表面重波发生器和波浪池

申请号 CN201380058899.6 申请日 2013-09-12 公开(公告)号 CN104781486A 公开(公告)日 2015-07-15
申请人 凯利斯兰特尔波浪有限责任公司; 发明人 A·芬彻姆; 凯利·斯兰特尔;
摘要 用于产生适宜冲浪的波浪的波浪池(100),其中波浪池限定了沟槽(106),沟槽具有第一 侧壁 、第二侧壁和底部,底部的轮廓从邻近第一侧壁的深处区域朝着由第二侧壁限定的槛部(206)向上倾斜,波浪池(100)还包括至少一个翼片(302),其在侧壁附近至少部分地浸没在 水 中,并且适合于通过移动机构在沿着侧壁的方向上移动以在沟槽中产生波浪,其在槛部上形成 破碎 波,其中波浪池(100)还包括一个或多个被动式流动控制机构以减缓由所述至少一个翼片在沿着侧壁的方向上的移动所引起的水的平均流。
权利要求

1.一种波浪池,包括:
用于容纳的池子,所述池子限定了沟槽,所述沟槽具有第一侧壁、第二侧壁和底部,所述底部的轮廓从邻近所述第一侧壁的深处区域朝着由所述第二侧壁限定的槛部向上倾斜;
至少一个翼片,其在侧壁附近至少部分地浸没在水中,并且适于通过移动机构在沿着侧壁的方向上移动以在所述沟槽中产生至少一个波浪,该至少一个波浪在所述槛部上形成破碎波;和
一个或多个被动式流动控制机构,其减缓由所述至少一个翼片在沿着侧壁的方向上的移动所引起的水的平均流。
2.根据权利要求1的波浪池,其中所述一个或多个被动式流动控制机构中的至少一个包括多个涡流发生器,其设置在所述沟槽的表面上并在水面之下。
3.根据权利要求2的波浪池,其中所述多个涡流发生器在所述沟槽的表面上间隔开。
4.根据权利要求2的波浪池,其中所述多个涡流发生器中的至少一个包括线性纵长元件,其设置在所述沟槽的表面上垂直于所述平均流的方向。
5.根据权利要求2的波浪池,其中所述多个涡流发生器中的至少一个包括有度的元件,其设置在所述沟槽的表面上,并且具有相对于所述平均流的方向指向的角度。
6.根据权利要求2的波浪池,其中所述被动式流动控制机构还包括沿着所述沟槽以间隔的增量设置的多个涡流发生器。
7.根据权利要求2的波浪池,其中所述多个涡流发生器设置在所述沟槽的底部上。
8.根据权利要求2的波浪池,其中所述沟槽是圆形沟槽,并且其中所述多个涡流发生器沿着所述圆形沟槽的径向线间隔开。
9.根据权利要求2的波浪池,其中所述多个涡流发生器可移除地附接到所述沟槽的表面。
10.根据权利要求2的波浪池,其中所述多个涡流发生器由软质材料制成。
11.一种波浪池,包括:
用于容纳水的池子,所述池子限定了沟槽,所述沟槽具有第一侧壁、第二侧壁和底部,所述底部的轮廓从邻近所述第一侧壁的深处区域朝着由所述第二侧壁限定的槛部向上倾斜;
至少一个翼片,其在侧壁附近至少部分地浸没在水中,并且适于通过移动机构在沿着侧壁的方向上移动以在所述沟槽中产生至少一个波浪,该至少一个波浪在所述槛部上形成破碎波;和
一个或多个被动式流控引水沟机构,其减缓由所述至少一个翼片在沿着侧壁的方向上的移动所引起的水中的水流。
12.根据权利要求11的波浪池,其中所述一个或多个被动式流控引水沟机构包括引水沟系统,其具有在倾斜的海滩附近的所述沟槽中设置的一个或多个穿孔板,并且一个或多个穿孔板在所述海滩的斜坡和所述一个或多个穿孔板之间形成空腔。
13.根据权利要求11的波浪池,其中所述被动式流控机构包括引水沟系统,其具有设置在所述沟槽中的侧壁上的一个或多个穿孔板,并且一个或多个穿孔板在侧壁和所述一个或多个穿孔板之间形成空腔。
14.根据权利要求12的波浪池,还包括一个或多个有角度的叶片,其设置在所述海滩的斜坡和所述一个或多个穿孔板之间的空腔中,所述一个或多个有角度的叶片中的至少一个的角度基本上面对所述移动机构的移动以接收来自方位角流的水流并与所述移动机构的移动相反地重定向水流使其回到所述沟槽。
15.根据权利要求12的波浪池,其中以大于所述海滩的斜坡的角度设置所述一个或多个穿孔板。
16.根据权利要求14的波浪池,其中第一有角度的叶片接收所述水流并且将所述水流传递到相邻的第二有角度的叶片。
17.根据权利要求16的波浪池,其中所述第二有角度的叶片关于所述至少一个翼片的方向位于所述第一有角度的叶片前面。
18.根据权利要求12的波浪池,其中沟槽是圆形的并且其中所述穿孔板在径向方向和方位角方向上均与水平面成角度。
19.根据权利要求11的波浪池,其中所述被动式流控机构包括引水沟系统,其包括:
在所述槛部附近设置在所述沟槽中的一个或多个穿孔板,并且一个或多个穿孔板在所述槛部的斜坡和所述一个或多个穿孔板之间形成空腔;和
设置在所述沟槽中的侧壁上的一个或多个穿孔板,并且一个或多个穿孔板在侧壁和所述一个或多个穿孔板之间形成空腔。
20.根据权利要求19的波浪池,其中每个所述穿孔板包括百分之25至百分之40的开放区域。
21.一种波浪池,包括:
用于容纳水的池子,所述池子限定了沟槽,所述沟槽具有第一侧壁、第二侧壁和底部,所述底部的轮廓从邻近所述第一侧壁的深处区域朝着由所述第二侧壁限定的槛部向上倾斜;
至少一个翼片,其在侧壁附近至少部分地浸没在水中,并且适于通过移动机构在沿着侧壁的方向上移动以在所述沟槽中产生至少一个波浪,该至少一个波浪在所述槛部上形成破碎波;和
被动式突变和假潮控制机构,其减轻水中的随机突变和假潮,所述随机突变和假潮至少部分地由所述至少一个翼片在沿着侧壁的方向上的移动所引起,并且至少部分地由所述沟槽的形状和轮廓所引起。
22.根据权利要求21的波浪池,其中所述被动式突变和假潮控制机构包括所述沟槽的侧壁上的引水沟系统,所述引水沟系统包括一个或多个穿孔壁以在所述沟槽的侧壁和所述至少一个翼片的路径之间形成空腔。
