Method and device for producing spiral springs by means of spring winding machine

申请号 JP2011058680 申请日 2011-03-17 公开(公告)号 JP2011218446A 公开(公告)日 2011-11-04
申请人 Wafios Ag; ヴァフィオス アクチェンゲゼルシャフトWAFIOS Aktiengesellschaft; 发明人 KALKAU VOLKER;
摘要 PROBLEM TO BE SOLVED: To produce a spiral spring made of a wire material with considerably different qualities with high reliability within strict tolerance in the production of comparatively a long spiral spring.SOLUTION: First of all, a desired nominal geometry of the spiral spring and an NC control program which is suitable for production of the nominal geometry are defined. An actual position of a selected structural element of the spiral spring 200 relative to a preferably machine-fixed reference element is measured at a measurement area 254 in at least one measurement time which occurs after the start and before the end of the production of the spiral spring. The measurement area 254 is located at a finite distance 210 from a forming device 120 in the longitudinal direction of the spiral spring, wherein the distance is less than the overall length of the finished spiral spring. The measured actual position is compared with a nominal position of the structural element for the measurement time, in order to determine difference between the actual position and the nominal position at the measurement time. A pitch tool 130 of the forming device is controlled based on the positional difference.
权利要求
  • 数値制御されたばね巻き機によるばね巻きによって螺旋ばねを製造するための方法であって、ワイヤが、NC制御プログラムによって制御されつつ、前記ばね巻き機の成形装置の送り装置を通して送られ、螺旋ばねを形成するように前記成形装置の工具によって成形される方法であって、
    前記螺旋ばねの所望の公称形状と前記公称形状の製造に適切なNC制御プログラムとを規定するステップと、
    前記螺旋ばねの長手方向における前記成形装置から有限距離にある測定領域において、前記螺旋ばねの製造の開始後および終了前の少なくとも1つの測定時間に、基準要素に対する前記螺旋ばねの選択された構造要素の実際の位置を測定するステップであって、前記距離が、前記完成した螺旋ばねの全長よりも短いステップと、
    前記測定時間にわたる前記実際の位置と前記構造要素の公称位置とを比較して、前記測定時間における前記実際の位置と前記公称位置との差を表す現在の位置の差を決定するステップと、
    前記位置の差に基づいて、前記螺旋ばねのピッチを決定する前記成形装置の少なくとも1つの工具によって、前記位置を制御するステップと、
    を含む方法。
  • 前記測定領域と前記成形装置との間の前記距離が、前記全長の5%〜70%、特に10%〜50%であるように、および/または前記距離内に1つ以上のばね巻きが存在するように、前記距離が前記完成した螺旋ばねの前記全長に合わせられる請求項1に記載の方法。
  • 2次元視野を有するカメラが測定のために使用され、前記測定領域が前記カメラの前記視野に配置される請求項1または2に記載の方法。
  • 前記実際の位置が、機械で定められる基準要素に対して測定される請求項1〜3のいずれか1項に記載の方法。
  • カメラの視野の縁部によって、好ましくは、前記成形装置に対面する前記視野の当該側縁によって形成される仮想の基準要素が使用されるか、または前記カメラの前記視野において前記測定領域から離間して配置される機械で定められた基準体が設けられ、前記基準体の1つの要素、特に真っ直ぐな縁部が前記測定基準要素として使用される請求項4に記載の方法。
  • 前記測定のために使用される前記螺旋ばねの前記選択された構造要素が、巻きセクションの輪郭であり、前記輪郭が、前記視野において直線として現れ、前記螺旋ばねの前記長手方向に対して横方向に、特に、前記長手方向に対して約45°〜90°の角度で延びる請求項1〜5のいずれか1項に記載の方法。
  • 前記測定時間における前記構造要素の前記公称位置の座標がプログラム時間関数から導出され、前記プログラム時間関数が、前記構造要素の前記公称位置の前記座標のために前記測定の前に規定され、前記構造要素の前記公称位置の前記座標のための前記プログラム時間関数が、好ましくは、基準螺旋ばねの少なくとも1つの基準製造工程に基づいて実験的に決定される請求項1〜6のいずれか1項に記載の方法。
  • 複数の測定が前記螺旋ばねの製造中、連続測定時間にそれらの間の時間間隔で行われ、少なくとも1つの巻きが、直接連続する2つの測定の間の時間間隔に形成されるように、前記時間間隔が好ましくは前記ワイヤの送り速度に合わせられ、その間に、1つおよび2つの巻きが好ましくは前記時間間隔で形成される請求項1〜7のいずれか1項に記載の方法。
  • 複数の測定が前記螺旋ばねの一定のセクションの製造中に行われ、および/または前記実際の値の動作平均値が、予め規定された数の測定の後に、特に各測定の後に、複数の連続測定の実際の値から決定され、特に、時間経過に伴う前記動作平均値の推移が、好ましくは、前記ばね巻き機のディスプレイユニットに表示される請求項1〜8のいずれか1項に記載の方法。
  • 重み付けされた差値、特に、前記位置の差に比例する重み付けされた差値が、決定された各位置の差のために決定され、前記工具の前記位置が前記重み付けされた差値に基づいて変更される請求項1〜9のいずれか1項に記載の方法。
  • 特に、ピッチ変化についてばねセクションを測定するときに、第1の測定が第1の測定領域において第1の測定時間に行われ、前記測定領域が前記成形装置から第1の距離にあり、第2の測定が、前記第1の測定領域に対してオフセットされる第2の測定領域において、次の第2の測定時間に行われ、前記第2の距離が前記第1の距離よりも長く、前記第1の測定のおよび前記第2の測定の結果が共に処理される請求項1〜10のいずれか1項に記載の方法。
  • NC制御プログラムの制御下のばね巻きによって、螺旋ばね(200)を製造するためのばね巻き機(100)であって、前記ばね巻き機(100)が、ワイヤ(115)を成形装置(120)に送るための送り装置(110)を有し、前記成形装置が、予め決定可能な位置で前記螺旋ばねの直径を本質的に制御する少なくとも1つの巻き工具(122、124)と少なくとも1つのピッチ工具(130)とを有し、展開されている螺旋ばねに対する前記少なくとも1つのピッチ工具(130)の動作が、前記螺旋ばねの局所的なピッチを制御するばね巻き機(100)において、前記ばね巻き機が、請求項1〜11のいずれか1項に記載の方法を実施するように構成されることを特徴とするばね巻き機(100)。
  • 前記ばね巻き機が第1のカメラ(250)を有し、前記第1のカメラの視野(252)の測定領域(254)が、前記成形装置(120)の前記工具から有限距離(210)にあるばねセクションの部分を記録するように、前記第1のカメラ(250)が配置され、前記距離が前記全長の5%〜70%、特に10%〜50%であるように、および/または前記距離内に1つ以上のばね巻きが存在するように、前記距離(210)が好ましくは前記完成した螺旋ばねの前記全長に合わせられる請求項12に記載のばね巻き機。
  • 前記ばね巻き機が第2のカメラ(260)を有し、自由ばね端部セクション(204)が、前記螺旋ばねの製造の最終段階で前記第2のカメラの対象領域に至るように、前記第2のカメラ(260)が前記第1のカメラ(250)から離間して配置される請求項12または13に記載のばね巻き機。
  • 特に、コンピュータ読み取り可能な媒体に記憶されるかまたは信号の形態であるコンピュータプログラム製品であって、前記コンピュータプログラム製品が、適切なコンピュータのメモリにロードされ、コンピュータによって動作しているときに、前記コンピュータプログラム製品により、前記コンピュータが、請求項1〜11のいずれか1項に記載の方法を実施するコンピュータプログラム製品。
  • 说明书全文

