点进行焊接的方法不一定是有效的焊接方法。
[0016] 在铝制容器的情况下,为了防止铝的熔融部位被氧化而供给清洗气体。借助该清洗气体能够充分地除去焊接预定部位的滴。但是,由于材料自身的性质,通过激光点能够可密封地进行焊接的能量供给量的范围不太宽。其结果是,在激光点以饮料用或食品用容器中所要求的与密封工序的加工速度相对应的适当移动速度进行移动的情况下,必须极其精密地控制激光点绕线状的焊接预定部位几周。例如在将激光点从开始点绕一周回到开始点的位置设为终止点的情况下,如果多少通过了终止点,在通过部位就会产生能量的供给过剩,极端情况下,甚至会烧穿部件,损伤密封性和熔融接合力。
[0017] 在聚对苯二甲酸乙二醇酯等塑料制容器的情况下,与铝制容器相比,因其材质而引起的能够可密封地进行焊接能量供给量的范围较广,而且供给能量低也可以。在以低能量进行焊接的情况下,在蒸发那些附着在焊接预定部位上的未被清洗气体除去的水滴时,所损失的能量的量占供给的能量相对较多。因此,不能忽视这些水滴所带来的沾湿的影响。单纯地通过增加所供给的能量难以解决该问题。由于当使激光点沿着焊接预定部位移动并开始焊接时,焊接预定部位中焊接开始部位附近的部位先于其他部位熔融接合,所以水滴向所述其他部位聚集。其结果是,在水滴聚集的部位,熔融接合面积和平均面积的熔融接合强度减小,变得难以进行稳定的焊接。
[0018] 除了以上那样问题以外,在使用激光点一次就完成那样的焊接方法中,由于必须在线状的整个焊接预定部位上依次移动激光点,所以存在这样的问题:相对于饮料用或食品用容器所要求的密封工序的加工速度,到完成焊接的时间要花费较长的时间。如果到完成焊接的时间较长,则必须如卷边接缝装置那样在一定程度上增大装置的尺寸,使得可以得到在装置内保持焊接容器的时间。这样,如上所述,需要有将填充了内部溶液的容器体在没有盖的状态下输送到装置处的过程。

发明内容

[0019] 因此,本发明的目的在于提供一种实用的密封容器的制造方法,其特征在于:在利用激光焊接法对饮料用或食品用容器进行密封时,(1)、能够提高密封工序的加工速度;(2)、无需严格地控制激光点的扫描位置,且不易产生局部能量的供给过剩;还有,(3)、不会产生由于水滴的聚集而引起的熔融接合面积和每面积的熔融接合强度的减小;(4)、能够提供适当的容器耐压强度,能够进行兼具密封性和安全性的熔融接合;(5)、另外,焊接装置及其外围设备的操作/稳定运转变得容易。
[0020] 本发明的发明者们专心致力于为了解决使用激光点进行的一次完成那样的焊接方法所存在的问题的探讨,发现了无论在避免铝制容器的烧穿等而进行充分的激光照射的情况下,还是在对塑料制容器的被沾湿的焊接部位获得稳定的熔融接合的情况下,同时或者大致同时向整个焊接预定部位照射激光进行熔融接合都是有效的,本发明就是这样完成的。即,本发明的饮料用或食品用密封容器的制造方法是通过激光焊接法将容器体和安装在该容器体的口部上的盖熔融接合成为气密状态,其特征在于,上述密封容器形成为:在上述容器体的口部的外壁上设置有与口部的边缘平行的环状的肋;在上述盖的边缘上设置有形成与肋贴紧的贴紧部分的环状的圈,上述肋和上述圈的紧贴部分成为焊接预定部位;该饮料用或食品用密封容器的制造方法具有下述工序:由传送带将安装了上述盖的上述容器体进行输送,将激光从上方向下方以区域状的照射形状照射在上述容器体和上述盖之间的焊接预定部位的由上述传送带移动过来必定通过的区域上,该区域状的照射形状具有比上述焊接预定部位在各个方向上的宽度中的最小宽度大的宽度并与上述焊接预定部位的形状不一致,通过输送来的带盖容器到达激光照射区域而将激光照射在包含整个上述焊接预定部位的区域上,对上述容器体与上述盖之间的整个焊接预定部位在上述激光的照射区域内通过时进行熔融接合。