23.根据权利要求22的波浪池,其中所述引水沟系统包括至少一个水平的固态壁,其设置在至少一个垂直的穿孔壁和所述沟槽的侧壁之间的空腔中。
24.根据权利要求23的波浪池,其中所述至少一个垂直的穿孔壁包括百分之20至百分之50的开放区域。
25.根据权利要求22的波浪池,其中所述引水沟系统包括至少一个水平壁,其设置在至少一个垂直的穿孔壁和所述沟槽的侧壁之间的空腔中,所述沟槽的侧壁形成所述引水沟下面的固态台阶的顶部。
26.一种波浪池,包括:
用于容纳水的池子,所述池子限定了沟槽,所述沟槽具有第一侧壁、第二侧壁和底部,所述底部的轮廓从邻近所述第一侧壁的深处区域朝着由所述第二侧壁限定的槛部向上倾斜;
至少一个翼片,其在侧壁附近至少部分地浸没在水中,并且适于通过移动机构在沿着侧壁的方向上移动以在所述沟槽中产生至少一个波浪,该至少一个波浪在所述槛部上形成破碎波;
被动式流动控制机构,其减缓由所述至少一个翼片在沿着侧壁的方向上的移动所引起的水的平均流;
被动式流控引水沟机构,其减缓由所述至少一个翼片在沿着侧壁的方向上的移动所引起的水中的水流;和
被动式突变控制机构,其减轻水中的随机突变和假潮,所述随机突变和假潮至少部分地由所述至少一个翼片在沿着侧壁的方向上的移动所引起,并且至少部分地由所述沟槽的形状和轮廓所引起。

说明书全文

表面重波发生器和波浪池

[0001] 相关申请的交叉引用
[0002] 根据35U.S.C.§120,本申请要求2012年9月12日提交的、名称为“Surface Gravity Wave Generator And Wave Pool”的美国专利申请13/612,716的优先权的权益,其是2008年11月19日提交的、名称为“Surface Gravity Wave Generator And Wave Pool”的美国专利申请12/274,321的部分继续申请,优先权申请的公开内容通过引用并入本文。

背景技术

[0003] 海浪用来进行娱乐已经长达几百年。在具有良好形状的破碎波的任何海滩处最流行的运动之一是冲浪。冲浪和其他滑板运动实际上已经变得如此流行,以致于在适合于冲浪的任何拍岸碎浪附近的水面通常是拥挤的并且负担了过多的冲浪者,使得每个冲浪者不得不竞争每个波浪并且活动的时间有限。此外,地球人口中的大多数甚至没有合适的机会接触海浪以便享受冲浪或其他海浪运动。
[0004] 另一个问题是在任何地点的波浪都是变化的和不一致的,偶尔有“多组”令人满意地成形的、为人们驾乘所需要的波浪,其中散布着较不合意的、在某些情况下不可驾乘的波浪。甚至是当冲浪者设法能驾乘所选的波浪时,乘浪的持续时间平均只持续仅仅2-30秒,大多数乘浪时间在5至10秒长之间。
[0005] 海面波浪是沿着水和空气之间的分界面传播的波浪,恢复力由重力提供,因此它们常常被称为表面重力波。图1示出了支配进入浅水的表面重力波的原理。深水中的波浪一般具有不变的波长。当波浪与海底相互作用时,它开始“变浅”。典型地,这发生在深度变成比波浪的波长的一半还浅、波长变短并且波幅增大时。当波幅增大时,由于波浪的波峰移动得比波谷快,所以波浪可能变得不稳定。当波幅是水深度的大约80%时,波浪开始“破碎”并且我们得到拍岸浪。这个上涨和破碎过程取决于海滩的倾和轮廓、波浪接近海滩的角度、以及水深和接近海滩的深水波浪的特性。通过对底部地形的改变,这些波浪的折射和集中是可能的。
[0006] 海浪一般有五个阶段:产生、传播、浅化、破碎、和衰退。浅化和破碎阶段对于可驾乘波浪而言是最合意的。破碎点不但强烈地取决于水深与波幅之比,而且取决于海底的轮廓、深度和形状。另外,在其他因素中,波浪的速度、波长和高度也可能有助于波浪的破碎。一般而言,波浪可以描述为导致四种主要的碎浪类型,该四种主要碎浪类型为:崩破,卷破,塌破,和滚破。在这些波浪类型中,初学冲浪者更喜欢崩破波浪,而卷破波浪是更有经验的冲浪者所尊崇的。这些碎浪类型在图2中示出。
[0007] 各种系统和技术已经试图在人造环境中复制海浪。这些系统中的一些包括靠着实体造型的波形引导快速运动的、相对浅的一片水以产生可以驾乘的但实际上并非波浪的水效果。其他系统利用线性地致动的桨、水力学或气动学浮筒或仅仅利用大的受控的水注射来产生实际的波浪。然而,所有这些系统在将能量转变成“波浪”方面都是效率低的,并且由于各种原因和缺点,这些系统中还没有一个接近产生这样的波浪,该波浪复制为人们驾乘所需要的的最令人满意的波浪的所需尺寸、形状、速度和破碎,即崩破的进入卷浅水、以管状破碎的波浪,该波浪具有相对长的持续时间和足够冲浪者进行动作的面。发明内容
[0008] 本文献提出了产生可由冲浪板上的使用者驾乘的表面重力波的波浪发生器系统和波浪池。
[0009] 波浪池包括用于容纳水并限定了沟槽的池子,沟槽具有第一侧壁、第二侧壁和底部,底部的轮廓从邻近第一侧壁的深处区域朝着由第二侧壁限定的槛部向上倾斜。波浪池还包括至少一个翼片,其在侧壁附近至少部分地浸没在水中,并且适于通过移动机构在沿着侧壁的方向上移动以在沟槽中产生至少一个波浪,其在槛部上形成破碎波;和[0010] 在一个方面中,波浪池包括一个或多个被动式流动控制机构以减缓由所述至少一个翼片在沿着侧壁的方向上的移动所引起的水的平均流。在另一个方面中,波浪池包括一个或多个被动式流控引水沟机构以减缓由所述至少一个翼片在沿着侧壁的方向上的移动所引起的水中的水流。在又一个方面中,波浪池包括被动式突变和假潮控制机构以减轻水中的随机突变和假潮,所述随机突变和假潮至少部分地由所述至少一个翼片在沿着侧壁的方向上的移动所引起和至少部分地由沟槽的形状和轮廓所引起。在还一个方面中,波浪池可以包括上述控制机构中的任一个或全部以控制和/或最小化除了由所述至少一个翼片中的每一个所产生的主表面重力波之外的水流量、突变或辅助波浪。
