生产颗粒的方法

申请号 CN97111619.9 申请日 1997-04-14 公开(公告)号 CN1090053C 公开(公告)日 2002-09-04
申请人 DSM有限公司; 发明人 P·J·B·尼亚斯坦; P·J·M·斯大曼斯;
摘要 一种用液体材料生产颗粒的方法,包括将液体材料施加到在 造粒 器的造粒区循环的具有相同组成的固体颗粒上,从而使颗粒生长,从造粒区排出长成的颗粒流,在冷却器中冷却这一物流,在粒径分级设备中按长成的颗粒的粒径将从冷却器中排出的物流分成三股物流。排出符合要求的颗粒流以进一步使用或加工,粒径过小的颗粒返回造粒区,粒径过大的颗粒流送到 粉碎 设备中 破碎 ,得到的破碎颗粒循环到位于造粒器下游和粒径分级设备上游的冷却器。
权利要求

1.一种用液体材料生产颗粒的方法,所述方法包括以下步骤:
将液体材料施加到在造粒器的造粒区内循环的固体颗粒上,在所述固体 颗粒的周围沉积和固化所述液体材料以使颗粒的粒径增长,并形成长成的固体 颗粒;
从造粒区向冷却器中排放所述长成的固体颗粒;
在所述冷却器中冷却所述长成的固体颗粒流以得到冷却的所述长成固 体颗粒流;
在粒径粒径分级设备中,根据长成的固体颗粒的粒径将所述冷却的 所述长成固体颗粒分成具有不同粒径的颗粒流,以得到粒径过小的、过大的 以及符合要求的长成固体颗粒流;
将所述粒径过小的长成固体颗粒流循环回所述造粒区;
将所述粒径过大的长成固体颗粒流送到粉碎设备;
在所述粉碎设备中破碎所述粒径过大的固体颗粒流,从而减少所述长成 固体颗粒的粒径,并得到破碎的固体颗粒流;
将所述破碎的固体颗粒流循环回所述冷却器;和
排出所述粒径符合要求的长成固体颗粒流。
2.根据权利要求1的方法,其中所述造粒器和所述冷却器在减压下操作。
3.根据权利要求2的方法,其中所述造粒器和所述冷却器中的减压是约 0-约70毫米柱。
4.根据权利要求1的方法,其中所述造粒器是流动床、喷射床、锅或鼓造 粒器。
5.根据权利要求1的方法,其中所述液体材料是普通或复合肥
6.根据权利要求5的方法,其中所述液体材料是尿素。
7.根据权利要求1的方法,其中所述长成的固体颗粒流用温度为约10℃- 约50℃的气流冷却,所述气流的流量为约0.5-约5kg气体/kg颗粒。
8.根据权利要求1的方法,其中所述符合要求的颗粒的平均粒径为约2- 约4mm。
9.根据权利要求8的方法,其中所述破碎固体的平均粒径为1.2-约2.4 mm。
10.根据权利要求9的方法,其中所述破碎固体的平均粒径为1.5-约 2.1mm。
11.根据权利要求1的方法,其中所述液体材料是溶液、熔融物和悬浮 液。
12.一种用液体尿素生产颗粒的方法,所述方法包括以下步骤:
将液体尿素施加到在造粒器的造粒区内循环的固体尿素颗粒上,在所述 固体尿素颗粒的周围沉积和固化所述液体尿素以使颗粒的粒径增长,并形成长 成的固体尿素颗粒;
从造粒区向冷却器中排放所述长成的固体尿素颗粒;
在所述冷却器中冷却所述长成的固体尿素颗粒流以得到冷却的所述长 成固体尿素颗粒流;
在粒径分级设备中根据长成的固体尿素颗粒的粒径将所述冷却的所 述长成固体尿素颗粒分成具有不同粒径的尿素颗粒流,以得到粒径过小的、 过大的以及符合要求的长成固体尿素颗粒流;
将所述粒径过小的长成固体尿素颗粒流循环回所述造粒区;
将所述粒径过大的长成固体尿素颗粒流送到粉碎设备;
在所述粉碎设备中破碎所述粒径过大的固体尿素颗粒流,从而减少所述 长成固体尿素颗粒的粒径,并得到破碎的固体尿素颗粒流;
将所述破碎的固体尿素颗粒流循环回所述冷却器;和
排出所述粒径符合要求的长成固体尿素颗粒流。
13.根据权利要求12的方法,其特征在于:在通过造粒方法在造粒 器生产尿素颗粒的过程中,其中来自粒径分级设备的尿素颗粒流在粉碎设备 中破碎以得到破碎的固体尿素颗粒流,其改进包括将所述破碎的固体尿素颗 粒流循环到位于所述造粒器下游和所述粒径分级设备上游的冷却器中。