[0021] 本发明的又一饮料用或食品用密封容器的制造方法是通过激光焊接法将容器体和安装在该容器体的口部上的盖熔融接合成为气密状态,其特征在于,该饮料用或食品用密封容器的制造方法具有下述工序:一条光纤传送过来的激光分路成多条光纤,将该各条光纤排列成环状或者向心状,并使各条光纤的末端接近紧贴部位,同时地熔融接合上述容器体与上述盖之间的整个焊接预定部位。
[0022] 在本发明的饮料用或食品用密封容器的制造方法中,包括向包含上述整个焊接预定部位的区域照射激光。这就限定了用于同时熔融接合整个焊接预定部位的激光的照射区域。
[0023] 在本发明的饮料用或食品用密封容器的制造方法中,激光的照射形状为环状或向心状。容器体与盖的抵接部分为具有气密性的部位,但是该部位大多为环状或圆筒状。因此,使激光的照射形状与容器体和盖的抵接部分的形状一致,从而使供给的能量供给量必须充足,并且能够避免激光向焊接预定部位以外照射,从而防止材质劣化。
[0024] 在本发明的饮料用或食品用密封容器的制造方法中,包含如下内容:激光的照射形状是具有比上述焊接预定部位在各个方向上的宽度中的最小宽度大的宽度的区域状。即使在激光的照射形状为具有最低限度的必要宽度的区域状的情况下,也能够同时熔融接合整个焊接预定部位。
[0025] 在本发明的饮料用或食品用密封容器的制造方法中,优选一边旋转和/或输送在上述容器体上安装有上述盖的饮料用或食品用容器,一边对其照射激光。这里,优选上述容器的输送为恒定速度的连续输送。利用以恒定速度连续运转的传送带来输送容器,从而能够在高速生产线上使用激光焊接。另外,通过采用恒定速度,可以在与用于安装盖的传送带为同一传送带上进行激光焊接,使从容器中填充完内装物之后到安装完盖期间的时间极短,并且能够使容器的液面晃动为最低限度。特别是由于激光照射部相对于传送带被固定,因此能够减小生产线内的焊接装置的尺寸,并且无需进行卷边接缝装置的各个压头所要求那样的微小调节。此处,进一步在一边输送在上述容器体上安装有上述盖的饮料用或食品用容器一边照射激光时,优选仅限于在上述容器位于特定的位置范围的时域中照射激光。能够继续将经过了内装物的填充工序之后的容器向接下来的密封工序引导。此时,仅在容器位于特定的位置范围时对其照射激光,从而能够省去无用的照射,并且能够防止焊接预定部位以外的材质劣化。
[0026] 在本发明的饮料用或食品用密封容器的制造方法中,包含如下内容:上述容器体和上述盖由塑料树脂或金属形成。
[0027] 在本发明的饮料用或食品用密封容器的制造方法中,上述塑料树脂优选聚对苯二甲酸乙二醇酯。此处,针对上述焊接预定部位的激光照射能量优选为每平方厘米0.5~2.1J。在使用激光焊接法的密封方法的情况下,理论上讲,在熔融接合的两种物体为相同物体时,由于以相同的材料强度形成,所以担心熔融接合强度变得过大。在饮料或食品用容器的情况下,从使用者的安全方面的观点出发,要求在上升到过剩的内部压力的时候安全地使其断裂。这种过剩压力例如是在将碳酸饮料的容器放置在太阳照射到的地方时产生的。
此时,如果在适度的压力上升的时候容器的密封没有被破坏的话,则在断裂时可能发生盖以很大的速度飞出去等对使用者的人身造成危险的状况。这种安全方面的观点也成为用于使激光焊接法的密封方法实用化的重要因素。因此,聚对苯二甲酸乙二醇酯是作为饮料用或食品用容器的材质最常使用的树脂之一,这就限定了用于将以该树脂为材质的容器密封为具有适度的熔融接合强度的激光的照射条件。
[0028] 在本发明的饮料用或食品用密封容器的制造方法中,上述容器体和上述盖优选由厚度在0.2mm以下的铝形成。此处,针对上述焊接预定部位的激光照射能量优选为每平方厘米17~26J。铝是作为饮料用或食品用容器的材质最常使用的金属之一,从上述安全方面的观点出发,限定了用于将以该金属为材质的容器密封为具有适度的熔融接合强度的激光的照射条件。