[0011] 在附图和下面的说明中阐明了一个或多个实施方式的细节。根据说明书和附图以及权利要求,其他特征和优点是显而易见的。

附图说明

[0012] 现在将参考下面的图详细描述这些和其他方面。
[0013] 图1描述进入浅水的波浪的特性。
[0014] 图2示意了四种一般类型的碎浪。
[0015] 图3A和3B分别是具有环形形状的池子的顶视图和侧视图。
[0016] 图4示意了池子的底部轮廓的实施方式。
[0017] 图5示意了环形构形的池子的实施方式,和在池子的内壁上的波浪发生器。
[0018] 图6示意了环形构形的池子的一部分的实施方式,其具有沿着外壁垂直布置的波浪发生器。
[0019] 图7A和7B分别是透视图和横截面图,以示意用于壁的线性部分的翼片的形状的实施方式。
[0020] 图8A示意了包括偏心辊的翼片500的实施方式的一部分。
[0021] 图8B和8C示意了具有几个变体辊的翼片500的实施方式。
[0022] 图9示意了波浪传播的速度关于翼片速度的相关几何图形。
[0023] 图10示意了波浪发生器池的实施方式,其中旋转的内壁位于固定的外壁内。
[0024] 图11示意了波浪发生器的实施方式,其中柔性层被置于外壁上,外壁包括用于布置在外壁的整个长度或圆周周围的一定数量的线性致动器
[0025] 图12示意了波浪发生器的实施方式,其具有置于外壁上的柔性层。
[0026] 图13示意了包括柔性层的波浪发生器的实施方式,柔性层可以被升高远离外壁以限定翼片。
[0027] 图14示意了具有带有正方形横截面的纵长元件的涡流发生器的实施方式。图15示意了涡流发生器的另一个实施方式,其具有在横向上和纵向上隔开的正方形元件。
[0028] 图16示意了涡流发生器的实施方式,其既安装在与水槽的外引水沟相邻的底部部分上,又安装在水槽的外引水沟壁的下部上。
[0029] 图17示意了涡流发生器的实施方式,其具有非线性形状,例如成角度的或弯曲的。
[0030] 图18示意了平滑的(弯曲的)池轮廓的实施方式,其中涡流发生器接触侧壁或底。
[0031] 图19示意了在池子的内岛附近的空腔的至少一部分的实施方式,其装配有一系列有角度的叶片
[0032] 图20示意了池子的实施方式,其在翼片和波浪发生机构和水槽的外壁之间具有内引水沟系统和外引水沟系统。
[0033] 图21示意了在倾斜海滩上的流动改向引水沟系统的实施方式。
[0034] 图22示意了引水沟和/或挡板的实现的实施方式,挡板可以用作穿孔壁。
[0035] 图23示意了由移动的翼片所得到的波的时间演变的例子,其包括入射波和反射波(多个)。
[0036] 图24示意了引水沟的实施方式,其具有引水沟壁上的垂直的长孔。
[0037] 图25示意了引水沟的实施方式,其具有引水沟壁上的垂直的长孔和未穿孔的台阶。
[0038] 图26示意了具有多孔壁的引水沟系统的实施方式,其结合有产生涡流的粗糙元件。
[0039] 不同附图中同样的附图标记表示同样的元件。

具体实施方式

[0040] 本文献描述了产生所需可冲浪性的波浪的装置、方法和系统。可冲浪性取决于波浪角度、波浪速度、波浪倾斜度(即,陡度)、碎浪类型、底部坡度和深度、曲率、折射和集中。许多细节致力于孤立波,因为它们的特性使它们特别有利于通过在此提出的装置、方法和系统产生。当用在本申请中时,术语“孤立波”用来描述在平均水位上方具有单个主要水位移的浅水波浪或“表面重力波”。孤立波在没有分散的情况下传播,它非常接近地类似在海洋中产生的有利的拍岸浪的波类型。理论上完美的孤立波由分散和非线性之间的平衡而引起,使得波能行进长距离,同时保持其形状和波形,而没有被抵消波阻碍。孤立波的波形是距离x和时间t的函数,并且可由下面的等式刻画:
[0041]
[0042] 其中A是水面上方的波浪的最大波幅或高度,h0是水的深度,g是重力加速度,η(x,t)是在h0上方的水的高度。虽然孤立波的长度理论上是无穷大,但孤立波的长度由水面高度限定,并且可以被定义为:
[0043] 其中
[0044] 池子
[0045] 本申请中描述的系统、装置和方法使用了水槽,在水槽中产生孤立类型或其他的表面重力波。在一些优选实施例中,池子是圆形的或环形的,由直径为200至800英尺或更大的外壁或边缘限定。然而,作为选择,也可以使用直径小于200英尺的圆的或圆形的池子,450至550英尺的直径可以是优选的。在一个示例性实施例中,池子可以是环形的,具有中央的圆形岛,其限定了沟槽或槽。在该环形构形中,池子的外径为550英尺,沟槽宽度为至少50英尺,尽管沟槽可以具有150英尺或更大的宽度,其能产生30-100英尺的可驾乘的波长。
[0046] 在另一个示例性实施例中,池子可以是连续的水槽,例如没有中央的岛的圆形池子。在圆形构形中,池子可以具有朝着中央向上倾斜到浅滩或槛部的底部,并且可以包括较深的槽或通向浅的槛部或平坦表面。在又一个其他实施例中,池子可以是任何闭环的、曲线的沟槽,例如跑道形状的(即,截断的圆)、椭圆形的、或其他圆形状。在再一个其他实施例中,池子可以包括开放的或封闭的成圈的直线或曲线沟槽,水流过该槽(如新月形状或简单的线性水道),并且其可以使用或不使用水回收或再循环和流动机构。