说明书全文

1.发明领域

本发明涉及一种通过将液体材料施加到在造粒机的造粒区循环的固体 颗粒上,使颗粒生长,用液体材料生产颗粒的方法。然后,从造粒区排出的颗 粒流在冷却器中冷却,并通过粒径粒径分级设备按粒径分为三股颗粒流:符合 要求的、过小的、过大的颗粒。粒径过小的颗粒流返回造粒区,粒径符合要求 的颗粒流送到产品贮存库。粒径过大的颗粒流送到粉碎破碎设备,在其中被 破碎,然后返回到器中。粒径符合要求的颗粒流被排放出来以进一步使用或出 售。

2.相关现有技术的描述

在本领域中,各种用液体材料,如溶液、熔融物或悬浮液,生产颗粒的 方法是已知的。特别感兴趣的是如Nioh等(EP-A-0 026 918)所描述的造粒方 法。Nioh等描述了一种喷射床造粒方法,其中,气流中的液体材料从下向上 从中心穿过一堆颗粒,气流从这一堆颗粒中夹带大量的颗粒,当气流速度下降 时,落回这一堆颗粒的表面。在这一堆颗粒中,也还存在由过小颗粒流和由在 粉碎设备中破碎的过大颗粒流形成的颗粒。

另一种使颗粒生长的造粒方法是使用流化床作为造粒器。这种方法由 Niks等人公开在US 4 219 589中。在这一方法中,气流将液体材料雾化成细 小的液滴,然后固化在流化床的核上。固化的颗粒然后从造粒床中移出,按粒 径分成三种颗粒流。将过大的颗粒流破碎,与粒径过小的颗粒流合并返回流化 床。

Musters在EP-A 0 141 436中描述了一种造粒方法,其中液体材料是 从一个液体分布系统以实际上是封闭的锥形膜的形式释放出来。当床中的核借 助气流的能量被夹带通过锥形膜时,被液体所润湿。

还有一种能形成颗粒的造粒方法是锅或鼓的造粒方法,如描述在 Nitrogen,No.95,第31-36页中,1975年7月。

所有这些方法的缺点是在造粒过程中会产生大量的粉尘,或者存在于造 粒单元中,从而导致粉尘在造粒单元中的聚结。在本发明中,“粉尘”是指小 于0.7毫米的颗粒。一般来说,这些粉尘被气流夹带到造粒单元表面,特别是 顶部,不能频繁地通过颗粒接触并沉积在其上。当这种沉积物聚结时,大破 裂并脱落下来堵塞造粒器和/或液体喷雾设备,因此严重影响造粒过程。当发 生这种情况时,通常要停止造粒过程清洗造粒器。清洗过程和所造成的停机要 延续8-24个小时,这取决于堵塞的程度、颗粒的组成和设备的类型等因素。