[0029] 本发明在使用激光焊接法对饮料用或食品用容器进行密封时,能够提高密封工序的加工速度。而且,无需严格地控制激光点的扫描位置,且不易产生局部能量的供给过量,另外,不会产生由于水滴的聚集而引起的熔融接合面积和平均面积的熔融接合强度的减小。此外,能够赋予容器适当的耐压强度,能够进行兼具密封性和安全性的熔融接合。进而,容易进行焊接装置的操作/稳定运转。附图说明
[0030] 图1示出了表示本实施方式所述的密封容器的制造方法的一个方式的工序图。
[0031] 图2是表示密封容器的一个方式的示意图,(a)是将盖安装到容器体时的口部附近的示意纵剖面图,(b)是从A方向观察到的示意外观图,(c)是从B方向观察到的盖的示意立体图。
[0032] 图3示出了密封容器的另一方式,示出了将口部安装到容器体时的口部附近的示意纵剖面图。
[0033] 图4示出了向作为密封容器100的焊接预定部位的圈8照射激光的状况。
[0034] 图5示出了向密封容器200的焊接预定部位即贴紧部分4的盖的外壁部分照射激光的状况。(a)是立体图,(b)是沿A-A’线的剖面图。
[0035] 图6示出了表示大致同时熔融接合在传送带上传送的容器的实施方式的一个方式。
[0036] 标号说明
[0037] 100、200:密封容器;
[0038] 1:容器体;
[0039] 2、18:环状的凸起;
[0040] 3:盖;
[0041] 4:贴紧部分;
[0042] 5、7:边缘;
[0043] 6:肋;
[0044] 8:环状的圈;
[0045] 9:口部;
[0046] 10:环状的第二凸起;
[0047] 11、17:环状的凹陷;
[0048] 12:环状的第二凹陷;
[0049] 13:盖的内壁部分;
[0050] 14:钩挂部;
[0051] 19:抵接面;
[0052] 23:按压肋的力;
[0053] 24:盖的内壁面按压边缘的力;
[0054] 26:抓手;
[0055] 61:内装物;
[0056] 62a:盖输送装置;
[0057] 62b:盖供给装置;
[0058] 63:盖配置装置;
[0059] 64、64b:激光产生装置;
[0060] 64a:光纤;
[0061] 64c:分光部;
[0062] 65:传送带;
[0063] 66:激光。

具体实施方式

[0064] 下面示出实施方式,对本发明进行详细说明,但是本发明不仅限于这些记载所作的诠释。参照图1~图6对本实施方式所述的密封容器的制造方法进行说明。另外,对同一部件/同一部位标以同一标号。
[0065] 本实施方式所述的饮料用或食品用密封容器的制造方法是如下所述的方法:在通过激光焊接法制造将容器体和安装在该容器体的口部上的盖熔融接合成为气密状态的饮料用或食品用密封容器时,同时或者大致同时熔融接合上述容器体与上述盖之间的整个焊接预定部位。
[0066] 为了获得密封有饮料或食品的容器,至少要经过以下工序。图1示出了表示本实施方式的密封容器的制造方法中的一个方式的工序图。首先是从容器体1的口部填充内装物61的填充工序S1。接着是向容器体1供给盖3来覆盖口部的盖供给工序S2。接着是以覆盖口部的方式安装盖3的盖安装工序S3。接着是使容器体1和盖3熔融接合而对容器进行密封的密封工序S4。在本实施方式的饮料用或食品用密封容器的制造方法中,在密封工序S4中同时或者大致同时熔融接合整个焊接预定部位。另外,也可以在填充工序之前设置对容器体的内部和盖进行清洗的清洗工序。并且,也可以设置对经过了密封工序的容器附上标签的贴标签工序。
[0067] 在填充工序S1中,例如在转台(未图示)上放置空的容器体1,在转台转一圈期间填充内装物61。内装物61例示有饮料等液体或固液混合物或者食品。其速度因容器的容量不同而有差异,但是例如为饮料的情况下的速度为500~2000容器/分。