    本発明は、数値制御されたばね巻き機によるばね巻きによって螺旋ばねを製造するための方法であって、ワイヤが、NC制御プログラムによって制御されつつ、前記ばね巻き機の成形装置の送り装置を通して送られ、螺旋ばねを形成するように前記成形装置の工具によって成形される方法であって、前記螺旋ばねの所望の公称形状と前記公称形状の製造に適切なNC制御プログラムとを規定するステップと、前記螺旋ばねの長手方向における前記成形装置から有限距離にある測定領域において、前記螺旋ばねの製造の開始後および終了前の少なくとも1つの測定時間に、基準要素に対する前記螺旋ばねの選択された構造要素の実際の位置を測定するステップであって、前記距離が、前記完成した螺旋ばねの全長よりも短いステップと、前記測定時間にわたる前記実際の位置と前記構造要素の公称位置とを比較して、前記測定時間における前記実際の位置と前記公称位置との差を表す現在の位置の差を決定するステップと、前記位置の差に基づいて、前記螺旋ばねのピッチを決定する前記成形装置の少なくとも1つの工具によって、前記位置を制御するステップと、を含む方法と、その方法を実施するのに適切なばね巻き機とに関する。

    螺旋ばねは、多数の応用分野で大量におよび異なる構成に必要な機械要素である。 巻かれたねじりばねとも呼ばれる螺旋ばねは、通常、ばねワイヤから製造され、使用中のそれらのばねに対する負荷に応じた引張ばねまたは圧縮ばねの形態である。 圧縮ばね、特に軸受ばねは、例えば、自動車構造のために大量に必要となる。 ばね特性は、特に、異なるピッチのセクションのまたは異なるピッチプロファイルの影響を受けることがある。 例えば、圧縮ばねの場合、しばしば、一定のピッチ(一定のセクション)を有するより長いかまたはより短い長さの中央セクションが存在し、このセクションに隣接して、ばねの両端には、端部に向かって小さくなるピッチを有する接触領域が存在する。 円筒状の螺旋ばねの場合、ばね径は、ばねの長さにわたって一定であるが、例えば、円錐状またはバレル状の螺旋ばねの場合、ばねの長さにわたって変化してもよい。 さらに、(負荷を受けていない)ばねの全長は種々の用途のために広範囲に変化してもよい。

    現在、螺旋ばねは、通常、数値制御されたばね巻き機によるばね巻きによって製造される。 この場合、ワイヤ(ばねワイヤ)は、NC制御プログラムによって制御されつつ、送り装置によってばね巻き機の成形装置に送られ、螺旋ばねを形成するように成形装置の工具によって成形される。 工具は、一般に、ばね巻きの直径を定め、必要に応じて変更するための1つ以上の位置可変の巻きピンと、製造工程の各段階でばね巻きの局所的なピッチを制御する1つ以上のピッチ工具とを含む。

    ばね巻き機は、一般に、非常に狭い公差内にある特定のばね形状(公称形状)を有する多数のばねを高速で製造するように意図される。 機能的に重要な形状パラメータは、特に、負荷を受けていない状態における完成した螺旋ばねの全長を含む。 さらに、全長により、特に、ばねの設置寸法およびばねが制御される。

    例えば自動車の分野における厳しい品質要求に従うために、ばねが完成した後に、特定のばね形状データ、例えば、ばねの直径、長さおよび/またはピッチおよび/またはピッチプロファイルを測定すること、および測定結果に応じて、完成したばねを、満足な部分(公差内のばね形状)と、不満足な部分(公差外にあるという結果)とに、必要に応じて、別の種類に自動的に分類することが通常の慣習である。 この手順は、特に長いばねの場合に極めて非経済的であるが、その理由は、長いばねの場合、比較的長い長さのワイヤが、各ばねのために消費され、完成したばねが公差外にあることが確認された場合に、そのばねを廃棄しなければならないからである。

    さらに、製造中に、ばねの直径、長さおよびピッチが、適切な測定手段によってチェックされること、および公差限界外の偏差が生じた場合に、ばね形状が公差内に留まるように、製造パラメータが変更されることは既に提案されている。

    特許文献1は、ばねの成形が開始するばね巻き機の当該領域に案内されるビデオカメラを有する一体化された測定システムを有するばね巻き機を開示している。 ビデオカメラに接続され、かつ適切な判定アルゴリズムを有する画像処理システムは、製造中にばねの直径、長さおよびピッチをチェックすることを可能にするように意図され、製造中にモータによって調整することができる、処理工具へのフィードバックによって、これらのばね形状パラメータを変更することを可能にすることが意図される。 現在のばね径を決定するための判定アルゴリズムが詳細に記載されている。

    独国特許出願公開第10345445B4号明細書

    本発明の課題は、特に、比較的長い螺旋ばねの製造時に、大きく異なる品質のワイヤ材料からなる螺旋ばねを、厳密な公差内において高い信頼性で製造することができるように、この一般的なタイプの方法および装置を最適化することである。 1つの特定の目的は、全長の散在がほとんどなく、廃棄率が低い長い螺旋ばねを製造することを可能にすることである。

    これらの課題は、請求項1に記載の特徴を有する、ばね巻きにより螺旋ばねを製造するための方法によって、および請求項12に記載の特徴を有するばね巻き機によって解決される。 有利な発展形態は従属請求項に記載される。 全ての請求項の用語は、参照により説明の内容に含まれる。

    本方法では、最初に、製造すべき螺旋ばねの所望の公称形状と、この製造に適切な対応するNC制御プログラムとが規定される。 このようにして、ばねの製造中に実施しなければならないばね巻き機の機械軸の調整される加工運動の順序が規定される。

    螺旋ばねの製造中に、螺旋ばねの選択された構造要素の実際の位置が基準要素に対して測定される。 その測定により、選択された構造要素と基準要素との間の実際の距離を決定することが可能になる。 測定は、螺旋ばねの製造の開始後および終了前に生じる測定時間に、すなわち、ばね製造のために意図されるばね巻き機の加工運動の進行中に行われる。 したがって、測定時間には、ばねのほんの一部が製造されている。 この場合、選択された構造要素は、螺旋ばねの長手方向において成形装置から有限距離にある測定領域に配置される。 この距離は、完成した螺旋ばねの全長よりも短く、すなわち、公称形状から得られる全長よりも短い。 測定時間における実際の位置と公称位置との差を表す現在の位置の差は、測定時間にわたる構造要素の実際の位置と構造要素の公称位置とを比較することによって決定される。 次に、公称位置に近い実際の位置を得るために、螺旋ばねのピッチに影響を与える成形装置の少なくとも1つの工具の位置が、位置の差に基づいて制御される。