在造粒系统中产生或存在的粉尘基本由三个来源所影响。主要的来源是 造粒器本身。例如,一个生产能为每小时75吨尿素的尿素厂每小时产生3 吨粉尘。粉尘的第二个来源是离开粉碎设备的被破碎的粒径过大颗粒流中产生 的粉尘。在现有的生产技术中,这一物流直接返回到造粒器中。10-20wt%的 破碎粒径过大颗粒的直径小于1mm,其中大部分是以粉尘的形式出现。例如, 在上述的尿素厂中,这种破碎的粒径过大颗粒流每小时向造粒器中返回了 0.6-1.7吨粉尘。粉尘的第三个来源粒径过小的颗粒流。然而,这里所产生的 粉尘量比其它两个来源要少,例如,在上述的尿素厂中,每小时小于0.1吨。 较小的颗粒流中只有1-4wt%的颗粒的直径小于1mm。

发明概述

本发明的一个目的是以一种方式处理造粒器中生产的颗粒,使暴露于造 粒器的粉尘量大地减少。粉尘的减少将导致粉尘在造粒器中的沉积速度的下 降,导致清洗频率的下降,从而提高生产速度。

本发明的用液体材料生产颗粒的方法包括将液体材料施加到具有相同 组成的在造粒器的造粒区循环的固体颗粒上,从而使这种材料的固体生长,然 后从造粒区排出长成的固体颗粒流。这一长成的固体颗粒流在冷却器中冷却。 根据长成的固体颗粒的粒径在粒径粒径分级设备中将冷却后的长成固体颗粒 分成几股物流;因此得到了粒径过小的、过大的和符合要求的长成固体颗粒 流。这三种颗粒流分别处理。粒径过小的长成固体颗粒流返回造粒区。粒径过 大的长成固体颗粒流送到粉碎设备中破碎,得到的破碎的固体颗粒流返回冷却 器。排放粒径符合要求的长成固体颗粒流,或贮存以出售或送到其它处理过程 中。

申请人发现上述目的可以通过将破碎后的颗粒流供给到造粒器下游的 冷却器中而不是造粒器中来实现。这一步骤减少了造粒器中粉尘的聚结量,因 而延长了由于清洗造粒器导致的停车之间的时间。

附图简述

图1是本发明的一个方案的流程示意图。

发明的详细描述

本发明的用液体材料,如溶液、熔融物或悬浮液,生产颗粒的方法包括 将液体材料施加到具有相同组成的在造粒器的造粒区循环的固体颗粒上,从而 使材料的颗粒生长,例如,当固体颗粒生长到选择的粒径时,从造粒区排出长 成的固体颗粒流。这一长成固体颗粒流在冷却器中冷却。冷却后的长成固体颗 粒流在粒径粒径分级设备中,如筛或网中,根据长成的固体颗粒的粒径分成几 股物流;因此得到粒径过小的、过大的和符合要求的长成固体颗粒流。这种颗 粒流分别处理。粒径过小的长成颗粒流返回造粒区。粒径过大的长成颗粒流送 到粉碎设备,如双辊破碎机中破碎,得到的破碎固体颗粒循环回冷却器。符合 要求的长成固体颗粒从加工过程中排出,或贮存或送到其它处理过程中。

优选冷却器和造粒器都在轻微的减压下操作,“轻微减压”是指减压 0-100mm柱,优选0-70mm水柱。

本发明可以用于各种溶液、熔融物和悬浮液形式的液体材料。适合于造 粒的材料的例子是铵盐,如硝酸铵、硫酸铵、磷酸铵和其混合物,普通化肥 (simple fertilizers),如硝酸铵、硝酸镁铵,复合NP和NPK肥,尿素, 含尿素的复合物,硫等。本发明特别适合于普通肥或复合肥的造粒,特别是尿 素的造粒。

本发明适合于各种造粒方法,在这些造粒过程中粒径过小的和破碎的粒 径过大的颗粒完全循环。其例子是流动床造粒、喷射床造粒、锅造粒或鼓造粒 方法。这些描述在Perry的Chemical Engineers’Handbook,pgs 8-71,20- 59至20-74(第6版,1984),其公开的所有内容在这里引入作为参考。