[0068] 在盖供给工序S2中,将在填充工序S1中填充了内装物61的容器体1通过传送带等输送装置(未图示)输送到盖供给装置62b处。通过盖输送装置62a将盖3输送到盖供给装置62b。盖供给装置62b对每个容器体1供给一个盖3到其口部。此时,在内装物61发泡的情况下进行消泡,进行二氧化碳气清洗或者氮气清洗。
[0069] 在盖安装工序S3中,利用盖配置装置63将盖3载置到容器体1的特定位置上。此处,为了使盖3在激光照射之前不偏移也不脱落,优选以将容器体1和盖3贴紧的方式将它们固定。另外,也可以大致同时进行盖供给工序S2和盖安装工序S3。
[0070] 为了以将容器体1和盖3贴紧的方式将它们固定,可以通过设计容器体的口部和盖的结构来实现。使用例如这样的容器,该容器使用由可塑性材料形成的如下所述的盖:在封闭如图2所示的容器、即口部时,该盖自身产生变形,由于缓和变形的应力而相对于容器体产生加压状态下的贴紧部分,而且贴紧部分成为封口。此处,贴紧部分始终以加压状态接触容器体,成为焊接预定部位。根据上述结构,不仅内装物不会溢出,还能够从作为贴紧部分的贴紧面上除去内装物或壁液等夹杂物。因此,当使贴紧部分熔融接合时,贴紧面上没有夹杂物,所以不易产生由于夹杂物的汽化或激光的照射导致的吸热等给熔融接合带来不良影响的现象。
[0071] 对图2所示的容器进行详细的说明。图2示出了表示密封容器的一个方式的示意图。图2(a)是已将口部安装到容器体时的口部附近的示意纵剖面图,图2(b)是从A方向观察到的示意外观图,图2(c)是从B方向观察到的盖的示意立体图。在密封容器100中,在容器体1的口部9的外壁上,设置有与口部9的边缘5平行的环状的肋6;在盖3的边缘7上,设置有形成与肋6贴紧的贴紧部分4的环状的圈8;在口部9的外壁中的比肋6更靠近口部的边缘5侧,设置有环状的凸起2;在盖3的内壁中,设置有环状的凹陷11,使该环状的凹陷11位于其与在盖3的边缘7上设有的圈8的间隔比在口部9上设有的环状的凸起
2与肋6之间的间隔略长的部位上。而且,肋6和圈8的贴紧部分4成为焊接预定部位。
[0072] 在密封容器100中,盖3的内径设计为,以使其在安装时多少从周围夹紧口部9的侧壁。此处,环状凹陷11和圈8之间的间隔形成为比在口部9上设有的环状凸起2和肋6之间的间隔稍长。因此,通过观察图2(a)可知,盖3中的环状凹陷11和圈8之间的被夹持的部分,由于盖3的夹紧力,沿垂直方向产生变形而出现压缩应力。由于盖3由可塑性材料形成,所以为了缓和该压缩变形而产生向下方推开圈8的力、即挤压肋6的力23。由此,贴紧部分4处于被加压状态。
[0073] 盖3是由可塑性材料形成,但是具体来说是由塑料树脂、金属或者它们的复合材料形成。金属是例如铝、或者以它们为主要成分的合金。作为塑料树脂,例如可以是聚对苯二甲酸乙二醇酯树脂(PET)、乙二醇改性聚对苯二甲酸乙二醇酯树脂(PETG)、聚对苯二甲酸丁二醇酯树脂、聚二甲酸乙二醇酯树脂、聚乙烯树脂、聚丙烯树脂(PP)、环烯共聚物树脂(COC、环烯烃共聚)、离聚物树脂、聚-4-甲基戊烯-1树脂、聚甲基丙烯酸甲酯树脂、聚苯乙烯树脂、乙烯-乙烯醇共聚树脂、丙烯腈树脂、聚氯乙烯树脂、聚偏氯乙烯树脂、聚酰胺树脂、聚酰胺-酰亚胺树脂、聚缩树脂、聚碳酸酯树脂、聚砜树脂、或四氟乙烯树脂、丙烯腈-苯乙烯树脂、丙烯腈-丁二烯-苯乙烯树脂。其中,特别优选PET和铝。PET和铝作为饮料/食品用容器的材料有实际使用成果。在PET等透明树脂的情况下,当要通过激光焊接法使其熔融接合时,由于对激光没有吸收性,所以对贴紧部分的贴紧面实施对激光有吸收性的着色,从而能够直接加热贴紧面周边。即使是铝的情况下,也能够通过对贴紧部分的贴紧面的背面实施对激光有吸收性的着色,来高效地加热贴紧面周边。着色是通过涂敷或使其含有例如颜料或染料来进行的。另外,作为塑料树脂与金属的复合材料的示例,有将塑料树脂片和铝材层叠而成的复合薄膜。该复合薄膜包括整体厚度为0.05~0.1μm的薄复合薄膜。