    実際の値が公称値に一致する場合には、制御動作は行われない。 対照的に、大きな偏差(位置の差)が確認された場合、次の測定で位置の差の減少を期待することができるように、ピッチに影響を与えるピッチ工具のおよび/またはある他の工具(例えば、制御形態で回転および/または傾斜させることができる巻きピン)の位置を変更することによって、成形時に製造されるばねのピッチが変更される。 したがって、測定に基づいて、瞬時に形成されたピッチが制御される。 このため、好ましくは、ピッチ工具の1つのみの位置が開ループ制御または閉ループ制御を受ける。

    測定領域は成形装置の成形工程の位置から有限距離にあるので、測定により、成形装置と測定領域との間に配置されたばねセクションの累積長さの誤差を決定することが可能になる。 さらに、測定領域と成形装置との間の距離は、完成した螺旋ばねの全長よりも短いので、螺旋ばねの製造に関する全体時間に対して測定時間を十分に早くすることができ、その結果、測定に基づいて行われ得る制御動作を用いて、成形加工中に、起こり得る間違った設定を補正し、製造工程の終了後に公差内の螺旋ばねの全長を保持することもできる。

    好ましくは、測定領域と成形装置との間の距離は、全長の5%〜70%、特に全長の10%〜50%であるように、完成した螺旋ばねの全長に合わせられる。 距離のこれらの好ましい最小値に従う場合、長さの誤差は、重要な測定結果を可能にするために測定システムの測定精度と比較して十分に長い不完全な成形状態の場合のばねセクションにわたって生じることができる。 距離の好ましい上限に従う場合、一般に、1つ以上の制御動作によって、製造工程の終了時に所望の全長を有する螺旋ばねを製造するのになお十分な残りの時間がある。

    好ましくは、距離内に1つ以上のばね巻きが存在するので、測定領域、例えば、2つ、3つ、4つ、5つ、6つまたはそれより多くのばね巻きを、成形位置または成形装置の位置から離して配置することが可能である。 2〜3巻きの距離でも、ピッチに応じて、有効な結果を頻繁に達成することができる。

    本方法の好ましい実施形態では、実際の位置は、機械で定められた基準要素に対して測定される。 機械で定められた基準要素は、その座標が、機械で定められた座標系に対して認識されるかまたは決定することができる要素である。 この場合、基準要素は、誤りのある巻き機の機械座標系に対して規定された座標を有するので、この測定は絶対測定である。 この絶対測定により、特に高い測定精度が可能になる。

    代わりに、基準要素は、螺旋ばねの構造要素、特に、成形装置に比較的近接して配置された巻きセクション、または巻きセクションの輪郭であってもよい。

    この場合、相対測定が行われる。 測定のために選択された構造要素と基準要素との間の起こり得る累積長さの誤差が、確実な測定を可能にする程度に十分に大きいことを保証するために、構造要素と基準要素との間には、複数の巻き、例えば2つ、3つ、4つ、5つまたはそれより多くの巻きが存在すべきである。

    測定は、好ましくは、接触なしに、特に光学測定手段によって行われる。 この目的のために、例えばレーザ測定システムを使用することができる。 2次元視野(観察領域、対象領域)を有するカメラは、好ましくは測定のために使用され、測定領域がカメラの視野に配置される。 強力な画像処理ハードウェアおよびソフトウェアを有するカメラベースの測定システムは、商業的に入手可能であり、この目的のために使用することができる。 カメラは、できるだけ振動を生じさせない取付部に取り付けるべきであり、その取付部は動作中にばね巻き機のフレームにしっかりと接続される。 カメラは好ましくは長手方向ガイドに隣接してまたはその上に設置され、この長手方向ガイドにより、カメラが、成形装置から異なる距離に固定されることが可能になり、異なるばね形状のために、それぞれ最適な距離を設定することが可能になる。 例えば、異なる直径のばねへの適合を可能にするために、取付位置を垂直に調整することができる。 さらに、調整装置により、必要に応じて、取付部をばね軸に対して斜めに傾斜させて配置することを可能にすべきである。

    いくつかの方法の変形例では、測定のための基準点は、機械座標系に対する認識された座標を有するカメラの例えば長方形の視野の縁部に配置される。 この場合、仮想の基準要素は、視野の縁部によって、好ましくは、成形装置に対面する視野の当該側縁によって形成される。 次に、構造要素の実際の位置の測定を視野内の簡単な距離測定に変えることができる。

    その代わりにまたはそれに加えて用いることができる別の方法の変形例では、機械で定められた基準本体が設けられ、測定領域から離間してカメラの視野に配置され、基準本体の構造要素、例えば、真っ直ぐな縁部が測定のための基準として使用される。 測定中のカメラの振動は、この方法の変形例において測定の測定精度に影響を与えることはないが、その理由は、この振動が、測定の基準として使用される螺旋ばねの構造要素と基準本体の基準点との間の、カメラの視野で見ることができるような距離には影響しないからである。

    測定用の2Dカメラを使用する場合、測定のために使用される螺旋ばねの選択された構造要素がばね巻きの輪郭セクションであり、この輪郭セクションが、視野においてほぼ直線で現れ、ばねの長手方向に対して横方向に、特に、螺旋ばねの長手方向に対して約45°〜約90°の度で延びることが特に有利であることが見出された。 これにより、簡単な画像処理システムの輪郭検出アルゴリズムが、ばねの長手方向における構造要素の実際の位置を非常に正確に決定することが可能になる。 例えば、代わりに、測定領域をばね巻きの外縁に配置すること、螺旋ばねの長手方向軸からのこの巻きセクションの最大距離の位置(最大位置)を決定すること、およびこの最大位置と基準要素との間の距離を決定することも可能である。

    測定時間における構造要素の公称位置は、製造工程の目標制御を可能にするために、できるだけ正確に認識すべきである。 構造要素の公称位置は好ましくは製造工程中に常時認識され、したがって、対応するプログラム時間関数から、測定時間における公称位置を直接導出することが可能になる。 より大きなまたはより小さな一定の長さセクション(一定のピッチのセクション)を有する螺旋ばねの製造時、存在し得る可変ピッチばねセクションが測定領域を通過したときにのみ、好ましくは測定が開始する。 一定のセクションの測定の実行時、選択された構造要素の公称位置が比較的長時間にわたって一定のままであるという事実を利用することが可能であり、このようにして、測定値が比較的簡単に得られて判定される。 原則として、ピッチ変化を有するばねセクションの測定を行うことも可能である。 これにより、一般に、時間経過と共に変化し、すなわち移動し、次に、測定時間に適用可能な公称値による比較ステップの基準として用いられる公称位置が得られる。