按本发明的方法可以在一套装置中进行,如在US 4 219 589中描述的 装置,公开的所有内容在这里引入作为参考,装置包括流动床造粒器、冷却器、 筛选设备、破碎粒径过大颗粒的设备和用来从来自造粒器和/或冷却器的气流 中分离固体颗粒的气/固分离设备。

图1描述了本发明一个方案的流程示意图。为了从如尿素溶液的液体材 料生产颗粒,液体材料的溶液从贮存容器1经蒸发步骤通过管线2借助或不借 助气流3喷入造粒器(4),因此形成颗粒,并从造粒器经管线5连续排出。

贮存容器中的温度例如在约50℃-250℃之间,这取决于要造粒的产 品。在尿素造粒的情况下,容器中的温度为约70℃-100℃,特别是约75℃- 99℃。造粒器中的温度为约60℃-约180℃,在尿素造粒的情况下,优选为 约90℃-约140℃。气流3中的气体流量在约0-约0.9千克/千克液体材料之 间。气流3的温度为约20℃-约180℃,在尿素造粒的情况下优选为约90℃ -140℃。

在流动床和喷射床的情况下,流化气,如空气,通过管线21供给到造 粒床中。在锅或鼓造粒方法中,经管线21向造粒器中供给环境空气。

离开造粒器的气流通过管线6达到气/固分离设备7,如旋分离器或 洗涤器,其中固体材料,主要是粉尘从夹带气中分离出来,气体经管线8排放。 从气流中分离出来的粉尘可以经管线9,任选地用如水的溶剂稀释,返回贮存 容器1并再供给到造粒器4。

经管线5离开造粒器4的颗粒在冷却器10中借助于供给到冷却器的气 流11冷却,之后,颗粒经管线12达到粒径粒径分级或筛分设备13。供给的 气流11的温度在约10℃-约80℃之间,其量为约0.5-5千克气体/千克供给 到冷却器中的颗粒。在尿素造粒的情况下,气流的温度优选在约10℃-50℃之 间,排出冷却器的尿素温度是约20℃-约80℃,进一步优选约25℃-75℃。

经管线14离开冷却器10是气流被送到前述气/固分离设备7中。这一 分离设备7可以包括,例如,两个单独的设备,或用于清洗来自造粒器4的含 尘空气和/或来自冷却器10的空气的组合设备。

在粒径粒径分级设备或筛分设备13中,颗粒被分成三股物流,也就是 粒径过大的、符合要求的和粒径过小的颗粒流。粒径过小的颗粒经管线15返 回造粒器4作为核,在核上,液体材料的固体颗粒可在造粒过程中生长。粒径 符合要求的颗粒经供应管线16送到贮存器17,之后可以出售或在后续加工中 使用。粒径过大的颗粒经管线18送到粉碎或破碎机设备19中,它们被转变为 破碎的颗粒,如果粒径符合要求的产品的直径是约2-约4mm的话,其平均直 径为约1.2-约2.4mm,优选约1.5-约2.1mm。在这一破碎过程中,粉尘的 形成得到抑制。这种破碎设备的概述,例如,可以从Pery and Chilton Chemical Engineers Handbook第5版第8-16至8-57页中找到。对于本发明,描述在这 一参考文献的第8-19至8-22页上的滚轧式粉碎机的设备是特别合适的。

在尿素造粒的情况下,符合要求的颗粒优选具有2-4mm的粒径。粒径 过大的颗粒其直径大于4mm,粒径过小的颗粒其直径小于2mm。但是,其它 的颗粒直径也是合适的。例如,在生产从空中施用的林业用尿素颗粒的情况 下,粒径符合要求的颗粒的直径为5-15mm,优选7-10mm。