[0074] 容器体1由塑料树脂、玻璃、陶瓷、金属或者它们的复合材料形成。其形状优选螺栓形状。另外,由于通过激光焊接法来熔融接合以便对容器进行密封,所以与容器体相比盖无需厚壁,因而能够减少材料的使用量。在用塑料树脂形成容器体1和盖3的情况下,使用比用金属形成时少的能量就能够将它们接合起来。
[0075] 在密封容器100中,还在口部9的外壁中的比凸起2更上方的部位设置有环状的第二凸起10,在盖3的内壁上设置有第二凹陷12。此处,盖3形成为:盖3的与边缘5接触的内壁部分13与第二凹陷12之间的间隔,比边缘5与第二凸起10的间隔稍短。由此,形成边缘5和内壁部分13的抵接面,该抵接面始终处于被加压状态。因此,也从该抵接面上除去夹杂物,不存在夹杂物引起的不良影响,在一并也对该抵接面进行焊接的情况下,容易进行熔融接合。另外,由于对两个部位进行熔融接合,所以容器体1和盖3的接合强度提高。
[0076] 另外,在密封容器100中,为了提高盖3的开封性,设有抓手26。并且,由于容器中施加有内压,为防止盖3飞出,设有相对于肋6的钩挂部14。即使万一不经意地使盖3开封了,也能够通过钩挂部14防止盖3的飞出。
[0077] 另外,在本实施方式的密封容器的制造方法中,作为所使用的容器,例如也可以使用如图3所示的密封容器200。图3中示出了表示密封容器的另一方式的示意图。此处示出了已将盖安装到容器体时的口部附近的纵剖面示意图。在图3的密封容器200中也与密封容器100同样,通过使焊接预定部位自身产生变形来形成贴紧部分4,该贴紧部分4始终处于被加压状态。即,在密封容器200中,设置盖3的内壁面与口部9的边缘5之间的抵接面19,在口部9的外壁上设置与口部9的边缘5平行的环状的凹陷17。并且,在盖3的内壁面上设置环状的凸起18。另外,在盖3的内壁中环状的凸起18设置在这样的部位:位于其与抵接面19之间的间隔,比口部9的边缘5与在口部9上设置的环状的凹陷17之间的间隔稍短的部位上。而且,在容器体1的外壁上设置的环状的凹陷17和在盖3的内壁上设置的环状的凸起18之间的贴紧部分4,成为焊接预定部位。在密封容器200中,盖3的内径设为在安装时多少从周围夹紧口部9的侧壁。此处,盖3形成为:使抵接面19与在盖3上设置的环状的凸起18之间的间隔,比口部9的边缘5与在口部9上设置的环状的凹陷17之间的间隔稍短。因此,通过观察图3可知,在盖3中的抵接面19和环状的凸起18之间被夹持的部分,由于盖3的夹紧力,在垂直方向上产生变形而生成拉伸应力。由于盖3由可塑性材料形成,为了缓和该拉伸变形,盖3的内壁面产生按压边缘5的力24,边缘5抵接在盖3的内壁面上。另一方面,盖3的环状的凸起18与容器体1的环状的凹陷17相互贴紧,使该贴紧部分4处于被加压状态。盖3和容器体1的材质与第一实施方式的情况相同。
[0078] 在实施方式的密封容器的制造方法中,并不限定于使用图2或图3所示的自身产生变形的容器所作的诠释,也可以利用在将盖固定在容器体上的状态下对其进行保持的盖保持装置(未图示),以将容器体和盖贴紧的方式对它们进行固定。
[0079] 在密封工序S4中,同时或者大致同时熔融接合整个焊接预定部位。为了同时或者大致同时进行熔融接合,优选对包含整个焊接预定部位的区域照射激光。在本实施方式的密封容器的制造方法中,具有同时熔融接合整个焊接预定部位的方式和大致同时熔融接合整个焊接预定部位的方式这两种方式。作为同时进行熔融接合的方式,包括对呈环状或圆筒状的整个焊接部位,以环状或向心状照射激光来进行激光焊接的技术。另外,作为大致同时进行熔融接合的方式,包括在以区域状照射激光并使容器通过该区域内时进行激光焊接的技术。为了以区域状照射激光,例如有如下所述的方式:在传送带的上方朝下方配置呈束的光纤的光出射口,将激光束照射在整个焊接预定部位由传送带以恒定速度连续地移动过来必定通过的区域上。在该情况下,由于激光的照射形状与焊接预定部位的形状不一致,所以为了熔融接合整个焊接预定部位需要调节激光的强度,但是无需严格地使通过传送带输送过来的容器的定时与照射定时一致。