[0047] 图3A和3B分别是根据环形实施例的池子100的顶视图和横截面图。池子100具有基本上环形的形状,其由外壁102、内壁104和位于外壁102与内壁104之间并由它们限定的水沟槽106所限定。在环形实施例中,外壁102和内壁104可以是圆形的。内壁104可以是在水沟槽106的平均水位101上方延伸的壁,并且可以形成岛108或在平均水位101上方的其他类型的平台。内壁104也可以倾斜以便形成倾斜的海滩。作为选择,内壁104可以形成浸在水中的暗礁或在水沟槽106和第二池子之间的屏障。例如,第二池子可以是浅的以接收由于在水沟槽106中产生的波浪所导致的尾波。池子100还可以包括侧部110,根据一些实施例,侧部110可以包括轨道,如用于接纳机动车辆的单轨或其他导轨。另外,车辆可以附接到至少一个波浪发生器,波浪发生器优选地呈可移动的翼片的形式,如下面进一步描述的。在一些实施例中,与侧部110合作或不与侧部110合作,外壁102可以支承呈具有内置翼片的柔性壁或旋转壁形式的波浪发生器,其也在下面进一步描述。
[0048] 波浪发生器
[0049] 图4示意了具有临界倾斜的海滩设计的池子的底部轮廓。具有临界倾斜设计的池子的底部轮廓可以在任何数量的成形池子中实施,包括直线的、曲线的、圆形的或环形的池子。底部轮廓可以包括侧壁200,侧壁200可以是内侧壁或外侧壁。侧壁200的高度可以至少延伸得比平均水位高,并且侧壁200可以在所产生波浪的最大振幅或高度上方延伸。侧壁200可以适合于容纳波浪发生器,例如垂直地置于侧壁200上且沿着侧壁200横向地移动的翼片。底部轮廓还可以包括深处区域202,其在一些构形中延伸得足够长,至少足以容纳翼片的厚度或高度。侧壁200和深处区域202的相交处还可以包括斜坡、台阶或其他几何特征,或轨道/导轨机构,轨道/导轨机构参与引导翼片的移动或给翼片的移动提供动力。可以制造涌浪以使振幅达到与深处区域202的深度相同或甚至大于深水区202的深度,[0050] 池子的底部轮廓还可以包括斜坡204,其从深处区域202向上升。斜坡204角度的范围可以从1至16度,也可以从5至10度。斜坡204可以是直线的或弯曲的,并且可以包括凹入、起伏或其他几何特征。底部轮廓还可以包括浅滩206或槛部。来自斜坡204上一点和浅滩206的表面可以提供所产生波浪的主要破碎区,破碎区中的波浪建立可以改变平均水位。浅滩206可以是展平的或弯曲的,并且可以转变成展平的浅的平坦区域208、浅的沟渠210或深的沟渠212,或其任意交替组合。与波浪发生器相对的水槽侧最终终止于倾斜的海滩。
[0051] 浅滩206也可以是斜坡204的延伸并且直接终止到海滩。海滩可以是真实的或是人造的。海滩可以包含排水系统,其可以包括格栅,水可以向下通过格栅。排水系统可以连接到一般的水再循环和/或过滤系统,任一个都可以包含更先进的流重定向特征。海滩还可以包含波浪阻尼挡板,其有助于最小化波浪的反射并减少沿着海岸的传输和水流。
[0052] 底部轮廓可以由刚性材料形成并且可以被覆以合成覆层。在一些实施例中,底部可以覆盖有多个较软的更柔性的材料的部分,例如,可以引入泡沫材料的暗礁,或者在被浪打翻期间比较不会造成伤害的覆盖物。例如,在浅滩206处或在破碎区内,覆层可以较厚。覆层可以由刚性比用于底部轮廓的刚性材料低的层形成,并且甚至可以是减震的。斜坡
204、浅滩206和/或底部轮廓的其他区域可以通过一个或多个可移除的插入件形成。此外,底部轮廓的任何部分都可以是可动态重新配置的和可调节的,以改变底部轮廓的大体形状和几何结构。例如,可以即时改变底部轮廓,例如借助于机动机构、可膨胀囊袋、简单的手动交换或其他类似的动态成形机构。另外,可移除的插入件或模可以与固态地板相连,固体地板构成池子的一部分,包括底部轮廓。插入件或模块可以是绕着圆一致的,或可变的,以产生由斜坡204或浅滩206中的起伏所限定的复现的暗礁。以这种方式,可以在特定位置引入特别成形的模块以产生具有所需拍岸浪破碎的部分。
[0053] 图5示出了呈环形构形的池子300,和在池子300的内壁304上的波浪发生器302。波浪发生器302可以是沿着内壁304垂直布置的翼片,并且沿所示方向303移动以产生波浪W。图6示意了呈环形构形的池子400的示例性部分,其具有沿着外壁404垂直布置的波浪发生器402。波浪发生器402可以沿所示方向403移动,以产生如图所示波浪W。在一些实施例中,与内壁布置相比,波浪发生器402的外壁404布置能实现改进的集中和较大的波浪。另外,在一些实施例中,内壁布置能实现减小的波浪速度和改进的可冲浪性。可以通过动力驱动的车辆或大体上保持干燥并远离水的其他机构使波浪发生器302和402移动,所述车辆或机构例如位于导轨或其他轨道上,其一部分可以浸在水中。在一些实施例中,整个轨道可以旋转,容许能将驱动达保持在不旋转的框架中。
[0054] 波浪发生器也可以构形成在沟槽的中央运转,在这种情况下,在内壁和外壁上都有海滩,并且轨道/导轨机构由高架结构支承或通过直接附接到池子的地板上而被支承。
[0055] 翼片
[0056] 本申请中描述的波浪池的一些实施例可以使用一个或多个翼片产生所需可冲浪性的波浪。翼片可以被成形以便以超临界流产生波浪,即,翼片移动得比所产生波浪的速度快。当波浪随着半径倾斜时,这可以容许显著的剥离角。浅水(当水深比得上波长时)中波浪的速度可以由VW代表:
[0057]
[0058] 其中g是重力,h0是水的深度,A是波幅。临界状态可以由弗劳德数(Fr)代表,其中大于1的数是超临界的,小于1的数是亚临界的:
[0059] Fr=VF/VW,其中VF是翼片相对于水的速度
[0060] 当水和翼片相对于彼此移动时,翼片可以适合于远离翼片的前沿部传播波浪,该移动可以实现机械能向波浪的最直接的传递。以这种方式,理想的涌浪可以立即形成在翼片的前沿部附近。翼片可以被最优化以对于给定的水深产生最大可能的涌浪高度。然而,一些翼片可以被构形成产生较小的涌浪。
[0061] 为了实现从翼片至波浪的最好的能量传递和确保所产生的涌浪是干净的和相对孤立的,翼片可被设计成将运动赋予给水,其接近于已知的波动方程的解。以这种方式,可能不必使波必须由有些任意的扰动形成,如一些其它的波浪发生系统所做的那样。提出的做法可以依赖于使在每个位置由翼片赋予的位移与波浪的自然的(理论上的)位移场相匹配。对于翼片将通过的固定位置P,与翼片正交的方向可以是x,当前在P的翼片部分的厚度可以是X(t)。