    一般に、測定時間における構造要素の公称位置の座標は、測定前に構造要素の公称位置の座標のために決定されるプログラム時間関数から導出される。 次に、測定時間毎に、正しい公称値をユニークに決定することができる。 公称位置の座標のためのプログラム時間関数は、コンピュータベースのシミュレーションに基づいて決定することができる。 さらに一般に、実験的決定は比較的短時間に可能であるので、価値がある。 いくつかの方法の変形例では、構造要素の公称位置の座標のためのプログラム時間関数は、少なくとも1つの基準螺旋ばねの基準製造工程に基づいて、すなわち実験的に決定される。

    この場合、「プログラム時間関数」という用語は、NC制御プログラム内の特定の点に関連する関数を指す。 この場合、特定のNC設定への到達時間は、プログラム順序内における特定のプログラム時間またはある時間に該当する。 この点において、プログラム時間は、プログラムの動作中におけるプログラムステップの順次処理の順序位置に対応する。 例えば、プログラムの特定の動作段階において、カメラによって記録された画像を制御するために、トリガ信号が必要となる場合、このトリガ信号は、適切な点の前にプログラムラインによってトリガすることができる。 これらのような信号は、プログラムで、機械軸の特定の位置に、例えばワイヤ送り部の機械軸におよび/またはピッチ工具の位置のための機械軸に直接リンクされる。 したがって、プログラム時間関数の時間は1つ以上の機械軸の移動曲線の位置に対応する。 プログラム時間関数により、ばね製造の進行と同期するNCプログラム内の時間(プログラム時間)が得られる。 この点において、プログラム時間関数は、さらに、機械軸の移動に対する移動関数である。 特に、プログラム時間関数はワイヤ送り部の移動関数にも対応する。

    例えば、比較的短い螺旋ばねの場合におけるいくつかの製造工程において、長さの誤差が十分に小さな螺旋ばねを製造するには、測定後に必要に応じて行われる単一の測定および単一の制御動作で十分であり得る。 特に、比較的長い螺旋ばねの場合、螺旋ばねの製造中に、複数の測定が連続測定時間にそれらの間の時間間隔で行われ、このようにして、製造工程中にばね形状の変化率を観察することが可能になり、必要に応じて、複数の制御動作を行うことが可能になる。

    単位時間当たりの測定数は、理論上、測定システムの記録および判定能力によって制限される。 さらに、高い測定周波数は、一般に、不要であり、価値もないことが確認されている。 好ましい方法の変形例では、少なくとも1つの巻きが、直接連続する2つの測定の間の、好ましくは、時間間隔で製造される1巻きと2巻きとの間の時間間隔で製造されるように、直接連続する測定時間の間の時間間隔がワイヤの送り速度に合わせられる。 これにより、次に、任意の累積長さの誤差が測定システムの測定精度の範囲内で確実に検出されることを可能にする程度に、任意の累積長さの誤差が十分に大きいことを保証することができるようになる。 このようにして、測定結果の重要性が向上し、制御工程がより安定した形態で作動する。

    複数の測定は、好ましくは、螺旋ばねの一定のセクションの製造中に行われる。 これらの状態では、特定の時間にわたって、観察された構造要素はその位置を変化させるべきではない。 この時間中、比較ステップのために用いられる公称値は一定のままである。

    一定のセクションの製造中、構造要素が成形装置の方向に移動する場合、このことは、成形加工中のピッチが小さすぎることを示しており、このピッチを適切に補正することができる。 逆に、ピッチを減少させることによって、成形装置からの構造要素の移動を補償することができる。

    いくつかの方法の変形例では、実際の値の動作平均値は、予め規定された数の測定の後に、特に各測定の後に、複数の連続測定の実際の値から決定される。 制御動作の効果に関する有効な情報はこの動作平均値から導出することができる。 時間経過に伴う動作平均値の推移は、好ましくは、ばね巻き機のディスプレイユニットに表示される。 オペレータは、このディスプレイユニットから、制御装置で行われた設定が、製造ステップの終了時に所望の全長を有する螺旋ばねを得るような効果的な制御のために十分であるかどうかを直接見ることができる。

    種々の制御概念および制御アルゴリズムを実現することができる。 いくつかの変形例では、重み付けされた差値は、決定された各々の位置の差のために決定され、工具の位置は、重み付けされた差値に基づいて変更される。 特に、位置の差に比例する重み付けされた差値を決定することができ、この場合、比例係数は、好ましくは、オペレータによって設定することができ、必要に応じて変更することができる。 この変形例では、測定で認識された公称値からの偏差により、制御動作を生じさせることができ、このようにして、偏差に迅速に反応することが可能になる。 さらに、位置の差、またはそれから導出されている重み付けされた差値が特定の閾値を超えたときにのみ、工具の位置を補正することが可能である。

    恒常的な制御誤差を回避するために、制御誤差が好ましくはI調整器の形態で長時間にわたって一体化され、このようにして、全体的にPI調整器の制御特性を形成することが可能になる。

    選択された構造要素の位置の測定は、本方法のために異なる形態でトリガされる。 例えば、トリガ信号をトリガして、NC制御プログラムの適切な点に存在するプログラムラインによって測定をトリガすることができる。 これにより、プログラム時間関数による自動同期が保証される。 ここで、測定時間を規定するための典型的な精度は、制御システムのサイクル時間の長さであり、例えば、1または数ミリ秒の長さであり得る。 特に、一定のセクションの製造中における測定の場合、これらのような精度で完全に十分であるが、その理由は、測定すべき構造セクションがほぼ静止しているからである。 他の方法の変形例では、NC制御プログラムとは独立したタイマーは、測定時間を規定するために使用され、NC制御プログラムによって基準時間に同期される。 実施例によれば、このようなタイマーは制御ユニットの追加の基板によって設けることができる。 これにより、制御システムのサイクル時間とは独立して、測定時間の規定について高精度を実現することが可能になる。 いくつかの変形例では、100マイクロ秒以下の精度を有するプログラム時間関数の基準時間に対して、測定時間が規定される。 結果として、測定が、ピッチ変化を有するばねセクションの領域で行われるときでも、十分に精密な測定が可能である。 このような状態では、一般に、時間経過と共に変化する公称位置、すなわち、移動する公称位置が存在し、この公称位置において比較ステップをベースにすることができる。 したがって、測定時間に関連する観察された構造要素の公称位置を、十分な精度で適切に決定することを可能にするように、測定時間をできるだけ正確に識別することは不可能である。