[0080] 首先,对同时熔融接合整个焊接预定部位的方式进行说明。由于饮料用或者食品用密封容器使用一般具有顶面的圆筒形的盖,所以焊接部位一般为圆形。因此,以环状或向心状均匀地照射激光是有效的。为了以环状或向心状照射激光,在使用半导体激光器的情况下,通过借助于光纤将激光均匀地分散为环状或向心状就能够得以实现。在将激光产生装置64固定于密封容器的焊接预定部位,以环状或向心状照射一定时间的激光,就能够以环状或圆筒状形成焊接部位。
[0081] 在图2中的密封容器100中,贴紧部分4配置在圈8的正下方。因此,在从顶面观察盖3时,贴紧部分4的形状为环状。在图4中示出了向图2中的密封容器100的焊接预定部位即圈8照射激光66的情况。如果通过配置对从激光产生装置64激发出的激光66进行传送的光纤64a而使激光66的照射形状为环状,则能够同时且适量地熔融接合整个焊接预定部位。此处,使激光66的照射形状成为例如与图2的密封容器100的圈8的直径大致相同的环状的照射形状。环状的照射形状的宽度优选为比圈8的宽度小。根据激光焊接法能够清楚地划分焊接部位与非焊接部位的界限,所以无需进行额外的焊接,焊接部位的质量也高。并且能够缩短焊接时间。另外,无需像使用点激光时那样的使激光点扫描的装置,实现了激光照射装置的简化。另外,也可以使环状的照射形状的宽度大于圈8的宽度,但是该情况下,为了不给焊接预定部位的周边带来热损伤,需要调节激光的能量供给量。
[0082] 为了以环状照射激光,例如使用多分路耦合器波导元件、星形光耦合器等分光部64c,将借助于一条光纤从作为一个激光光源的激光产生装置64传送过来的激光分路成多条光纤64a,将该各条光纤64a排列成与圈8的直径相同的环状,并使各条光纤64a的末端接近圈8。由此,能够同时向整个圈8照射激光66。例如适用于密封容器100,如图4所示从上方向下方,使用将各条光纤64a排列为环状的激光产生装置64照射激光。
[0083] 另一方面,如图3所示的密封容器200那样,在焊接预定部位设置在盖3的侧壁的圆周上的情况下,当从侧壁面观察盖3时,贴紧部分4的形状成为以盖3的中心轴、即容器体1的中心轴为中心的圆筒状。在图5中示出了向密封容器200的焊接预定部位即贴紧部分4的盖的外壁部分照射激光66的情况。图5中,(a)是立体图,(b)是沿A-A’线的剖面图。如图5(b)所示,如果将对从激光产生装置64激发出的激光进行传送的光纤64a配置为向心状,而使激光66的照射形状为向心状,则能够同时且适量地熔融接合圆筒形状的整个焊接预定部位。例如,以使整周以向心状朝向图5(b)的密封容器200的贴紧部分4的方式向盖3的侧壁照射激光66。向心状的照射宽度优选为小于密封容器200的贴紧部分4的宽度。与激光的照射形状为环状的情况相同,能够缩短焊接时间,而且熔融部位的质量也高。并且,实现了激光照射装置的简化。另外,也可以使向心状的照射宽度大于贴紧部分4的宽度,但是在该情况下,为了不给焊接预定部位的周边带来热损伤,需要调节激光的能量供给量。
[0084] 为了以向心状照射激光,例如使用分光部64c将借助于一条光纤从激光产生装置64传送过来的激光分路成多条光纤64a,将该各条光纤64a排列成向心状,并使各条光纤
64a的末端接近贴紧部分4。由此,能够同时向整个焊接预定部位照射激光。例如适用于密封容器200,如图5(b)所示,使用将各条光纤64a排列成向心状的激光产生装置64,在与容器的中心轴垂直的同一垂直面上以从盖3的整周朝向该中心轴照射激光66的方式照射激光66。