[0062] 在点P的X的变化率可以与波浪的深度平均速度 相匹配,这可以在等式(1)中表达:
[0063]
[0064] 将变量从(x,t)变成(θ=ct-X,t),其中c是波浪的相速度
[0065]
[0066] 在等式(2)中,波浪的深度平均速度u可以由许多不同理论中的任一个给出。对于大体上采取下面的等式3和4的形式的孤立波的情况,可以提供几个例子。翼片设计的这个技术也可以应用于具有已知的、计算的、测量的或近似的解决方案的任何其他形式的表面重力波。
[0067] η(θ)=Asech2(βθ/2) (3)
[0068]
[0069] 这里η(θ)是距离静息的自由表面高度,A是孤立波振幅,h0是平均水深,β是边界衰减系数,c是相速度, 是深度平均水平速度。C和β对于不同的孤立波可能不同。
[0070] 通过翼片速度VF,通过代入t=Y/VF,将等式(2)和(3)与(4)结合可以给出在固定位置的在时间上的翼片厚度变化率(5),并且可以与翼片形状X(Y)相关,[0071]
[0072] 翼片的最大厚度可以根据(5)如下给出:
[0073]
[0074] 然后可以将翼片的活动部分的长度近似为:
[0075]
[0076] 与瑞利的孤立波对应的C和β的值可以是:
[0077] 和
[0078] 在线性化之后的小位移的这个例子中,翼片形状X(Y)可以被近似为:
[0079]
[0080] 这个解也可以用双曲正切函数来近似。这些翼片的形状,如通过至少一些数学函数所描述的,将具有非常薄的前缘,其在结构上将是不稳定的。实际的前缘将典型地在3-12英寸的合适厚度处被截断,并被倒圆以提供更刚性的前缘。倒圆可以是对称的或不对称的,在一些实施例中可能不精确地遵循椭圆的形状。
[0081] 如图7A和7B中的示例性构形所示,翼片500是三维的、曲线成形的几何形状,其具有产生波浪的前沿面502或“活动部分X(Y)”和后沿面504,后沿面504作为流复原件起作用以避免流的分离并减小翼片500的阻力以改善能量效率。翼片500作为例子被表示为构形成在线性的通道中拖曳,因此具有平坦的表面,其将与通道的垂直壁相邻。翼片500可以成形为将大多数能量变成主要的、孤立的波模,并将进入振荡尾波的能量减到最少。照此,翼片500可以为后面的波浪发生器和翼片(如果有的话)促进静寂的环境。每个翼片500可以包含内部致动器,其容许翼片的形状变形以产生不同的波浪,和/或每个翼片500能铰接以便解决非圆形或非直线池子的外壁的曲率的变化。在一些实施例中,翼片500的变形可以容许机构反转以通过在相反的方向上平移翼片500来产生波浪。该变形可以通过一系列线性致动器,或者通过将几个垂直的偏心辊552(如图8A-8C中所示)安装在翼片
500的波浪发生面的表皮下来实现。包括偏心辊552的翼片500的草图示于图8A中。为了显示出偏心辊552,翼片500的波浪发生面的表皮在图8A中被表示为透明的。另外,具有几个变形辊552的翼片500示于图8B、8C中。类似于图8A,为了显示出几个变形辊552,翼片500的波浪发生面的表皮在图8C中被表示为透明的。辊552也可以添加在翼片500的具有最大厚度或复原的位置中。在翼片500的一些实施例中,柔性层可以形成为相对刚性的片,其在翼片改变形状时水平地滑动。另外,一些实施例可以包括由有缝的凹槽构成的特定的固定装置,其可以通过弹簧或液压张紧装置拉紧相对刚性的片中的松弛部分,其中弹簧或液压张紧装置使相对刚性的片沿翼片500的长度伸展。使翼片500的形状变形的能力可以容许所产生的涌浪的尺寸和形状的大的变化,并容许翼片500形状的最优化以产生所需的涌浪形状。这种精细的最优化可能是必需的,因为出现在500的表面上方的其它粘性流体机械现象翼片在边界层中起作用。附接的边界层可以具有略微改变水翼的有效形状的效果。在其他实施例中,可以有特定的表面粗糙度或安装在水翼表面上的“边界层激流丝”。特别是,如果在复原部分上产生足够的湍流以确保没有流动分离,则水翼的物理长度可以减小,并且将不会那么容易地在不利的压力梯度中分离出强烈的湍流边界层。
[0082] 在一些实施例中,基于从对于作为时间函数的等式的模拟向空间函数的转换,翼片500成形和形成为特殊的几何形状。双曲正切函数在数学上将活塞的行程定义为时间函数,以使得活塞推动波浪板以创建远离波浪板传播的浅水波。这些双曲正切函数相对于在长波浪产生模型中产生的波浪位置考虑了波浪板的位置,并对于孤立波和椭圆余弦波产生可接受的外形。这些技术可以用来产生任何传播的表面重力波,所述表面重力波说明了波浪在产生过程中远离发生器传播的原因(即,适合于波浪在产生过程中正在怎样变化)。对于发生器随着时间经过的运动的补偿和复原部分的特殊形状可以帮助移除曳尾振荡波,其可以提供更紧凑和有效的发生过程。可以限定与这里讨论的波浪不同的其他类型的波浪。
[0083] 翼片的厚度可能与波浪的振幅(高度)和水的深度有关。因而,对于已知的深度和所需的振幅A,能确定翼片的厚度,FT,可以如下近似给出:
[0084] 对于瑞利孤立波:
[0085]
[0086] 对于博欣内斯克(Boussenesq)孤立波:
[0087]
[0088] 对于浅水,二阶孤立波:
[0089]
[0090] 图9示出了翼片600的横截面几何形状。作为三维物体,翼片600基于翼片的速度和矢量VF产生具有传播速度和矢量VW的波浪。当翼片沿所示方向移动时,取决于其速度,波浪将以剥离角α传播出去,规定sinα=Fr-1,因此对于给定水深和波浪高度,剥离角由翼片的速度确定,较大的速度对应于较小的剥离角。剥离角越小,波峰的长度就将横越波浪池越长。