    特に、ピッチ変化を有するばねセクションの測定時に、複数の測定が、異なる測定領域で行われること、および測定結果が閉ループシステムで考慮されることも有利であり得る。 いくつかの実施形態では、第1の測定は、第1の測定領域で第1の時間に行われ、この第1の測定領域は成形装置から第1の距離にあり、第2の測定は、第1の測定領域に対してオフセットされる第2の測定領域で、次の第2の測定時間に行われ、この第2の測定領域は成形装置から第2の距離にあり、この第2の距離は第1の距離よりも長い。 物理的にオフセットされた測定領域のオフセット時間における2つ以上の測定の結果が共に処理される場合、ばね巻き工程の時間経過に伴う進行に関して、および公称偏差が生じる場合の傾向に関して、詳細な説明を行うことができる。 これにより、ばね巻き工程のさらにより正確な制御を保証することが可能になる。

    さらに、本発明は、特に本方法を実施するように構成される数値制御されたばね巻き機に関する。 この機械は、ワイヤを成形装置に送るための送り装置と、予め決定可能な位置で螺旋ばねの直径を本質的に制御する少なくとも1つの巻き工具を有する成形装置と、少なくとも1つのピッチ工具とを有し、展開されている螺旋ばねに対する少なくとも1つのピッチ工具の動作が螺旋ばねの局所的なピッチを制御する。

    好ましくは、ばね巻き機は第1のカメラを有し、この第1のカメラは、カメラの視野の測定領域が、成形装置の工具から有限距離にあるばねセクションの部分を記録するように配置される。 測定領域と成形装置との間の距離が全長の5%〜70%、特に10%〜50%であるように、および/または距離内に、1つ以上のばね巻き、例えば、少なくとも2つまたは3つのばね巻きが存在するように、距離が、好ましくは、完成した螺旋ばねの全長に合わせられる。 さらに、第2のカメラを設けることができ、その第2のカメラは、自由ばね端部セクションが螺旋ばねの製造の最終段階で第2のカメラの対象領域に至るように、第1のカメラから離間して配置される。 十分に大きな対象領域を有するカメラを使用する場合、成形装置の工具から有限距離にある測定領域と、端部セクションを検出するための測定領域とをカバーするには、単一のカメラで十分であり得る。

    カメラを有する適切な測定システムを既に有する現在のいくつかのCNCばね巻き機では、既存の設計前提条件によって、本発明を実現することができる。 本発明の実施形態を実施するための能力は、追加のプログラム部分またはプログラムモジュールの形態で、またはコンピュータ支援される制御装置の制御ソフトウェアに対してプログラムを変更する形態で実現することが可能である。

    したがって、本発明の別形態は、特にコンピュータ読み取り可能な媒体に記憶されるかまたは信号の形態であるコンピュータプログラム製品であって、そのコンピュータプログラム製品により、コンピュータが、本発明による方法を実施するコンピュータプログラム製品に関するか、あるいは上記コンピュータプログラム製品が、適切なコンピュータのメモリにロードされ、コンピュータによって動作している場合の本方法の好ましい実施形態に関する。

    これらおよび別の特徴は、請求項においてだけでなく、明細書および図面においても開示され、この場合、個々の特徴は、本発明の実施形態のサブコンビネーションの形でおよび他の分野で、それら自体でまたは2つ以上の群でそれぞれ実現することができ、それら自体で保護に値する有利な実施形態を表すことができる。

    送り装置のおよび成形装置の部分を有するばね巻き機の一実施形態の概略図を示している。

    現在製造されているばねの形状に関するデータの非接触リアルタイム記録用のカメラベースの光学測定システムの2つのカメラと、ばねガイド装置とを含む図1に示されているようなばね巻き機用の器具の斜視図を示している。

    ばねの1つの巻きセクションが、カメラの視野内に配置される測定領域に配置される、ワイヤ送り方向に平行なおよび第1のカメラのカメラレンズの光軸に平行な視野方向から現在製造されているばねの、成形装置によって製造されたばねセクションを示している。

    ばねの製造中に個々の連続測定で決定された実際の値の動作平均値の時間経過に伴う推移の線図を示し、制御なしの時間経過に伴う推移を示し、

    は制御実行時の時間経過に伴う推移を示している。

    ばねの製造中の個々の連続測定における実際の値の散在に関連する棒グラフおよび線図を示し、制御なしの実際の値を示している。

    ばねの製造中の個々の連続測定における実際の値の散在に関連する棒グラフおよび線図を示し、制御実行時に得られた実際の値を示している。

    測定すべきばねセクション、および機械に固定されて取り付けられる基準要素の画像を見ることができる第1のカメラの長方形の視野を示している。

    図1の概略図は、それ自体公知の設計に基づくCNCばね巻き機100の主要素を示している。 ばね巻き機100は、送りローラ112が備えられかつワイヤ115の連続するワイヤセクションを送る送り装置110を有し、ワイヤ115は、ワイヤ供給部から来て、数値制御された送り速度プロファイルで案内ユニットを通過し、成形装置120の領域に入る。 螺旋ばねを形成するように、成形装置の数値制御された工具を使用して、ワイヤが成形される。 工具は2つの巻きピン122、124を含み、これらのピンは、90°の角度だけオフセットして配置され、(所望のばね軸の位置に一致する)中心軸118に対して半径方向に整列され、螺旋ばねの直径を決定するように意図される。 設定工程中のばね径の基本調整のために、一点破線で示したおよび平方向の(入力部112の送り方向に平行な)移動線に沿って、巻きピンの位置を変化させて、異なるばね径の加工を設定することができる。 これらの移動は、数値制御システムによって監視される適切な電気駆動装置を使用して行うこともできる。

    ピッチ工具130は、ばね軸にほぼ直角に整列されかつ巻きに沿って展開ばねに係合する先端を有する。 ピッチ工具は、展開ばねの軸118に平行な(すなわち図面の平面に直角な)対応する機械軸用の数値制御された移動駆動装置を使用して移動させることができる。 ばねの製造中に送られたワイヤは、ピッチ工具の位置に対応するピッチ工具によって、ばね軸に平行な方向に押圧され、対応するセクションのばねの局所的なピッチがピッチ工具の位置によって制御される。 ピッチ変更は、ばねの製造中にピッチ工具を軸に平行に移動させることによって行われる。

    成形装置は別のピッチ工具140を有し、この別のピッチ工具は、下方から垂直に適用されることができ、このピッチ工具が使用されるときに、隣接する巻きの間に挿入されるくさび状の工具先端を有する。 このピッチ工具の調整移動は軸118に直角に行われる。 このピッチ工具は、例示した製造工程では使用されない。

    数値制御可能な分離工具150は、ばね軸の上方に取り付けられ、成形動作の終了後に、送られていたワイヤ供給部から製造された螺旋ばねを、垂直加工運動によって切断する。 図1には、既に完成している螺旋ばねが切断された直後の状態で、送られたワイヤが示されている。 この位置において、ワイヤは既に半分の巻きを形成しており、ばね開始部を形成するワイヤ端部は、ピッチ工具130の位置の前において0.3巻きの位置にある。