[0085] 在激光的照射形状是环状还是向心状的情况下,都包括如下所述的方式:密封容器100、200由传送带输送,或者一边由传送带输送一边被旋转,同时对其照射激光。在从S1工序到S4工序的各道工序中,通过利用传送带输送容器,能够以流动作业的方式推进工序,通过使容器旋转能够进一步实现焊接的均匀化。接着,在向密封容器100、200照射一定时间的激光之后,将进行熔融接合后已密封的容器移动到下游工序的工序(图1中未图示)。
[0086] 下面对大致同时熔融接合整个焊接预定部位的方式进行说明。图6中示出了表示大致同时对在传送带上被传输的容器进行熔融接合的实施方式的一个方式的示意图。如图6所示,作为这样的方式例如是经过如下工序的方式:在对安装了盖3的容器体1进行输送的传送带65上以等间隔配置多个激光产生装置64b,该激光产生装置64b以区域状发出激光,每当被以该间隔输送的带盖容器到达激光的照射区域时就会被激光照射一定时间,然后将容器转移到下游工序。此处,也可以始终照射激光,在容器通过时提高照射强度,但是优选仅限于在带盖容器位于特定的位置范围的时域内照射激光。这是为了节省不必要的激光输出,减少对焊接预定部位以外的部分的照射。另外,为了使焊接均匀化,也可以在焊接时使容器旋转。作为密封容器,例如使用图2所示的密封容器100。在该情况下,激光从上方向下方进行照射。在使容器通过激光所照射的区域的方法中,要求激光的照射形状是具有宽度比上述焊接预定部位沿各个方向的宽度中最小的宽度大的区域状。并且考虑到激光强度和容器的通过速度,沿容器通过的方向的长度必须足够大。
[0087] 为了大致同时焊接整个焊接预定部位,传送带速度优选在50m以上/分或者大约500容器以上/分。容器的输送也可以是当在传送带上进行激光焊接时使容器停止的间歇输送,但是当正在进行激光焊接中也优选是连续运动的输送,特别优选是以一定速度的连续输送。饮料用或食品用容器要求高速生产线,还要求抑制例如对液面晃动影响大的拾取氧气,并且以维持产品的质量方面、装置的运转方面以及卫生管理方面为目的而要求抑制液体溢出。因此,使传送带以高速连续地移动,使填充后的传送带速度接近刚填充完的容器的移动速度,在传送带和装置之间不用转移容器,或容器与装置不接触,在液面保持平稳的状态下进行密封是理想的。
[0088] 在上述同时熔融接合的方式或者在上述大致同时熔融接合的方式中的任一方法中,在铝制容器的情况下,都能够向各个焊接部位供给均匀的能量,所以不存在焊接部位没有熔融或者被烧穿这一问题,在塑料制容器的情况下,即使在焊接部位沾湿时也能够避免水滴在焊接时显著地移动的情况。
[0089] 在上述同时熔融接合的方式或者在上述大致同时熔融接合的方式中的任一方法中,在照射激光时,都优选通过监视激光的输出来监视激光强度。另外,优选通过利用光敏传感器或红外线传感器等温度传感器来监视发光或者发热,从而监视激光的照射位置。也可以兼用CCD等图像传感器。
[0090] 激光振荡元件例示有半导体激光器、二氧化碳激光器等气体激光器、YAG激光器,根据进行激光焊接的容器体和盖的材质、激光照射移动速度、照射点形状等各种参数适当地进行选择。激光的波长例如为800-1000nm。对塑料容器和螺栓形状的罐容器进行激光焊接时优选半导体激光器。
[0091] 在焊接时使用哪种程度的激光输出是由焊接方法和容器的焊接部位的结构决定的,但是会发现,无论使用上述任一焊接方法都可以对焊接部位的平均单位面积实施一定能量的激光照射从而能够可密封地焊接。
[0092] 在金属制容器的情况下,根据耐压时部件的厚度对断裂部位进行调节,但是在进行激光焊接时,能够通过激光输出和清洗气体的喷射方法调节焊道部中的部件厚度的变化。在铝制容器中,饮料容器广泛使用厚度在0.2mm以下的部件,但是为了在熔融接合力处于适当的范围内进行可密封地熔融接合,从调节密封性和断裂部位以及内部压力的观点出发,与仅对铝部件相互之间进行熔融接合的情况相比,焊接部位的每单位面积的能量供给量不允许在特定的狭窄范围以外。例如,在容器体和盖由厚度在0.2mm以下的铝材料形成的情况下或者由厚度在0.2mm以下的铝-塑料树脂层叠薄膜形成盖的情况下,对焊接预定部位照射激光的照射能量优选为每平方厘米17~26J。