破碎的颗粒与破碎过程中产生的粉尘经管线20返回到造粒器4下游的 冷却器10中。这一步骤降低了造粒器中聚结的粉尘量,因此延长了由于清洗 造粒器所导致的停车之间的时间。

这一生产颗粒的方法被描述在专利申请1002862中,这一申请是1996 年4月15日在荷兰申请的。其中公开的所有内容在这里引入作为参考。

下面的非限制性实施例对本发明进行了进一步的描述。

实施例

实施例1

在一试验装置中,尿素在约110℃的温度下在直径为45cm的圆柱形流 动床造粒器中造粒。流动床在下侧被一多孔板定界,多孔板的6%由直径为1.8 mm的孔组成。冷空气从这些孔中以约2m/s的空塔速度流入流动床。在距底板 高70cm的顶侧提供一溢流。一个描述在EP-A 0 141 436中的液体分布器放 置在底板的中央。

约140℃的含水量为0.5wt%的熔融尿素以200kg/h的流量从尿素贮 存容器供给到流动床造粒器中,液体分布装置在140℃的温度下操作,空气的 供给流量为约90kg/h。从床中排出的尿素颗粒在冷却器中借助冷却气冷却至 约40℃,然后在平板筛上筛分。

约200kg/h的颗粒的粒径在2-4mm,30kg/h的颗粒粒径大于约4 mm,150kg/g的颗粒粒径小于约2mm。小颗粒直接返回流动床造粒器。约 30kg/h的过大的颗粒送到双辊破碎机的粉碎设备中,将平均粒径调至1.4 mm。破碎的颗粒以约30kg/h的流量返回到冷却器。

从由流动床造粒器以约8kg/h的流量和由冷却器以约5kg/h排出的气 流中分离出尿素粉尘。这些粉尘物流通入气/固分离器,从中分离出尿素粉尘 并添加到尿素贮存容器中。

连续操作29天后,流动床造粒器被堵塞,试验结束。

比较例1

与实施例1相类似,尿素在实施例1的试验装置中造粒,不同的是破碎 的颗粒直接连续返回到流动床造粒器中。从由流动床造粒器中气流中分离出来 的粉尘的流量是约12kg/h。在连续操作12天后流动床造粒器被堵塞,试验 结束。

实施例2

硝酸铵在喷射床试验装置中进行造粒。喷射床安装在直径为45cm的圆 柱容器中,在其下侧提供了一个朝下与垂直方向成30°的度的会聚的锥形截 面,并与一供气管端接。约35℃的空气以约400kg/h的流量和40m/s的速 度进入设备。喷射床中的颗粒的温度为约100℃。溢流位于喷射床的圆柱截面 内,距锥形截面到圆柱形截面的转折点上方30cm。

约180℃的熔融硝酸铵,含有约0.5wt%的水和1.5wt%的Mg(NO3)2,喷 入流量约100kg/h的空气流。硝酸铵颗粒从喷射床的的造粒器中排出,送到冷 却器中冷却至约40℃,然后在平板床筛上筛分。

约100kg/h的颗粒的粒径在2-4mm,10kg/h的颗粒粒径大于约4 mm,75kg/g的颗粒粒径小于约2mm。小于约2mm的颗粒直接返回喷射床造 粒器。大于约4mm的颗粒送到粉碎设备中,将平均粒径调至1.4mm,然后返 回到冷却器。用气/固分离器从由喷射床造粒器以约3kg/h的流量和由冷却器 以约2kg/h排出的气流中分离出尿素粉尘。

连续操作27天后,喷射床造粒器被堵塞,停止试验。

比较例2

和实施例2一样,将硝酸铵造粒,直径大于约4mnm的颗粒在粉碎设备 中破碎并直接返回供给喷射床造粒器。用气/固分离器从由喷射床造粒器以约5 kg/h的流量排出的气流中分离出尿素粉尘。

连续操作14天后,喷射床造粒器被堵塞,停止试验。

发明背景

QQ群二维码
意见反馈