[0091] 图10示意了波浪发生器700,其中旋转的内壁702位于固定的外壁706内。旋转的内壁702可以配备有一个或多个固定的翼片704,翼片704的尺寸和形状可以与上面描述的翼片相同。这些嵌入的翼片704可以具有内部致动器708,其可以帮助容许嵌入的翼片704变形和改变形状,如根据上面描述的各种横截面形状。针对不同的速度和水深,横截面形状的改变可以适应“最有效点”。这些致动器可以以与图8中所示的变形偏心辊类似的方式起作用。
[0092] 图11示意了波浪发生器800,其中柔性层802沿着外壁804放置,并且外壁804可以包括布置在外壁804的至少大部分长度或圆周周围的一定数量的线性致动器806。另外,线性致动器806也可以附接到柔性层802。柔性层802可以由任何数量的柔性材料形成,包括橡胶或与橡胶类似的材料。线性致动器806可以是机械的或气动的致动器,或至少具有径向展开和缩回方向的其他装置,如一连串垂直对齐的偏心辊。线性致动器806可以被致动以便在柔性层802中形成移动的形状,其近似如上所述的翼片的形状。翼片形状可以以速度VF沿着外壁804或柔性层802传播。
[0093] 图12示出了波浪发生器900的实施例,其包括沿着外壁904放置的柔性层902。柔性层902和外壁904之间的间隙可以限定与上面描述的类似的移动的翼片906,并且可以包括在可连接到外壁904和柔性层902的轨道中的一个或多个辊908。轨道中的辊908可以容许形成于间隙中的翼片906在沿着外壁904的方向上平滑地行进。该移动的翼片906可以产生柔性层902的径向运动,柔性层902至少接近地近似上面描述的一个或多个翼片的形状。
[0094] 图13示出了波浪发生器1000,其包括柔性层1002,柔性层1002可以远离外壁1004升起以限定翼片1006。翼片1006可以包括内部致动器或偏心辊1010,其容许其改变翼片1006的形状,翼片1006的形状可以依据沿着外壁1004的移动方向而改变。限定的翼片1006可以通过辊1008在轨道上移动,如上所述。因而,柔性层1002可以成形为近似上面描述的翼片,同时保护致动器和轨道上的辊1008不接触水。这个构形还可以减小主体部件可能被卡在单独的移动的翼片中的险。
[0095] 虚拟底部
[0096] 在一些实施例中,在斜坡上位于池子底部附近的喷嘴系统可以模拟比实际深度更浅的水,这可以容许波浪在比可以以其他方式实现的水更深的水中破碎。可以定位这些喷嘴以便以所需水平产生平均流和湍流。这些喷嘴的分布可以在径向上和在从外壁朝海滩的方向上改变,其中在海滩上具有较多的喷嘴。在喷嘴的特性和数量上也可以有方位角的变化。该喷嘴系统可以结合有过滤系统和波浪系统以提供平均流或漂流河(lazy river)的减缓。可以将粗糙元件加到池子的底部以促进湍流的产生,湍流可以促进破碎波的形式的变化。粗糙元件的分布和尺寸可以是半径和方位角的函数。粗糙元件可以采取经典的和新颖的涡流发生器的形式并在下面描述。
[0097] 平均流
[0098] 池子(特别是如上所述的圆形的水槽)内的一个移动的翼片或一组翼片最终会产生平均流或“漂流河”的效果,其中池子中的水将在所述一个或多个移动的翼片的方向上产生轻微的水流。
[0099] 在其他实施例中,池子可以包括提供或阻遏平均流或环流的系统。系统可以包括一定数量的流喷嘴,通过流喷嘴送水以阻遏或减缓由移动的翼片产生的任何“漂流河”流,和/或帮助改变破碎波的形状。平均环流可以具有垂直或水平可变性。可以使用其他平均流系统,如反向旋转的相对的侧部、底部或其他机构。
[0100] 被动式“漂流河”流动控制
[0101] 图14-16示出了各种被动式机构,其可以被添加以选择池子的表面,特别是在翼片下面和旁边的深处区域中,作为对于方位角的和径向的水流的平均流的紊流生成障碍物,其可以减缓由移动的翼片引起的平均流。
[0102] 在一些实施例中,如图14中所示,一定数量的涡流发生器1302设置在池子的表面1304,如设置在池子的底部上或水槽的侧壁上。涡流发生器1302可以放置在池子外侧的安全栅后面的区域中,邻近移动的翼片,例如在冲浪者不太可能接触到它们的地方。作为选择或另外,涡流发生器1302可以放置在池子的进行冲浪的水槽表面中,尤其是如果涡流发生器1302是安全特征的一部分,例如由软质材料如泡沫制成以防止冲浪者冲击到表面。涡流发生器1302可以位于表面1304上并且在表面1304上递增地间隔开,表面1304例如为池子的水槽的地板,如图14和15中所示,和/或可以位于池子的侧壁上,如图16中所示。
[0103] 图14示意了具有纵长元件的涡流发生器1302的实施例,纵长元件具有正方形的横截面。另外,涡流发生器可以以一增量间隔开,如每个涡流发生器1302(px=8k)的8倍横截面宽度k的间隔。图15示出了涡流发生器1306的另一个实施例,其具有在横向上(即,8倍的横截面宽度k)和在纵向上(即每隔一个横截面长度,pz=2k)隔开的正方形元件。
图16示出了涡流发生器1302,其安装在邻近水槽的外引水沟1310的底部部分上和安装在水槽的外引水沟壁1312的下部部分上,如果没有引水沟,或者当引水沟系统没有延伸到整个深度上时,该发生器也可以实施在实际的外壁上。也可以使用矩形元件,在这种情况下,间距是大约8倍的元件方位角宽度。如图17中所示,涡流发生器1330也可以具有非直线的形状,例如成角度的或弯曲的。在成角度的涡流发生器的情况下,它们可以定位成指向翼片的移动和所得到的平均流的上游或下游方向。