[0093] 在塑料制容器的情况下,由于是激光透过透明的部件并被熔融接合面吸收的方式,所以向焊接部位供给的能量供给量基本不影响部件的厚度。但是,与铝制容器同样,从调节密封性和断裂部位以及压力的观点出发,与仅对塑料部件相互之间进行熔融接合的情况相比,对焊接部位的每单位面积的能量供给量也不允许在特定的狭窄范围以外。供给能量少就无法密封,供给能量过多则熔融接合的强度就过大,在容器内压过度上升时对使用者产生危险。因此,在PET容器的情况下,对焊接预定部位照射的激光照射能量优选为每平方厘米0.5~2.1J。
[0094] 在本实施方式的密封容器的制造方法中,为了提高激光的吸收率,优选设置在熔融接合部分设有激光吸收部的工序。即使是机械性接触是沿着吸收部变得复杂那样的轮廓或者起伏,也能够高精度地进行激光焊接。这是因为激光主要是在设有吸收部的地方进行焊接。该工序若是在激光照射之前则什么时候都可以,可以是在填充工序S1之前、填充工序S1、盖供给工序S2或者盖安装工序S3中的任一个工序期间。另外,由于该工序在焊接对激光不具有吸收带的材料时有效,所以不是必要工序。也就是说,在如一部分是彩色的瓶那样接合部分吸收激光的情况下,仅通过照射激光就能够进行激光焊接。
[0095] 根据本实施方式的密封容器的制造方法,具有如下的优点。
[0096] (1)、焊接所需的时间短。这是由于能够同时或者大致同时地对整个焊接部位照射激光。
[0097] (2)、熔融接合强度稳定。这是因为能够防止向焊接部位的一部分、特别是焊接的开始点/终止点附近供给过量的能量,而且在焊接部位沾湿的情况下能够防止在焊接时水滴的移动。
[0098] (3)、能够提供适当的容器耐压强度。这是因为能够稳定地向焊接部位的每单位面积供给一定能量,所以可以获得兼具密封性和安全性的熔融接合。
[0099] (4)、焊接装置的操作/稳定运转变得容易。这是因为没有了激光点的移动机构或容器的旋转机构这种复杂的可动部,仅通过激光照射装置的上下动作和用传送带输送容器这种简单的可动部就能够实施焊接。还因为与对机械部件的位置/方向进行调节以使激光点的光正确地在整个焊接部位上移动的情况相比,无论怎么用激光照射整个焊接部位都容易观察,所以容易调节容器的受光位置。
[0100] 另外,在现有的金属罐的卷边接缝工序中,在实际进行卷边接缝工序的时候难以判断是否对容器进行了适当的密封。因此,虽然在制造开始之前的检查结果良好,但是在卷边接缝工序中产生了密封不良的情况下,要经过比实际产生密封不良长很多的时间,才会发现密封不良。在这样的情况下,极大地增大了必须废弃的容器数量,极度延长了生产装置的停止时间。另一方面,根据本实施方式的密封容器的制造方法,由于在极短的时间内能够检测出是否适当地进行了焊接工序,所以金属罐的卷边接缝工序不会有上述缺陷实施例
[0101] 为了调查耐压,准备了具有图1的密封容器100的形状的PET容器。将从808nm的半导体激光器中分路出的光纤配置为环状,以1.0J进行照射,对焊接预定部位进行了熔融接合。而且,当假设在室温下、耐压强度为12.0个大气压且为热填充时,测量到80℃下的耐热强度为10.4个大气压。因此,能够确认的是,本发明的密封容器可以作为耐热容器或者耐压容器来使用。
[0102] 为了调查耐压,准备了具有图3的密封容器200的形状的壁厚为150μm的铝制容器。将从808nm的半导体激光器中分路出的光纤配置为向心状,以24.0J进行照射,对焊接预定部位进行了熔融接合。而且,当假设在室温下、耐压强度为12.0个大气压且为热填充时,测量到80C下的耐热强度为10.4个大气压。因此,能够确认的是,本发明的密封容器可以作为耐热容器或者耐压容器来使用。
QQ群二维码
意见反馈