    工具に属するCNC機の機械軸は、コンピュータ数値制御装置180によって制御され、このコンピュータ数値制御装置は、特に、機械軸の加工運動のためのNC制御プログラムを含む制御ソフトウェアが存在するメモリ装置を有する。

    螺旋ばねを製造するために、ワイヤは、送り装置110を使用して、図示した「ばね完成位置」から巻きピン122、124の方向に送られ、自由ワイヤ端部がピッチ工具130に達するまで、巻きピンによって所望の直径に曲げられ、円弧状の曲線を形成する。 ワイヤがさらに送られる場合には、ピッチ工具の軸方向位置により、展開している螺旋ばねの現在の局所的なピッチが決定される。 ピッチ工具は、ばね展開中にNC制御プログラムがピッチを変更するように意図される場合に、NC制御プログラムの制御下で軸方向に移動される。 ピッチ工具の作動運動は、本質的に、螺旋ばねに沿ってピッチプロファイルを制御する。

    ばね巻き機の設定時に、成形工具がそれらのそれぞれの基本設定位置に移動される。 さらに、NC制御プログラムが作成またはロードされ、製造工程中に工具の作動運動を制御する。 ばね巻き機のための形状入力が、制御装置180に接続されるディスプレイおよび制御ユニット170にいるオペレータによって行われる。

    次に、図2を参照して、図1に示したようなばね巻き機に関する方法を実施するのに有利な複数の器具について説明する。 図1から既知の要素には、図1と同じ参照番号が付されている。 図2は、図に示されているときで約20回の巻きが既に形成されている比較的長い円筒状の螺旋ばね200の製造中におけるばね巻き機を示している。 この螺旋ばね200は、完成したばねの全長Lと11巻き以上のばねの直径DとのL/D比を有する長いばねである。 ワイヤの送りが増加するとそれだけ長くなるばねが真っ直ぐのままであること、およびばねの自由端が下方に曲がらないことを保証するために、ばねガイド装置210が設けられる。 ばねガイド装置は、水平な長手方向軸に対してばね巻き機のフレームに取り付けられるアングルプレート212を有し、V字形プロファイルを有する。 展開ばねの長手方向軸(中心軸)が展開ばねの中心軸118に同軸に延びるように、下方に共に延びるアングルプレートの平坦な傾斜面が底部でおよび側部でばねを支持する。 アングルプレートは、図示していない保持装置によって機械フレームに取り付けられ、異なる直径のばねのために、ばねの中心軸118に同軸の所望の案内を可能にするために、アングルプレートをある高さにおよび横方向に調整することができる。 ばねを製造する工程が終了した後に、完成したばねを収集容器内にスライドさせることを可能にするために、液圧旋回駆動装置によってアングルプレートを自動的に下方に旋回させることができる。

    自由に浮動するばねセクション202が成形装置の工具とアングルプレートの機械側開始部との間に留まるように、成形装置に対面するアングルプレートの当該端部が成形装置から数センチメートルだけ明確に分離して配置される。 最初に、製造されたばね端部セクションが、最終製造段階中に機械から離れるアングルプレートの当該端部を越えて自由に突出するように、アングルプレートの長さが、完成した螺旋ばねの全長に合わせられる。 このようにして、光学測定のために、機械に近接している自由に浮動するばねセクション202、および機械から離れているばね端部セクション204には、螺旋ばねの長手方向軸に対して直角の視野方向からアクセス可能である。

    ばね巻き機は、現在製造されているばねの形状に関するデータの非接触リアルタイム記録用のカメラベースの光学測定システムを備えている。 測定システムは2つの同一のCCDビデオカメラ250、260を有し、これらのCCDビデオカメラは、実施例において、1024×768画素の解像度(画像要素)で、インタフェースを介して最大で毎秒100個の画像(毎秒100個のフレーム)を、接続された画像処理システムに供給することができる。 個々の画像の記録は、その都度、制御システムからのトリガ信号によってトリガされる。 これにより、測定時間が規定される。 画像処理ソフトウェアは、ばね巻き機用の制御装置180と相互作用するプログラムモジュールに対応するか、またはそれに一体化される。

    取付レールの長手方向軸が機械軸118に平行に延びるように、両方のカメラが、供給装置のガイドローラの領域のばねガイド装置に隣接して、ねじれに対して耐性がありかつ側部でばね巻き機の機械フレームに取り付けられる取付レール255に取り付けられる。 測定カメラは、取付レールにおいて長手方向に移動させることができ、任意の所望の選択可能な長手方向位置に固定することができる。

    機械に近接する第1のカメラ250は、その長方形の視野252(画像対象領域)が、成形工具から離間している自由に浮動するばねセクション202の部分をカバーするように取り付けられる(図3参照)。 実施例において、カメラレンズの光軸は、螺旋ばねの中心軸とほぼ同じ高さに(すなわち軸118の高さに)配置され、この軸に直角に延びる。 長方形の視野252の中で、より小さな長方形の測定領域254を見ることができ、この測定領域254を通って、カメラに対面するばねの巻きセクションが頂部左側から底部右側に向かって斜めに延びる。 (ばね製造中にワイヤの長手方向に移動する)この巻きセクションの画像、または機械から離れた画像の輪郭は長さ測定のための構造要素として用いられる。

    第2のカメラ260は、自由ばね端部204を記録するように意図され、したがって、螺旋ばねの最終製造段階中に自由ばね端部が第2のカメラの対象領域に至るように取付レールに位置決めされる。

    照明装置は、カメラの正反対側において軸118の高さに取り付けられ、制御システムからのトリガ信号に対する反応として、制御システムによって予め決定された測定時間にフラッシュの形態の照明を行い、伝達光測定を可能にする。 測定に関してばねの重要な細部の視認性を向上させるために、前方照明装置をカメラの側面に設けることができる。

    図3は、ワイヤ送りの方向(ばね巻き機のC軸)に平行なまたは第1のカメラのカメラレンズの光軸に平行な視野方向からの、図2に示した状態を示している。 ワイヤ115を通るセクションは左側に見ることができ、このセクションは、送り方向に(図面の平面に直角に)下方の巻き工具124の湾曲した傾斜面に送られる。 巻き工具はワイヤを経路に向かって上方に押圧し、このワイヤは、上方の巻き工具の方向に円形に湾曲して、工程中に常時成形される。 ピッチ工具130の先端は巻き工具の上方に見ることができ、巻き工具の側面加工面が、展開している巻き部に載置する。 成形位置にあるばねの局所的なピッチがピッチ工具の位置によって制御されるように、NC制御下で、関連する機械軸を用いて、ピッチ工具をばね軸118に平行に(矢印の方向に)移動させることができる。

    図3は、円筒状の螺旋ばね200を製造する第1の段階の状態を示しており、この螺旋ばねは、連続的に増加しているピッチを有する、既に端部で製造された接触セクション206を有し、次に、一定のピッチを有する一定のセクション208を有し、そして減少しているピッチを有する、図示した時間にはまだ製造されていない反対側の接触セクションを有する。 図示した時間において、製造工程は、接触セクションを有する自由ばね端部が測定領域254を通過する程度に既に進行しており、ばねガイド装置のアングルプレートに既に達しており、したがって、一定のピッチを有する自由に浮動するばねセクション202は軸118と同軸に、安定した形状で配置される。