[0104] 平均流与涡流发生器之间的相互作用可以增加水翼路径附近的雷诺应力和总湍流强度,其可以在水中提供较厚的边界层。这些增强的边界层可以比同等大小的光滑表面耗散多得多的能量。另外,湍流扩散的动量传递,特别是与较大涡流相关的湍流扩散的动量传递,可以容许覆盖有涡流发生器的水槽地板或壁区域为方位角的和径向的动量提供强的接收器。实际上,这些元件可以容许水槽内的流体更好地将转矩传递到水槽本身。
[0105] 虽然每个涡流发生器可以具有正方形的横截面,如图14、15、16和17中所示,但也可以使用其它的横截面形状,如圆形、矩形或其它棱形或三维形状。在一些优选的实施例中,每个涡流发生器具有大约1平方英尺的横截面尺寸,尽管也可以使用小于1英尺或大于1英尺的边长尺寸。涡流发生器可以优选地隔开6-12英尺。例如,如果用在池子的底面上,涡流发生器可以沿径向线隔开,平均方位间隔为6至12英尺。如果位于池子的垂直侧壁上,涡流发生器可以均匀地间隔开。而在其它变型中,涡流发生器的间距可以环绕池子而变化以便达到不同的效果。
[0106] 为了便于清洗涡流发生器和池子,并避免在涡流发生器中及其周围的角部中的碎片的聚集,一些实施例可以选择平滑的(弯曲的)池轮廓1500,其中涡流发生器接触侧壁或地板,如图18中作为例子所示的。
[0107] 在一些实施例中,涡流发生器可以由刚性或固态材料形成,并且可以永久地贴附到池子。例如,涡流发生器可以由用筋增强的混凝土制成并整合到水槽结构中。在其他实施例中,涡流发生器可以是模块化的并用螺栓附接,或由塑料、纤维、或其他没那么刚性或固态的材料构成。这些模块化的涡流发生器也可以容许可变间距、尺寸和取向的定制配置。例如,固定的和模块化的涡流发生器的各种组合和布置都可以采用。
[0108] 阻遏方位角水流的引水沟系统(叶片式空腔引水沟)
[0109] 先前讨论的系统中,如涡流发生器、粗糙度增强件和其它突起或挡板,可以构形成通过增加流动内的湍流耗散而减少漂流河流动。另外,这些系统可以充当平均方位角/纵向动量以及在径向/横向和垂直方向上的交替水流的接收器或抑制器。作为选择,或另外,方位角/纵向流动可以通过在圆形、新月形或线性水槽的内海滩区域采用的引水沟系统(“内引水沟系统”)、在水槽外壁采用的引水沟系统(“外引水沟系统”)、或它们两者而重定向。这些流动重定向引水沟的基本原理可以是通过使它上升到斜坡来将该流动的动能作为势能而捕获。然后流体可以用与它到达的速度矢量方向不同的速度矢量方向返回到水槽。该重定向可以用叶片系统实现,但也可以实施其它装置,如管或沟槽。
[0110] 在一些实施例中,引水沟系统包括由透水的、穿孔的格栅覆盖的倾斜底板,该格栅典型地具有25-40%的开放区域。在这种情况下,对于内(倾斜海滩)引水沟系统,栅格的斜率可以大于有角度的底板或海滩的斜率,这在海滩的倾斜底板和更陡峭倾斜的格栅之间形成空腔,所述格栅在水槽中的中心岛周围延伸。对于在外周长周围产生波浪的直径为500英尺的圆形波浪池,在底部底板倾斜大约5-9度且形成空腔顶盖的穿孔栅格倾斜大约
10-20度的情况下,空腔可以延伸离开岛20-40英尺。对于较小或较大的池子,可以不同地选择斜坡,较大的池子要求较不陡峭的斜坡,而较小的池子要求稍微陡峭点的斜坡。
[0111] 该空腔能独自吸收波浪能,并减小由水槽周围的翼片的运动产生的反射波。另外,当通过栅格进入的水可以遭遇增强的湍流时,空腔可以通过简单的耗散机制减少倾斜海滩附近的方位角水流。对于圆形波浪池的实施例,减少中央岛附近的水流的重要性怎么强调也不过分。当在波浪正在破碎的方向上有平行于海岸的显著水流时,如果筒状波浪的形式得以保留的话,水流可以容许波浪“追上它自己”,这要求波浪产生机构以较高的速度移动。无论这些水流是由水翼式系统产生的还是由一些其它类型的波浪发生器产生的,这些水流都可能倾向于限制波浪的最小运行速度。这个最小运行速度与被称为“泡沫成球”的状态有关,在最小运行速度,波浪将不再呈筒状,而是呈现为白色水域的泡沫波峰。
[0112] 在其他实施例中,并且如图19中所示,内岛1402附近的空腔的至少一部分可以安装有一连串的有角度的叶片1404。有角度的叶片1404可以由固体材料形成,如混凝土,或任何数量的各种固体材料。有角度的叶片1404可以被透水的穿孔格栅1406覆盖。穿孔格栅1406在图19中被表示为透明的以便示出有角度的叶片1404。在工作中,到来的波浪可以以微小的角度接近空腔,通过格栅1406进入并且使格栅1406下面的每个有角度的叶片1404上升。在波浪在由有角度的叶片1404形成的通道中上升达到最大高度时,存储的势能然后可以返回到其动能形式,因为波浪在一组受限的有角度的叶片1404中下降。然后在方位角速度的分量不同并且很大程度上与它进入的方位角速度的分量相反的情况下,波浪通过格栅退出空腔。以这种方式,提供了完全被动的机构以限制或逆转所述岛附近的方位角/横越海岸的水流。
[0113] 在一些实施例中,引水沟系统可以在引水沟附近提供完全或近乎完全的水流逆转。这些叶片式空腔引水沟系统在它们减轻冲浪者可能正在骑乘的波浪管上的泡沫成球的有害效果的能力上的重要性与其效果可以远离所述岛传播的程度有关。出于这个原因,重要的是,将流重定向的叶片是有角度的,以便将重定向的流注入到水槽内部远离所述岛。典型的构形要求这些叶片相对垂直轴线周围的半径成45-70度角。精确角度会在一定程度上取决于水槽的具体水深测量,但一般有折衷,其中更陡峭的有角度叶片将在重定向水流方面表现得更好,而较不陡峭的有角度叶片将更好地将重定向的流体转移到水槽的内部,减缓该位置的波浪。