    螺旋ばねの長手方向に見た場合、測定領域254が、成形装置の工具122、130から比較的長い距離210にあるように、第1のカメラ250が位置合わせされる。 この実施例では、螺旋ばねはこの距離において約4巻きを有する。 この実施例では、距離は、完成したばねの全長の約10%〜約20%であり、特に、短いばねの場合、距離は例えば全長の30%、40%または50%まであってもよい。

    螺旋ばねの大規模製造のために、このばね巻き機を使用して以下の手順をとることができる。 最初に、螺旋ばねの所望の公称形状がディスプレイおよび制御ユニット170に入力されるか、または既に利用可能な適切な形状データが、例えば識別番号を入力することによってばね巻き機のメモリからロードされる。 いわゆるNCジェネレータはNC制御プログラムの計算の基準として形状データを利用し、次の製造工程におけるNC制御プログラムの個々のNC設定およびそれらの順序により、ばね巻き機の装置および工具の調整された加工運動が制御される。

    成形装置の工具が設定された後に、最初の基準製造工程において、測定システムに取り付けられた制御システムを作動させることなく、最初の螺旋ばねが製造される。 この場合、第1のカメラ250の測定領域254は、ばねの選択された構造要素、本実施例では、頂部左側から底部右側に向かって測定領域を通って斜めに延びる巻きセクションを記録する。 これは、カメラ画像で暗く現れ、明るい背景に対してはっきりと見え、明るい/暗い輪郭の直線が形成される。 輪郭を識別する能力を向上させるために、カメラの側面でおよび/または測定領域の内側領域で、螺旋ばねを照射することができる。 視野に現れる、機械から離れた境界、またはこの巻きセクションの縁部は、構造要素の実際の位置を決定するために用いられる。 この場合、実施例によれば、画像処理システムは、測定領域の上部および下部の境界を有する明るい/暗い移行部の上部交点256−1のおよび下部交点256−2の座標をそれぞれ決定することができ、間に配置された直線領域の座標が補間によって決定される。 次に、構造要素の位置の最初の実際の値を得るために、機械から離れた基準点に対する軸に平行な距離が、上部交点と下部交点との間の中央に配置される測定点270のための画像処理ソフトウェアの「距離ツール」を用いて決定される。 図3に示した実施例では、測定のために、(左側の)機械に近接する視野252の直線境界が、仮想の基準要素として、または「固定終端部」として用いられる。 次に、選択された構造要素の測定点270と基準要素との間の軸に(軸118に)平行に測定された距離が、制御システムによって、別の製造に関する最初の公称値として用いられる。

    次に、完成したばねの全長が独立して測定される。 この全長が所定の公差内にある場合、測定された最初の公称値を、次の大規模製造のための開始値として用いることができることが想定される。 対照的に、全長が公差外にある場合には、対応する別の基準測定が次のばねのために行われることを可能にするように、製造工程に関する設定が変更される。 これらの個々の基準測定は、製造されたばねが非常に適切に螺旋ばねの全長の製造公差内に入るまで複数のステップで繰り返される。 次に、この「満足な」ばねの製造中に決定された構造要素の公称値が大規模製造のために用いられる。

    この場合、本実施例では、ばねの一定のセクション208が測定領域254に既に配置されているときに、公称値が決定されることが保証されることに留意されたい。 次に、これらの状態において、公称寸法の絶対値は、比較的長い時間間隔にわたって一定であるので、一定のセクションの巻きがカメラの対象領域を通って移動している限り、理想的には、カメラによって記録されるような展開ばねの突出部の外観は変化しない。

    次に、一群の次のばねを製造するために、制御システムを設定することができ、作動させることができる。 この場合、増加するピッチを有するように存在し得る接触領域が測定領域を通って移動しているときにのみ、好ましくは測定が開始し、測定領域がばねの一定の部分に配置される。 次に、この後、選択された構造セクションと規定された基準要素(視野の縁部)との間の実際の距離の第1の測定と共に、制御サイクルが開始する。 その次に、決定された実際の位置または決定された実際の距離が、判定ソフトウェアによって、測定時間にわたる構造要素の以前に決定された公称位置または公称距離と比較される。 この演算比較により、測定時間における実際位置と公称位置との差を表す現在の位置の差に関する値が生成される。 以下の実施例では、任意の寸法を有しない数値の詳細が各々引用されるが、分かりやすくするために、例えば、寸法はミリメートルである。

    例えば、公称値が10.5であり、実際の値が10.7である場合、位置の差は−0.2である。 この位置の差から、重み付けされた差値が決定される。 この目的のために、本実施例では、オペレータによって設定することができかつ「制御ステップ」と呼ばれる重み付けパラメータが用いられ、この重み付けパラメータは、百分率として規定され、決定された位置の差に適用される。 例えば、50%の制御ステップが設定される場合、−0.2の位置の差により、−0.1の重み付けされた差値が生じる。 ここで、新しい(変更された)補正値を得るために、重み付け後に残るこの値が補正値に加えられる。 例えば、補正値は、最初に、値0(ゼロ)に設定することができ、次に、制御工程中のステップで変更される。 実施例(最初は0の補正値)において、演算関係0+(−0.1)=(−0.1)を用いて、新しい補正値が計算され、次に、この新しい補正値が補正としてばね巻き機の制御システムに送信される。

    NCプログラムのプログラム可能なロジックコントローラ(PLC)が、受信された補正値に対応するNC設定を直ちに変更することができるように、NC制御プログラムが制御システムの所定の点で作成される。 この変更が、位置の差を減少させるという意味において、ピッチ工具130の位置で直接(リアルタイムで)作用する。

    例えば、すぐに次の第2の測定において、実際のサイズ10.6を有する実際の位置が決定される。 依然として有効である10.5の公称値では、これにより、−0.1の位置の差が生じる。 変更されない重み付け係数(制御ステップ50%)では、これにより、−0.05の重み付けされた差値、したがって、「(−0.1)+(−0.05)=−0.15」の補正値が得られる。 このことから理解できるように、更新された補正は、元の補正値(=0)に作用せず、先の測定に基づいて変更された補正値(−0.1)に作用する。 したがって、第2の測定後に、−0.15の補正値は、補正として制御システムに送信され、NC制御プログラムに対する直接の変更のために既述したように処理される。

    実施例を用いて説明してきた測定データのこの処理は、可変比例成分と一体構成要素の一体効果とを有するPI調整器に該当する。

    次に、これらのステップが、螺旋ばねの一定のセクションの製造中における時間間隔によって分割される複数の連続測定時間で行われ、このようにして、多数の制御動作が行われるかまたはそれらを行うことが可能になる。 ワイヤは測定中に前方に連続的に送られ、停止は不要である。 この方法の変形例では、直接連続する2つの測定時間の間に約1.4巻きが形成されるように、連続測定時間の間の時間間隔がワイヤの送り速度に合わせられる。 カメラの可能なフレームレートと比較して比較的遅いこの測定順序は、工程順序が最適でない場合、おそらく、個々の測定の間でばねに誤差を生じさせ、十分なサイズが、システムの測定精度の範囲内で、重要な測定値をもたらすことがあり、したがって、正確な大きさの補正が、正確な方向に開始されるようになる。

    図4A、図4Bおよび図5A、図5Bを参照して、この制御工程の精度が向上した効果について説明する。 これらの図は、3.8mmの直径を有するばねワイヤからなる47巻きを有するクラッチのダンパスプリングの製造中に得られた測定結果を示している。 ばねは約27mmの直径と約350mmの全長とを有した。 図4A、図4Bの線図の各々は、ばねの製造中に個々の測定のために決定された実際の値の動作平均値の時間経過を示している。 横座標が時間軸であるように、等距離の測定時間の無次元数の各々が横座標に示されている。 縦座標の各々は、太い線で示した10.55mmの公称値と比較した実際の値の動作平均値を示している。 図4Aは、制御なしの従来の製造に関する典型的な測定線図を示している。 新しい螺旋ばねの製造は時間番号351で開始する。 先の製造工程の最終段階がこの時間番号351の左側に示されており、低すぎる平均値(約10.48ミリ)で終了するので、このばねの製造された全長は短すぎる。 初めは、新しい螺旋ばねの実際の値は高すぎ、動作平均値は最初に公称値に近似するが、ここで、距離が長くなると、公称値をさらに大きくアンダーシュートするので、この螺旋ばねも完成後に著しく短くなる。

    図4Bは、制御システム作動時の製造に関する対応する図面を示している。 先のばねの製造は、公称値に非常に近似する平均値にある時間番号405で終了するので、ばねの全長は全長の公称値に非常に近似する。 次の螺旋ばねの製造中、初めは、実際の値は公称値よりもかなり低い。 さらに、制御動作は、第3の測定後、公称値(10.55mm)に近似する動作平均値をもたらし、動作平均値は、製造工程の終了に向かって漸近的に公称値に近似し、さらに、動作平均値は製造工程の終了時に公称値にほぼ正確に一致する。

    図5A、図5Bは、制御システムの効果を示す異なる実施例を用いており、それぞれ、図5Aは、制御システムなしの結果を示しており、図5Bは、制御システム作動時の結果を示している。 さらに、右側に各々示されている線図は、それらの横座標において、任意の数値単位の測定時間を示しており、縦座標において、実際の値と公称値とのそれぞれ測定された位置の差を示している。 ゼロラインに平行に延びる上下の太い線は、製造工程に関する公差帯域制限を表す。 測定結果は左側の図面要素の各々に棒グラフの形態で示されている。 図5Aに示した制御システムがない製造工程中において、実際の値は公称値の周りの両方向に広範囲に散在するが、全ての値が公差内にある。 制御システムが作動される場合(図5B)、公称値の周りにおける結果として生じた散在はそれほど大きくなく、したがって、制御システムを使用して製造された螺旋ばねの全てが、全長の公称値に非常に近似する全長を有することが保証される。

    第1のカメラ250は取付レール255の成形工具に比較的近接して配置され、この結果、第1のカメラの位置における振動は、測定精度にほとんど悪影響を与えない小さな振幅であることができる。 それにもかかわらず、測定結果はカメラの移動による悪影響を受けることがある。 図6を参照して、カメラの振動に関係なく測定結果を形成し、したがって測定精度を向上させる1つの可能な方法について説明する。 図面は第1のカメラの長方形の視野652を示している。 より小さな長方形の測定領域654は、頂部から底部に向かってほぼ垂直に延びる輪郭を囲み、この輪郭の巻きセクションはカメラの焦点領域に配置され、カメラに対面する。 ばねの観察された構造要素の実際の位置の座標は、測定領域の上縁および下縁を有する明るい/暗い輪郭の交点の間の補間によって決定される。 さらに、基準要素680の画像は、安定した取付部を用いて機械フレームに取り付けられる垂直に位置合わせされたボルトによって形成された視野で見ることができる。 ボルトは、下方から視野内に突出し、カメラの焦点領域において、明るい/暗い移行部を有する鮮明に撮像された垂直な輪郭を形成する。 ここで、構造要素と、それに対面する基準要素680の当該縁部との間の距離が測定時に決定され、判定のための実際の寸法として用いられる。 この測定距離は、カメラの振動と、それらに関連する、観察されたばねに対する視野の任意の移動とに関係しない。 したがって、カメラの任意の移動は測定誤差から除外される。

    螺旋ばねの構造要素(例えば巻きセクションの輪郭)と、仮想のまたは物理的に存在する基準要素との間の距離の測定は、説明したように、軸118に平行な方向に、さもなければ、軸118に対して斜めに、適切な他の方向に行うことができる。

    詳細に記載されている例示的な実施形態は、31以上の巻きを有する長いばねの製造に基づいて説明されている。 約65mmの長さを有しかつ7巻きのみを有する螺旋ばねは、図には示されていない試験中に製造された。 適切な補正による製造中に、測定が2回のみ行われた。 制御なしで約0.3mmから、制御ありで約0.15mmまで全長の散在を減少させることが可能になった。

    代わりに、または機械で定められた基準要素に対する説明した絶対測定に加えて、基準要素に対する相対測定もいくつかの場合に可能であり、基準要素がばねの部分によって形成される。 例えば、図3に示したような視野252が、ばねの長手方向においてより多くの巻きをカバーする程度に十分な大きさである場合、測定領域254に配置された巻き輪郭の測定点270と、成形工具により近接して配置されかつ3巻きまたは4巻きである対応する巻き輪郭との間の長さの間隔は、制御工程の基準として測定して用いることが可能である。 このようにして、実施例によれば、機械から離れている最初に完成した巻き214またはその輪郭を基準要素として使用することができる。

    100 CNCばね巻き機110 送り装置112 入力部115 ワイヤ118 展開ばねの中心軸120 成形装置122 工具124 巻き工具130 ピッチ工具140 別のピッチ工具150 分離工具170 ディスプレイおよび制御ユニット180 コンピュータ数値制御装置200 円筒状の螺旋ばね202 自由に浮動するばねセクション204 ばね端部206 接触セクション208 一定のセクション210 ばねガイド装置212 アングルプレート250 第1のカメラ252 第1のカメラ250の長方形の視野254 より小さな長方形の測定領域255 取付レール256−1 上部交点256−2 下部交点260 第2のカメラ270 測定点652 第1のカメラの長方形の視野654 より小さな長方形の測定領域680 基準要素D 11巻き以上のばねの直径L 完成したばねの全長

    QQ群二维码
    意见反馈