[0114] 叶片相对于从内岛1402的半径以及形成三角形以容纳叶片上方的栅格的斜坡的水平部成角度。图20示出了内引水沟系统1600(注意,在该图中格栅下面的地板没有明显的斜坡,但在大多数实施例中可以有斜坡),和在翼片1610和波浪发生机构和水槽的外壁1630之间的外引水沟系统1620。外引水沟1620可以以与上面描述的内引水沟相似的方式构造,外引水沟1620被表示为包括水平板1640,水平板1640抑制由翼片移动时的压力变化导致的水平面的垂直运动。这样的外引水沟1620可以包含在外壁和穿孔壁之间的一系列倾斜板,这些板会在径向和方位角方面相对于水平面倾斜。以这种方式,进入引水沟的流体将被重定向并以方向向内且与主要水流相反的速度退出。
[0115] 水流重定向引水沟系统的进一步的实施例包括容许在两个叶片1700之间进入的水上升到斜坡,如上所述。在接近上升的最高点时,一些水流通过倾斜的开口1720被重定向到相邻的引水沟。以这种方式,水流围绕海滩流转,进一步增强了横越海岸的传输。图21示出了倾斜的海滩上的这个实施例,其中格栅盖被移除。
[0116] 波吸收和相位抵消引水沟
[0117] 根据使用环形水槽的波浪池的一些实施例,环形水槽的外部和内部边界可以配备引水沟和/或挡板,其构形成限制可能由波浪发生水翼的通过所产生的任何入射波的反射,并且还减小水槽内的普通随机突变的持久性。例如,引水沟和/或挡板可以构形成控制特定的假潮模式,或存在于水槽内的已知波长的其他波。如图22中所示,引水沟和/或挡板1500的一些实施例可以使用穿孔壁1506,其优选地具有30%-60%的开放区域,并且相对于水槽的水容纳壁1504或海滩平行地或倾斜地放置。穿孔壁1506和主壁1504之间的距离(图22中的b)可以如此选择以便最佳地耗散所关注的入射波或突变波。
[0118] 在一些实施例中,引水沟1500可以包括大约20%至50%开放区域、优选为大约33%开放区域的简单的垂直多孔板,其可以在外壁和水翼路径之间形成空腔。为了最佳的相位抵消,空腔宽度可以调整,如在下面进一步详细描述的。
[0119] 在一些实施例中,引水沟设置在水槽中,并且适合于限制垂直位移和与任何拖曳、或复原、通过移动的翼片或其他波浪发生装置所产生的波浪相关联的反射能量。这可能涉及在高度h1处设置的水平分流板或台阶1508的使用,高度h1典型地为0.2h-0.4h。在台阶的情况下,水平板之下的容积被填充,而对于分流板,该容积是开放的,在另一个变型中,台阶代替呈垂直固体壁形式的水平分流板,其从底部向上延伸典型地与水平分流板相关联的高度。这些引水沟也可以集成有方位角流动控制和重定向系统,如在上述部分中所述的。
[0120] 图23示出了由移动的翼片所得到的波的时间演变,其包括入射波和反射波(多个)。入射在引水沟上的波的波长可以是L。在一些实施例中,理想的是使来自引水沟的多孔壁的所得波的反射百分率最佳化,使得在粗略近似中:
[0121] -在一节点(L/4)处的多孔壁=>0%(*)反射,100%(*)传输。
[0122] -在最大值(L/2)处的多孔壁=>100%反射,0%传输。
[0123] 如果没有穿孔壁,节点可能出现在离水槽的后壁L/4的距离处,且最大能量损失也可能出现在这个距离处。然而,由于在多孔壁的惯性阻力,相变可能出现在间隙内,其可以减缓波。这使得出现最大能量损失的距离小于L/4。如可以在图23中看到的,引水沟的宽度可以基于入射波的大小和波长进行调整,即引水沟被构形为进行缓和。引水沟可以由一个或多个平行的多孔板形成,并且可以进一步与水平分流板和/或垂直台阶结合,如下文进一步描述的。
[0124] 入射在引水沟上的波的波长(L)和引水沟空腔内的波的波长(L1)之间的关系可以是这样的,L>L1。该波长减少可能是由于耗散并且可以容许使用本来要求的较小宽度的引水沟。
[0125] 注意,当使用分流板时可以有类似的效果,并且最小反射的情况可以出现在大约b/L的比率,其可以小于没有分流板的波空腔的相应比率。这可能是由于引水沟中的波在被浸没的板上面变得较短并因此减慢。
[0126] 引水沟2000的其它实施例例如在图24和25中被示出,其示出了环形水槽的外引水沟2100。这个外引水沟2100可以包括平行于主壁2400的引水沟壁2200中的垂直长孔2300,以形成多孔空腔。有长孔的壁也可以采取垂直圆柱体阵列的形式,其可能有另外的结构功能,例如支撑水槽上方的甲板。孔隙率优选地类似于使用多孔板或栅格的类似几何结构的孔隙率,即在30%-50%之间的开放区域。
[0127] 注意未穿孔的台阶2500,其使图24中所示的引水沟不同于图25中所示的引水沟。台阶是一个变型,其与分流板一样,可以与各种实施例中的任一个结合。台阶2500可以以类似于分流板的方式起作用,但可以具有结构上更坚固的附加优点。
[0128] 水平的和垂直的长孔或桩具有不同的特性。垂直的长孔或桩,在充分地间隔开且具有足够尺寸时,具有下列属性:当波浪倾斜地冲击垂直长孔或桩时,入射和反射路径可以不同。对于水平对齐的桩或长孔,倾斜可能没有效果并且更靠近静止水平面的长孔和桩的浸没可能是重要的,因为它可以容许较小规模的突变或波浪进入退出引水沟区域。另外,水平面的小的变化可以用来调节水平的桩或长孔的相对深度。
[0129] 某些引水沟系统的多孔壁还可以集成有产生涡流的粗糙元件,如上所述,可以在图26的下壁上看到它们。如图26中作为例子所示,一些实施例可以使用垂直的长孔或棒2700以形成多孔壁2800。另外,长孔或棒2700可以错开,以使得交错的长孔或棒从水槽壁径向地突出不同的距离。在至少一些实施例中,长孔或棒不必交错突出;例如,在一些实施例中,每个第七或第八长孔或棒可以从由其他长孔或棒形成的平面突出。在一些实施例中,一个或多个长孔或棒的突出距离可以是8-24英寸,且突出的长孔或棒之间的距离可以是
50-180英寸。
[0130] 虽然在上面已经详细描述了几个实施方式,但其他变型是可能的。其他实施方式可以处于下面的权利要求的范围内。
QQ群二维码
意见反馈